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Abstract

These are lecture notes for a course delivered through the Taught Courses Center (Bath,
Bristol, Imperial, Oxford, Warwick) in Fall 2023. The goal is to introduce the language
of∞-categories (as quasi-categories), hopefully enabling the audience to tackle more ad-
vanced texts and read some of the literature employing this language. Many proofs are
omitted, some of which are difficult and would require developing substantial extra ma-
terial. On the other hand, this omission allows us to talk about a number of subjects,
including constructing ∞-categories, (co)limits and presentability. We end with spectra
and the 𝐾-theory of stable ∞-categories.

Please send any corrections to martin.gallauer@warwick.ac.uk.
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Preface

Goals I would have liked to call this course∞-categories for the working mathematician. How-
ever, Mac Lane’s book (titled Categories for the working mathematician) not only treats an im-
pressive amount of category theory but does so with essentially full details on proofs. I will
not be able to do that here but the spirit of the title hopefully remains. By the end you should
be able to pick up a random article using ∞-categories and read along without getting too
distracted by the jargon. And if you want or need to, having such a ‘light’ first exposure hope-
fully makes it easier to tackle the foundational texts on the subject. The main references are
Lurie’s Higher Topos Theory and Higher Algebra (with further developments in Spectral Algebraic
Geometry and the Kerodon project). An alternative perspective on much of HTT is Cisinski’s
Higher Categories and Homotopical Algebra, while Land’s Introduction to ∞-categories is a more
introductory but still formidable book.

Acknowledgment Given the scope of this document I hope I will be excused for the lack
of attributions in the main body of the text. Let me do this here in brief instead. Most of
the material covered is due to Joyal and Lurie and I’ve learnt it from the latter’s books. In
addition to the references mentioned above, there are several other short accounts, some with
a similar goal as these lectures. I’ve been influenced in my exposition by Groth’s A short course
on ∞-categories and lectures on Higher Algebra by Krause and Nikolaus. It goes without saying
that I claim no originality for any of the material below.

Prerequisites The only strict prerequisite is a solid foundation in basic (1-)category theory.
Some familiarity with simplicial sets (simplicial homotopy theory) is an advantage but I will
introduce everything as we go along. As usual, examples will be more useful to those that
have seen these before in other contexts. So, later on in the course, when we construct the
∞-category of spectra, you will probably be less impressed if you haven’t encountered their
‘classical’ counterparts. I will try to account for that with some commentary.

Exercises There are exercises interspersed in the text and I highly recommend that you do
them. Given that relatively few proofs will be given in the course, these exercises are some of
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my few invitations to you to see what’s going on ‘behind the curtains’.

1 Definition

The goal of this section is to ‘explain’ the following definition: what it means and why it has
at least some plausibility of capturing what one would like it to. Of course, the rest of this
course is about turning plausibility into something stronger. (I’ll let you be the judge.)

Definition 1.1. An ∞-category is a simplicial set 𝐶 such that each inner horn admits a filler.
That is, for all 0 < 𝑖 < 𝑛:

Λ𝑛𝑖 𝐶

Δ𝑛

∀

∃

We will start by explaining what the terms mean. Feel free to skip the following subsection
if you can parse Definition 1.1.

Commentary 1.2. If you think about the definition of an ordinary 1-category (objects, mor-
phisms, composition, associativity, . . . ) you might be struck by the simplicity of Definition 1.1.
Shouldn’t the latter be infinitely more long and complicated? The reason it isn’t is that the
structure of composition is turned into a property instead. See Commentary 1.23 for elaboration.

1.1 Simplicial sets

Let 𝚫 denote the category of finite ordinals [𝑛] = (0 < · · · < 𝑛), 𝑛 ≥ 0, and (weakly) order-
preserving maps1. It is called the simplex category. Accordingly:

Definition 1.3. A simplicial set is a presheaf on 𝚫. In other words, sSet := Fun(𝚫op, Set).

Remark 1.4. The image of [𝑛] under the Yoneda embedding 𝚫 ↩→ sSet will be denoted
by Δ𝑛. The Yoneda lemma says that for any simplicial set 𝐶, we have a natural bijection

HomsSet(Δ𝑛,𝐶) � 𝐶𝑛

that we will use throughout without explicit mention. This is the set of 𝑛-simplices of 𝐶. For
example, the 𝑛-simplices of Δ𝑚 are the order-preserving maps [𝑛] → [𝑚].

Remark 1.5. In other words, a simplicial set 𝐶 consists of 𝑛-simplices 𝐶𝑛 of arbitrary dimen-
sions 𝑛 ≥ 0 together with maps 𝐶 (𝛼) : 𝐶𝑚 → 𝐶𝑛 for every order-preserving 𝛼 : [𝑛] → [𝑚]
(suitably functorially). Each such map is the composite of two special kinds of maps:

• the face maps 𝑑𝑖 := 𝑑 (𝑛)
𝑖

: 𝐶𝑛 → 𝐶𝑛−1 for 0 ≤ 𝑖 ≤ 𝑛, induced by 𝑑𝑖 : [𝑛 − 1] → [𝑛] that is
injective and only misses 𝑖; and

1Explicitly, 𝛼 : [𝑛] → [𝑚] is order-preserving if 𝛼 (𝑖) ≤ 𝛼 ( 𝑗) whenever 𝑖 ≤ 𝑗 .
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• the degeneracy maps 𝑠𝑖 := 𝑠 (𝑛)
𝑖

: 𝐶𝑛 → 𝐶𝑛+1 for 0 ≤ 𝑖 ≤ 𝑛, induced by 𝑠𝑖 : [𝑛 + 1] → [𝑛]
which is surjective and hits 𝑖 twice.

Therefore, 𝐶 is uniquely determined by the sets 𝐶𝑚 and the face and degeneracy maps that
need to satisfy the simplicial identities:

𝑑𝑖𝑑 𝑗 = 𝑑 𝑗−1𝑑𝑖 𝑖 < 𝑗

𝑑𝑖𝑠 𝑗 = 𝑠 𝑗−1𝑑𝑖 𝑖 < 𝑗

𝑑 𝑗𝑠 𝑗 = 1 = 𝑑 𝑗+1𝑠 𝑗

𝑑𝑖𝑠 𝑗 = 𝑠 𝑗𝑑𝑖−1 𝑖 > 𝑗 + 1
𝑠𝑖𝑠 𝑗 = 𝑠 𝑗+1𝑠𝑖 𝑖 ≤ 𝑗

Accordingly, you might see a simplicial set sometimes depicted as follows:

· · · 𝐶2 𝐶1 𝐶0

where the arrows are the face (going right) and degeneracy (going left) maps.

Convention 1.6. An 𝑛-simplex in 𝐶 is called degenerate if it is in the image of one of the
𝑠𝑖 : 𝐶𝑛−1 → 𝐶𝑛. Otherwise it is called non-degenerate.

Example 1.7. 1. For each 𝑚 ≥ 0, there is a unique order-preserving map [𝑚] → [0].
That is, the simplicial set Δ0 is constant of value a point. It is the terminal object in sSet.
It has a unique non-degenerate simplex, namely the identity map id0 : [0] → [0] in
dimension 0.

2. More generally, the simplicial set Δ𝑛 has non-degenerate simplices in dimensions 0, . . . , 𝑛
only. Indeed, for𝑚 > 𝑛 any order-preserving map [𝑚] → [𝑛] must hit an element of [𝑛]
twice. The only non-degenerate 𝑛-simplex of Δ𝑛 is the identity map id𝑛 : [𝑛] → [𝑛].
(In general, the non-degenerate simplices of Δ𝑛 are precisely the injective maps.)

Commentary 1.8. Geometrically, you can think of a simplicial set as a bunch of non-degenerate
simplices, with the face maps telling you how to glue them together. The underpinning of
that is given by the geometric realization of a simplicial set 𝐶, namely the topological space

|𝐶 | :=
(∐
𝑛≥0

𝐶𝑛 × |Δ𝑛 |
)
/∼,

where each𝐶𝑛 is given the discrete topology, |Δ𝑛 | = {(𝑡0, . . . , 𝑡𝑛) | 0 ≤ 𝑡𝑖 ≤ 1,
∑
𝑡𝑖 = 1} ⊆ R𝑛+1

denotes the standard 𝑛-simplex, and the equivalence relation is generated by:

(i) the 𝑖th face of {𝑥} × |Δ𝑛 | is identified with {𝑑𝑖𝑥} × |Δ𝑛−1 | (by the linear homeomorphism
preserving the order of the vertices);

(ii) {𝑠𝑖𝑥} × |Δ𝑛 | is collapsed onto {𝑥} × |Δ𝑛−1 | via the linear projection parallel to the line
connecting the 𝑖th and (𝑖 + 1)st vertex.
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You can convince yourself that |𝐶 | is the (set-theoretic disjoint) union of the interiors of stan-
dard simplices, one for each non-degenerate simplex of 𝐶. In particular, it is a CW-complex.

Warning 1.9. A general simplicial set is not determined by its geometric realization. We
will see later that a special class of simplicial sets (Kan complexes) are, at least up to homotopy
equivalence.

Example 1.10. We often picture some basic simplicial sets in a form akin to their geometric
realization, for example:

Δ0 Δ1 Δ2

Convention 1.11. The intersection of simplicial sets is again a simplicial set hence it makes
sense to speak of the simplicial subset generated by a family of simplices:

1. Given 0 ≤ 𝑖 ≤ 𝑛 we let 𝜕𝑖Δ𝑛 ⊂ Δ𝑛 denote the sub-simplicial set generated by the 𝑖th face

𝑑𝑖 (id𝑛 : [𝑛] → [𝑛]) = 𝑑𝑖 : [𝑛 − 1] → [𝑛] .

2. Let 𝜕Δ𝑛 ⊂ Δ𝑛 denote the sub-simplicial set generated by all its faces 𝜕𝑖Δ𝑛. We set 𝜕Δ0 = ∅,
the constant simplicial set with value the empty set. It is the initial object in sSet.

3. The 𝑖th horn Λ𝑛𝑖 ⊆ Δ𝑛 is generated by all faces except the 𝑖th one. It is called inner if
0 < 𝑖 < 𝑛 and outer else.

Exercise 1.12. Show that

1. 𝜕Δ𝑛 = ∪𝑛
𝑖=0𝜕𝑖Δ

𝑛 as simplicial subsets of Δ𝑛.

2. 𝜕Δ𝑛 ⊂ Δ𝑛 is the sub-simplicial set of non-surjective maps.

3. Λ𝑛𝑖 ⊂ Δ𝑛 is the sub-simplicial set of maps whose image doesn’t cover [𝑛]\{𝑖}.

Example 1.13. If you’re not yet convinced that these definitions capture what they should
please take a moment to verify that the following depict the non-degenerate simplices each
time:

𝜕Δ1

0 2

1

𝜕Δ2

0 2

1

Λ2
1

where 𝑖 denotes the 0-simplex 𝑖 : [0] → [2]. The last picture should also explain why these
are called horns.
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Commentary 1.14. Let us stay with this last picture for a moment. A map of simplicial sets
Λ2

1 → 𝐶 consists of two 1-simplices 𝑓 , 𝑔 in 𝐶 such that 𝑑0(𝑓 ) = 𝑑1(𝑔):

𝑑1(𝑓 ) 𝑑0(𝑔)

𝑑0(𝑓 ) = 𝑑1(𝑔)

𝑓 𝑔

We also write this as (𝑔, •, 𝑓 ) : Λ2
1 → 𝐶.

An extension of (𝑔, •, 𝑓 ) : Λ2
1 → 𝐶 to Δ2 → 𝐶 consists of a 2-simplex 𝜎 in 𝐶:

𝑓 𝑔

ℎ

with 𝑑2(𝜎) = 𝑓 , 𝑑0(𝜎) = 𝑔. Again, it should now be clear why this is called a filler in Defini-
tion 1.1.

Exercise 1.15. Show directly from the definition that Δ𝑛 is an ∞-category for all 𝑛 ≥ 0.

1.2 Categories as ∞-categories

At this point, all the terms in Definition 1.1 have been explained. But why is that a sensible
definition? Categories, be it 1-categories, ∞-categories or other variants, are fundamentally
about morphisms and ways of composing these. And composition is something that turns (fi-
nite, ordered) sequences of morphisms into other sequences of morphisms. It should therefore
not come as a surprise that the simplex category 𝚫 and simplicial sets could be useful in de-
scribing such structures. In this subsection and the next we’ll see two fundamental examples of
∞-categories that should give you some intuition about how this structure is encoded. Along
the way, some terminology will be introduced to aid in this.

Construction 1.16. Let 𝐶 be an ordinary category. We define its nerve 𝑁 (𝐶) as the following
simplicial set. The 𝑛-simplices are paths of length 𝑛 in 𝐶:

(1.17) 𝑐0
𝑓1−→ 𝑐1

𝑓2−→ · · ·
𝑓𝑛−→ 𝑐𝑛

The face map 𝑑𝑖 takes this to

𝑐0
𝑓1−→ · · ·

𝑓𝑖−1−−−→ 𝑐𝑖−1
𝑓𝑖+1◦𝑓𝑖−−−−−→ 𝑐𝑖+1

𝑓𝑖+2−−−→ · · ·
𝑓𝑛−→ 𝑐𝑛

if 0 < 𝑖 < 𝑛 and discards 𝑓0 (resp. 𝑓𝑛) if 𝑖 = 0 (resp. 𝑖 = 𝑛). The degeneracy map 𝑠𝑖 takes it to

𝑐0
𝑓1−→ · · ·

𝑓𝑖−→ 𝑐𝑖
id𝑐𝑖−−−→ 𝑐𝑖

𝑓𝑖+1−−−→ · · ·
𝑓𝑛−→ 𝑐𝑛 .
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Lemma 1.18. Every inner horn Λ𝑛𝑖 → 𝑁 (𝐶) admits a unique filler Δ𝑛 → 𝑁 (𝐶). In particular, the
nerve 𝑁 (𝐶) is an ∞-category.

Proof. (Note that since 0 < 𝑖 < 𝑛, 𝑛 must be at least 2.) Let Sp𝑛 ⊆ Δ𝑛 be the sub-simplicial set
generated by the adjacent edges Δ{ 𝑗< 𝑗+1} , 0 ≤ 𝑗 < 𝑛. (It is called the spine.) So, for example,
Sp2 = Λ2

1 and Sp3 is pictured below in solid.

0

1

3

2

The first point to observe is that Sp𝑛 ⊆ Λ𝑛𝑖 for all 0 < 𝑖 < 𝑛. Indeed, for 𝑛 = 2 we just
saw that they are equal, and for 𝑛 ≥ 3, Λ𝑛𝑖 contains all edges. Also, note that the restriction
of 𝑓 : Λ𝑛𝑖 → 𝑁 (𝐶) to Sp𝑛 describes nothing but a path of length 𝑛 as in (1.17), that we may
therefore identify with an 𝑛-simplex 𝑓 : Δ𝑛 → 𝑁 (𝐶). In particular, if 𝑓 |Λ𝑛

𝑖
= 𝑓 then it must be

the unique such 𝑛-simplex. It remains to check this identity.
If 𝑛 = 2 there is nothing to prove so let us assume 𝑛 ≥ 3. It suffices to show 𝑓 |𝜕𝑗Δ𝑛 = 𝑓 |𝜕𝑗Δ𝑛

for all 𝑗 ≠ 𝑖, and by the observation above we may further restrict to Sp𝑛−1 ⊆ Δ𝑛−1 � 𝜕𝑗Δ
𝑛 to

check the identity. You might think that 𝑔|𝜕𝑗Δ𝑛 |Sp𝑛−1 is just a restriction of 𝑔|Sp𝑛 (and therefore
we’re done), and that’s almost true. The only problem is the 𝑗th edge in Sp𝑛−1 which is really
the restriction 𝑔 |Δ𝑗−1< 𝑗+1 . (This problem does not occur if 𝑗 = 0 or 𝑗 = 𝑛.) But 𝑓 |Δ𝑗−1< 𝑗+1 = 𝑓𝑗+1 ◦
𝑓𝑗 . We have Δ 𝑗−1< 𝑗< 𝑗+1 ⊆ Λ𝑛𝑖 (use Exercise 1.12.3) hence we see that also 𝑓 |Δ𝑗−1< 𝑗+1 = 𝑓𝑗+1 ◦ 𝑓𝑗 ,
concluding the proof. □

Remark 1.19. The existence of fillers in 𝑁 (𝐶) really uses that we start with an inner horn.
(Take a moment to check where this was used in the proof above.) For example, let us be given
a map Λ2

2 → 𝑁 (𝐶) which we may identify with two morphisms 𝑓0 : 𝑐0 → 𝑐2 , 𝑓1 : 𝑐1 → 𝑐2
with the same target. A filler Δ2 → 𝑁 (𝐶) of that outer horn would amount to a morphism
𝑔 : 𝑐0 → 𝑐1 such that 𝑓1 ◦ 𝑔 = 𝑓0. It is clear that this does not exist for general 1-categories 𝐶.

I recommend that you prove the following proposition. It isn’t hard. (Of course, Lemma 1.18
already gives one part of the statement.)

Proposition 1.20. The nerve functor 𝑁 : Cat → sSet is fully faithful. The essential image consists
of those simplicial sets that admit unique fillers for inner horns.

Remark 1.21. In particular, the nerve of a 1-category is a complete invariant. From now on
we will not always distinguish between a 1-category and its nerve.

Having seen how a category is encoded in its nerve we generalize some categorical notions
to arbitrary simplicial sets.
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Definition 1.22. Let 𝐶 be a simplicial set, for example an ∞-category.

1. 𝐶0 is the set of objects of 𝐶. We sometimes write 𝑐 ∈ 𝐶 instead of 𝑐 ∈ 𝐶0.

2. 𝐶1 is the set of morphisms in 𝐶. Given a morphism 𝑓 ∈ 𝐶1 we write 𝑓 : 𝑐0 → 𝑐1 if
𝑐0 = 𝑑1(𝑓 ), 𝑐1 = 𝑑0(𝑓 ) ∈ 𝐶0. These are called source and target of 𝑓 .

3. Given an object 𝑐 ∈ 𝐶0, the identity of 𝑐 is the morphism id𝑐 = 𝑠0(𝑐) ∈ 𝐶1.

4. Let 𝜎 ∈ 𝐶2 be a 2-simplex

𝑐0 𝑐2

𝑐1

𝑓 𝑔

ℎ

𝜎

with 𝑑2(𝜎) = 𝑓 , 𝑑0(𝜎) = 𝑔, 𝑑1(𝜎) = ℎ. In this situation we say that ℎ is a composite of 𝑓
and 𝑔 and we write ℎ ≃ 𝑔 ◦ 𝑓 .

Commentary 1.23. In view of Commentary 1.14 we can then say that every composable pair
(𝑔, •, 𝑓 ) : Λ2

1 → 𝐶 in an ∞-category 𝐶 admits a composite ℎ ≃ 𝑔 ◦ 𝑓 . For the nerve of a 1-
category this composite is unique but this need not be so for other ∞-categories. However,
we will see later that the ‘space of composites’ is contractible and this is the right infinite-
dimensional analogue of uniqueness. See Corollary 2.15.

Construction 1.24. Recall the geometric realization from Remark 1.34. There is another
‘realization’ of a simplicial set, in Cat, the 1-category of (small) 1-categories. This is called the
homotopy category h: sSet → Cat. It sends [𝑛] to the totally ordered set {0 < 1 < · · · < 𝑛}
viewed as a category (and sometimes still denoted [𝑛]), with the obvious functoriality, and it
preserves colimits. It is easy to see that it is left adjoint to the nerve functor 𝑁 : Cat → sSet
from Construction 1.16. In the case of an∞-category 𝐶 we can describe h(𝐶) more explicitly.

Definition 1.25. Let 𝐶 be an ∞-category. Two morphisms 𝑓 , 𝑔 : 𝑐 → 𝑑 are homotopic or
equivalent if there exists a 2-simplex like so:

𝑐 𝑑

𝑑

𝑓 id𝑑

𝑔

This is equivalent to the existence of a 2-simplex like so:
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𝑐 𝑑

𝑐

id𝑐 𝑓

𝑔

This turns out to be an equivalence relation. (Check for yourself !) We write 𝑓 ≃ 𝑔.

Remark 1.26. At this point you should ask how the notions we have introduced before behave
with respect to homotopy. The interesting one is that of a composite. For example, we can
show that any two composites are homotopic. Indeed, let (𝑔, •, 𝑓 ) be a composable pair and 𝜎 ,
𝜎 ′ two 2-simplices as in Definition 1.22. Let ℎ = 𝑑1(𝜎) and ℎ′ = 𝑑1(𝜎 ′) so that ℎ ≃ 𝑔 ◦ 𝑓 as well
as ℎ′ ≃ 𝑔 ◦ 𝑓 . We now define a horn

(𝑠1(𝑔), •, 𝜎, 𝜎 ′) : Λ3
1 → 𝐶,

or in pictures:

0

1

3

2

ℎ

𝑓

𝑔

𝑔

id

ℎ′

𝑠1(𝑔)

𝜎 ′

𝜎

(You can check that these faces indeed glue together, that is, coincide on the common inter-
sections.) Since 𝐶 is an∞-category we obtain a filler 𝜇 : Δ3 → 𝐶 whose first face 𝜕1(𝜇) defines
a homotopy between ℎ and ℎ′.

Similarly, one shows that if 𝑓 ≃ 𝑓 ′ then 𝑔 ◦ 𝑓 ≃ 𝑔 ◦ 𝑓 ′ etc. Many of these arguments are
quite similar and we trust that you can easily fill them in. (Obviously, you should do it a few
times until you feel confident.)

Proposition 1.27. Let 𝐶 be an ∞-category. Then the homotopy category h(𝐶) can be described as
follows:

1. Its objects are those of 𝐶 and morphisms are equivalence classes of morphisms in 𝐶 , written [𝑓 ] .
2. The composition and identities are given by

[𝑔] ◦ [𝑓 ] = [𝑔 ◦ 𝑓 ], id𝑐 = [id𝑐] .

Exercise 1.28. Check that this really does define a category.
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Example 1.29. It follows from Proposition 1.20 that the counit of the adjunction

h(𝑁 (𝐶)) ∼−→ 𝐶

is an equivalence for any category𝐶. From this (or directly) you see that if 𝑓 ≃ 𝑔 in 𝑁 (𝐶) then
𝑓 = 𝑔.

Commentary 1.30. Let us temporarily denote the category (Exercise 1.28) described in Propo-
sition 1.27 by h′(𝐶). If you think about what a map of simplicial sets 𝐶 → 𝑁 (𝐷) (for some
given ordinary category 𝐷) amounts to, it should be quite plausible that this is the same as
defining a functor h′(𝐶) → 𝐷. And after all, that’s what Proposition 1.27 is essentially saying.
The proof is straightforward.

Definition 1.31. Let𝐶 be an∞-category, and 𝑓 : 𝑐 → 𝑑 a morphism. Then 𝑓 is an isomorphism
if there exists 𝑔 : 𝑑 → 𝑐 such that 𝑔 ◦ 𝑓 ≃ id𝑐 , 𝑓 ◦ 𝑔 ≃ id𝑑 .

Note that for the nerve of a category this recovers the notion of an isomorphism. More
generally, we have the following easy result.

Exercise 1.32. Let 𝐶 be an ∞-category, 𝑓 : 𝑐 → 𝑑. The following are equivalent:

1. 𝑓 is an isomorphism in 𝐶.

2. [𝑓 ] is an isomorphism in h(𝐶).

Commentary 1.33. An∞-category𝐶 is an∞-groupoid if all its morphisms are isomorphisms.
By Exercise 1.32, this is equivalent to h(𝐶) being a groupoid.

1.3 Spaces as ∞-categories

We now turn to the second fundamental example.

Remark 1.34. For formal reasons, the geometric realization of Commentary 1.8 has a right
adjoint Sing: Top→ sSet given by

Sing(𝑋 )𝑛 = HomTop( |Δ𝑛 |, 𝑋 )

and face and degeneracies induced by the corresponding maps on the topological standard
simplices. The simplicial set Sing(𝑋 ) is called the singular simplicial complex of 𝑋 . If you know
about singular homology, this will look familiar.

Lemma 1.35. Let 𝑋 ∈ Top be a topological space. Every horn (inner or outer) Λ𝑛𝑖 → Sing(𝑋 ) admits
a filler. In particular, Sing(𝑋 ) is an ∞-category.

Proof. Using the adjunction of Remark 1.34 our extension problem translates into one about
topological spaces:

|Λ𝑛𝑖 | 𝑋

|Δ𝑛 |
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This problem is solvable because |Λ𝑛𝑖 | is a retract of |Δ𝑛 |. □

Exercise 1.36. Let𝑋 be a topological space. Show that h(Sing(𝑋 )) = Π≤1(𝑋 ) is the fundamental
groupoid of 𝑋 .

Definition 1.37. A Kan complex is a simplicial set 𝐶 for which every horn Λ𝑛𝑖 → 𝐶, 0 ≤ 𝑖 ≤ 𝑛,
admits a filler Δ𝑛 → 𝐶.

Hence we have shown that Sing(𝑋 ) is a Kan complex. Just as for ordinary categories and
their nerves we would now like to say that topological spaces are subsumed by the theory of
Kan complexes. This turns out to be true, but in a somewhat more complicated sense. To
express it we need to recall the notion of weak homotopy equivalences.

Commentary 1.38. Let (𝑋, 𝑥) be a pointed topological space. For 𝑛 ≥ 1 we consider pointed
maps from the 𝑛-ball (𝐷𝑛, 𝜕𝐷𝑛) → (𝑋, 𝑥), that is, continuous maps 𝑓 : 𝐷𝑛 → 𝑋 such that
𝑓 (𝜕𝐷𝑛) = 𝑥 . Recall that two pointed maps 𝑓 , 𝑔 are homotopic if they can be continuously
deformed into one another. That is, if there exists a pointed map𝐻 : (𝐷𝑛×[0, 1], 𝜕𝐷𝑛×[0, 1]) →
(𝑋, 𝑥) such that 𝐻 |0 = 𝑓 , 𝐻 |1 = 𝑔. This is an equivalence relation and the equivalence classes of
pointed maps are denoted 𝜋𝑛 (𝑋, 𝑥). For 𝑛 = 1 one obtains the fundamental group. For 𝑛 > 1
these are the higher homotopy groups of (𝑋, 𝑥). (The group structure on these generalizes
the composition of paths in the case 𝑛 = 1.) One also extends the notion to 𝑛 = 0 by setting
𝜋0(𝑋 ) the set of path-connected components of 𝑋 .

A map of topological spaces 𝑓 : 𝑋 → 𝑌 is a weak homotopy equivalence if it induces a bi-
jection 𝜋0(𝑋 ) → 𝜋0(𝑌 ) and an isomorphism 𝜋𝑛 (𝑋, 𝑥) → 𝜋𝑛 (𝑌, 𝑓 (𝑥)) for every choice of base
point 𝑥 ∈ 𝑋 . Whitehead’s theorem implies that if 𝑋 and 𝑌 are CW-complexes then a weak
homotopy equivalence 𝑓 : 𝑋 → 𝑌 is automatically a homotopy equivalence. (That is, there
exists a homotopy inverse 𝑔 : 𝑌 → 𝑋 and homotopies 𝑔 ◦ 𝑓 ≃ id, 𝑔 ◦ 𝑓 ≃ id.) Of course, the
converse is true for every topological space.

Exercise 1.39. Repeat the definitions of Commentary 1.38 for Kan complexes, by replacing
Δ𝑛 for 𝐷𝑛. These are called simplicial homotopy groups. (The group structure is probably non-
obvious but we won’t seriously need it in the sequel.)

Note that for every pointed space (𝑋, 𝑥), there is a natural isomorphism 𝜋𝑛 (Sing(𝑋 ), 𝑥) �
𝜋𝑛 (𝑋, 𝑥) (resp. a bijection 𝜋0(Sing(𝑋 )) � 𝜋0(𝑋 )).

Commentary 1.40. In fact, the counit of the adjunction | Sing(𝑋 ) | → 𝑋 is a weak homotopy
equivalence for all topological spaces 𝑋 , as is the unit 𝑌 → Sing( |𝑌 |) for all Kan complexes 𝑌 .
(You should be able to prove this directly for 𝜋0 but the higher homotopy groups require some
more work.) These two facts are at the heart of an equivalence (due to Quillen) between topo-
logical spaces and Kan complexes at the level of homotopy theory (more precisely a Quillen
equivalence of model categories).

The upshot for us will be: As long as we care about topological spaces up to weak homotopy
equivalence, we may think of them as completely subsumed by the ∞-categorical world (see
also Remark 2.12). Starting from the next section, spaces for us will therefore mean Kan
complexes.
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Commentary 1.41. (Feel free to skip this.) Given a topological space 𝑋 , its fundamental
∞-groupoid Π<∞(𝑋 ) is thought to be an infinite-dimensional object encoding the homotopy
theory of 𝑋 , that is, the homotopy type of 𝑋 . Intuitively, one might think of it as having ob-
jects the points of 𝑋 , morphisms the paths in 𝑋 , 2-morphisms the homotopies between paths,
etc. This does not apriori define a simplicial set nor, a fortiori, an∞-category in our sense. In
line with the previous commentary, for us the singular simplicial set Sing(𝑋 ) is a good way
of making this intuition precise. It is an actual Kan complex and records exactly the kind of
information one would like. For example, its objects and morphisms are indeed precisely the
points of 𝑋 and paths between them. (See Exercise 1.36.) If 𝐻 : [0, 1]2 → 𝑋 is a homotopy
between two paths𝐻0, 𝐻1 : 𝑥 → 𝑦 one may subdivide the square [0, 1]2 along the diagonal into
two copies of |Δ2 | to obtain 2-simplices in Sing(𝑋 ). Conversely, if Δ2 → Sing(𝑋 ) provides
a homotopy between two morphisms 𝑓 , 𝑔 : Δ1 → Sing(𝑋 ) then an appropriate projection
[0, 1]2 → |Δ2 | yields a homotopy between 𝑓 and 𝑔. Similar techniques can be used in higher
dimensions, justifying the view that Sing(𝑋 ) is a good stand-in for Π<∞(𝑋 ).

Proposition 1.42. For 𝐶 ∈ sSet the following are equivalent:

1. 𝐶 is a Kan complex.

2. 𝐶 is an ∞-groupoid.

“Proof”. If𝐶 is a Kan complex then it is an∞-category, a fortiori. And given a morphism 𝑓 : 𝑐 →
𝑑 in 𝐶, the outer horn (•, id𝑐 , 𝑓 ) : Λ2

0 → 𝐶 admits a filler 𝜎 with 𝜕0(𝜎) = 𝑔 : 𝑑 → 𝑐 so that
[𝑔] ◦ [𝑓 ] = id𝑐 . Similarly, the outer horn (𝑓 , id𝑑 , •) : Λ2

2 → 𝐶 admits a filler 𝜎 ′ with 𝜕2(𝜎 ′) = 𝑔′
so that [𝑓 ] ◦ [𝑔′] ≃ id𝑑 . It follows that [𝑓 ] is an isomorphism with inverse [𝑔] = [𝑔′].

If𝐶 is an∞-groupoid and we are given a horn Λ𝑛𝑖 → 𝐶 we should find a filler. This is clear
if 0 < 𝑖 < 𝑛 (since 𝐶 is an ∞-category). Only outer horns are an issue. Now, for example, let
𝑛 = 2 and 𝑖 = 0. So, we are given an outer horn 𝛼 : Λ2

0 → 𝐶:

𝑐 𝑒

𝑑

𝑓

ℎ

The idea is pretty simple: Since 𝑓 is an equivalence, we may choose an inverse 𝑔 and consider
the following inner horn instead:

𝑐 𝑒

𝑑

𝑔

ℎ

This admits a filler
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𝑐 𝑒

𝑑

𝑔 𝑘

ℎ

𝜌

which we would like to turn into a filler for 𝛼 . This is not too difficult. Let 𝜎 : Δ2 → 𝐶 be a
witness of 𝑔 ◦ 𝑓 ≃ id𝑐 and consider the inner horn

(𝜌, 𝑠0(ℎ), •, 𝜎) : Λ3
2 → 𝐶.

You should check that the second face of any filler is a filler for 𝛼 .
Of course, a similar argument works for outer horns Λ2

2 → 𝐶. However, in higher dimen-
sions, the combinatorial task becomes more and more intractable and one needs an extrinsic
idea. In fact, this is arguably the first ‘non-trivial’ (in this sense) result in these notes. It relies on
the study of lifting properties among maps of simplicial sets (see for example Commentary 2.8
below), and we omit the proof. □

Commentary 1.43. Grothendieck’s homotopy hypothesis asserts that in higher category the-
ory, spaces should be the ‘same’ as ∞-groupoids. Given our identification of spaces with Kan
complexes (see Commentary 1.40) we may view Proposition 1.42 as a precise version of this
hypothesis.

1.4 Summary

Commentary 1.44. Looking at Lemmata 1.18 and 1.35 you will observe that the definition of
an ∞-category is a very natural generalization of both 1-categories and Kan complexes: from
the former we drop uniqueness of fillers, from the latter we drop fillers for outer horns.

Remark 1.45. The connection between 1-categories and their nerves on the one hand, and
between topological spaces and their singular simplicial complexes on the other, is quite close
as we have mentioned. Let us summarize it here, starting with the adjunctions discussed above:

sSet

Top Cat

| · |

hSing

𝑁

We collect the pertinent facts.

Theorem 1.46. 1. The counit
h(𝑁 (𝐶)) ∼−→ 𝐶
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is an isomorphism for every category 𝐶 . In particular, the nerve functor 𝑁 : Cat→ sSet is fully
faithful. The essential image consists of those simplicial sets that admit unique fillers for inner
horns.

2. The counit
| Sing(𝑋 ) | → 𝑋

is a weak homotopy equivalence, for every topological space 𝑋 . In particular, the singular simpli-
cial complex functor Sing: Top → sSet is fully faithful after inverting weak homotopy equiv-
alences on both sides. Its essential image consists of those simplicial sets that admit fillers for all
horns, that is, are Kan complexes.

Commentary 1.47. The terminology around ∞-categories is a bit confusing. On the one
hand∞-category is really a short-hand for an (∞, 1)-category: a ‘category’ that has morphisms
of arbitrary dimensions, with morphisms of dimensions 2, 3, 4, . . . being invertible. On the
other hand, it’s really only one way of modeling such (∞, 1)-categories. To distinguish it from
others, the literature also uses the terms quasi-category or weak Kan complex. So, Definition 1.1
is a misnomer in two different ways. Nevertheless, it is becoming more and more established
terminology. Here is a table to put some of the terms into perspective.

conceptually a.k.a. model in this course a.k.a.
= simplicial set having. . .

(∞, 1)-category ∞-category fillers for inner horns
quasi-category,

weak Kan complex
(∞, 0)-category ∞-groupoid fillers for all horns Kan complex
(1, 1)-category (1-)category unique fillers for inner horns (nerve of a category)
(1, 0)-category (1-)groupoid unique fillers for all horns (nerve of a groupoid)

2 The ∞-category of spaces

Commentary 2.1. The category Set of sets plays a distinguished role in ordinary category
theory. For example,

1. it is the free cocompletion of a singleton;

2. morphisms between objects in a category 𝐶 form sets, and this is reflected in the fully
faithful Yoneda embedding

𝐶 ↩→ Fun(𝐶op, Set)

(These two reasons are closely related, of course.) In the theory of ∞-categories, this distin-
guished role is played by the ∞-category Spc of spaces. We will first explain why this should
be so and then proceed with the construction of this ∞-category. In this section we will see
the analogue of property 2. The analogue of property 1 has to wait until Section 4.1.
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2.1 Functors

So far we have defined ∞-categories but not functors between them. This is easily remedied:
A functor 𝐶 → 𝐷 between ∞-categories is simply a map of simplicial sets. As we now explain,
functors naturally form an ∞-category.

Remark 2.2. As a presheaf category, the category of simplicial sets has all colimits and limits
and these are computed pointwise.

Exercise 2.3. Let (𝐶𝑖)𝑖 be a set of ∞-categories. Show that
∐
𝑖 𝐶𝑖 and

∏
𝑖 𝐶𝑖 are ∞-categories

as well (where the (co)product is computed in sSet).

Exercise 2.4. List all non-degenerate simplices of Δ1 × Δ1.

Definition 2.5. Given a simplicial set 𝐾 and an ∞-category 𝐶, we define a new simplicial set
by

Fun(𝐾,𝐶)𝑛 = HomsSet(𝐾 × Δ𝑛,𝐶),

with face and degeneracy maps induced by the 𝑑𝑖 : Δ𝑛−1 → Δ𝑛 and 𝑠𝑖 : Δ𝑛+1 → Δ𝑛. In other
words, this is just the internal hom object in sSet that we also denote by HomsSet(𝐾,𝐶). The
simplicial set Fun(𝐾,𝐶) is called the ∞-category of functors from 𝐾 to 𝐶 because it is indeed an
∞-category. This is another result that isn’t easy to prove directly and relies on the lifting
properties for maps of simplicial sets (see Commentary 2.8 below).

Objects of Fun(𝐾,𝐶) are called functors, and morphisms of Fun(𝐾,𝐶) are called natu-
ral transformations. A natural isomorphism is a natural transformation that is an isomorphism
in Fun(𝐾,𝐶).

Example 2.6. 1. The ∞-category Fun(Δ0,𝐶) is isomorphic as a simplicial set to 𝐶 itself.

2. The arrow ∞-category of 𝐶 is the functor ∞-category Fun(Δ1,𝐶). Its objects are mor-
phisms in 𝐶.

3. The ∞-category Fun(Δ1 × Δ1,𝐶) has as objects ‘commutative squares’ in 𝐶. If you’ve
done Exercise 2.4 you should be able to identify these with pairs of 2-simplices (𝜎, 𝜏)
in 𝐶 such that 𝑑1(𝜎) = 𝑑1(𝜏) (the ‘diagonal’ of the square).

Exercise 2.7. Let𝐶, 𝐷 be ordinary categories. Exhibit a natural isomorphism of simplicial sets

Fun(𝑁 (𝐶), 𝑁 (𝐷)) � 𝑁 (Fun(𝐶, 𝐷)) .

Commentary 2.8. While we are not about to give a proof that Fun(𝐾,𝐶) is an ∞-category,
let us explain how fibrations appear naturally in the proof. We want to show that the filling
problem

Λ𝑛𝑖 Fun(𝐾,𝐶)

Δ𝑛
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admits a solution. By adjunction, this is equivalent to another problem:

Λ𝑛𝑖 × 𝐾 𝐶

Δ𝑛 × 𝐾

We can turn this into a more symmetric problem by replacing the object 𝐶 by the unique
map 𝐶 → Δ0:

Λ𝑛𝑖 × 𝐾 𝐶

Δ𝑛 × 𝐾 Δ0

Define an inner fibration 𝑓 : 𝑋 → 𝑌 of simplicial sets to have the right-lifting property (RLP)
with respect to all inner horn inclusions, that is, every lifting problem (with 0 < 𝑖 < 𝑛)

Λ𝑛𝑖 𝑋

Δ𝑛 𝑌

𝑓

admits a solution. Note that 𝐶 is an ∞-category iff 𝐶 → Δ0 is an inner fibration so this is an
obvious relativization. The sought-for property therefore follows from the fact that Fun(𝐾,−)
preserves inner fibrations, or, as we explained above, if the class of maps having the left-lifting
property with respect to inner fibrations is closed under −×𝐾 . This is what is typically proved
in the literature. The maps having this left-lifting property are called inner anodyne.

Example 2.9. Any functor 𝑓 : 𝐶 → 𝑁 (𝐷) from an ∞-category to the nerve of an ordinary
category is an inner fibration. This follows directly from the uniqueness in Lemma 1.18.

Remark 2.10. A natural transformation 𝜂 : 𝑓 → 𝑔 of functors 𝑓 , 𝑔 : 𝐶 → 𝐷 of ordinary cate-
gories is an isomorphism if and only if each component 𝜂𝑐 : 𝑓 (𝑐) → 𝑔(𝑐) is. The same statement
is true for ∞-categories: A natural transformation 𝜂 : 𝐶 × Δ1 → 𝐷 is a natural isomorphism if
and only if for each 𝑐 ∈ 𝐶, the morphism 𝜂𝑐 := 𝜂 (id𝑐 , idΔ1) is an isomorphism in 𝐷. Equiva-
lently, the obvious functor Fun(𝐶, 𝐷) → Fun(𝑁 (𝐶0), 𝐷) is conservative2. However, the proof
is non-trivial. One possibility is a dévissage argument (using the lifting properties again) to
reduce to the case where𝐶 = Δ1. This is a rather concrete combinatorial problem (think about
what exactly you need to show!) that can be solved using the same kind of results alluded to
in the proof of Proposition 1.42.

Definition 2.11. A functor 𝑓 : 𝐶 → 𝐷 between ∞-categories is an equivalence if there exists a
functor 𝑔 : 𝐷 → 𝐶 and natural isomorphisms 𝑓 ◦ 𝑔 ≃ id, 𝑔 ◦ 𝑓 ≃ id.

2This is defined just as for ordinary categories: A functor 𝑓 : 𝑋 → 𝑌 of ∞-categories is conservative if 𝑓 (𝛼) ∈ 𝑌1
an isomorphism implies 𝛼 ∈ 𝑋1 an isomorphism.
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Remark 2.12. Of course, an isomorphism of simplicial sets 𝑓 : 𝐶 → 𝐷 is an equivalence. But
an equivalence is a much weaker notion. For example, for nerves of ordinary categories, an
equivalence is the same as an equivalence of ordinary categories. This follows immediately
from Exercise 2.7. And a morphism of spaces (= Kan complexes) 𝑓 : 𝑋 → 𝑌 is an equivalence
iff it is a weak homotopy equivalence.

Later, we will see that equivalences between ∞-categories are precisely the ‘fully faithful’
and ‘essentially surjective’ functors.

Commentary 2.13. Finally, the internal hom of simplicial sets allows to give a very pleas-
ing characterization of ∞-categories themselves. Another way of expressing the condition
(Definition 1.1) is that every inner horn inclusion Λ𝑛𝑖 ↩→ Δ𝑛 (for 0 < 𝑖 < 𝑛) induces a surjection

HomsSet(Δ𝑛,𝐶) → HomsSet(Λ𝑛𝑖 ,𝐶) .

In the discussion of the ∞-category of functors we have already seen that in fact something
stronger holds: The map induced on internal homs is an epimorphism of simplicial sets:

HomsSet(Δ
𝑛,𝐶) → HomsSet(Λ

𝑛
𝑖 ,𝐶) .

We finish this subsection by discussing a further strengthening. For this, let us define a trivial
Kan fibration 𝑝 : 𝑋 → 𝑌 of simplicial sets to have the RLP with respect to all inclusions of
simplicial sets 𝑆 ↩→ 𝑆 ′. Note that a trivial Kan fibration 𝑝 : 𝑋 → 𝑌

• is in particular an inner fibration, and

• admits a section (hence is an epimorphism).

Finally, given 𝑦 : Δ0 → 𝑌 , the pullback (the ‘fiber of 𝑝 over 𝑦)

𝑋𝑦 𝑋

Δ0 𝑌

𝑝′ 𝑝

𝑦

is a contractible space. This is because 𝑝′ is again a trivial Kan fibration. In particular, it has
the RLP with respect to all horn inclusions so that the domain is a Kan complex. It also has
the RLP with respect to the inclusions 𝜕Δ𝑛 ↩→ Δ𝑛 which implies that it is a weak homotopy
equivalence of spaces. That is, the domain is contractible.

Lemma 2.14. Let 𝐶 be a simplicial set. The following are equivalent:

1. 𝐶 is an ∞-category.

2. For every inner anodyne map 𝑖 : 𝑋 → 𝑌 , the induced map of simplicial sets

HomsSet(𝑌,𝐶) → HomsSet(𝑋,𝐶)

is a trivial Kan fibration.

3. The canonical map HomsSet(Δ2,𝐶) → HomsSet(Λ2
1,𝐶) is a trivial Kan fibration.
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This result exhibits a fundamental relation between said classes of maps (inner anodyne,
inner horn inclusions, trivial Kan fibrations). Although conceptually maybe not a difficult
result, the combinatorics involved are well beyond the scope of these lectures. (Note that you
can deduce that Fun(𝐾,𝐶) is an ∞-category (if 𝐶 is) from 1.⇒3. You only need to know that
trivial Kan fibrations are stable under HomsSet(𝐾,−).)

This result has many consequences, for example:

Corollary 2.15. Let (𝑔, •, 𝑓 ) : Λ2
1 → 𝐶 be a composable pair in an∞-category 𝐶 . The ‘simplicial set

of compositions (or fillers)’

HomsSet(Δ
2,𝐶) ×HomsSet (Λ2

1,𝐶 )
{(𝑔, •, 𝑓 )}

is a contractible space. (That is, a Kan complex (weakly) homotopy equivalent to 𝐷0.)

Proof. This is exactly the fiber of the trivial Kan fibration

HomsSet(Δ
2,𝐶) → HomsSet(Λ

2
1,𝐶)

over (𝑔, •, 𝑓 ). □

Remark 2.16. There is a direct generalization of this result. Namely, given a path of compos-
able morphisms 𝛼 : Sp𝑛 → 𝐶 in an ∞-category (see the proof of Lemma 1.18), the ‘simplicial
set of compositions’

HomsSet(Δ
𝑛,𝐶) ×HomsSet (Sp𝑛,𝐶 ) {𝛼}

is a again a contractible space. (This is again because the inclusion Sp𝑛 ↩→ Δ𝑛 is inner anodyne.)
In other words, while compositions are not unique (as in an ordinary category), any two

compositions are homotopic. And the homotopies are not unique but themselves homotopic.
And the homotopies between homotopies are not unique but themselves homotopic. And so
on ad infinitum.

2.2 Mapping spaces

Commentary 2.17. Let 𝐶 be an ordinary 1-category, and let 𝑐, 𝑑 ∈ 𝐶 be two objects. Con-
sider the following pullback square of categories:

Hom𝐶 (𝑐, 𝑑) Fun( [1],𝐶)

Δ0 𝐶 ×𝐶

(0,1)
(𝑐,𝑑 )

In other words, the pullback turns out to be a 0-category, and identifies with the set of mor-
phisms from 𝑐 to 𝑑.

For an ∞-category we will define a simplicial set of morphisms in the same way. And
this will similarly decrease the categorical level by 1, resulting in an (∞, 0)-category, or
∞-groupoid. By Proposition 1.42, we identify these with spaces thus the name ‘mapping
space’.
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Definition 2.18. Let𝐶 be an∞-category and 𝑐, 𝑑 ∈ 𝐶 two objects. The mapping space Map
𝐶
(𝑐, 𝑑)

is the pullback in sSet in the following diagram:

(2.19)
Map

𝐶
(𝑐, 𝑑) Fun(Δ1,𝐶)

Δ0 Fun(𝜕Δ1,𝐶)(𝑐,𝑑 )

Here, the right vertical map is restriction along the inclusion 𝜕Δ1 ↩→ Δ1. We may identify
Fun(𝜕Δ1,𝐶) � 𝐶 ×𝐶 and the bottom horizontal map picks the pair (𝑐, 𝑑) ∈ 𝐶 ×𝐶.

Remark 2.20. As the name suggests, the mapping space is indeed a Kan complex. Indeed,
it is another consequence of the stability properties of fibrations that the right vertical arrow
in (2.19) is an inner fibration. By Remark 2.10, it is also conservative. And it is true that
conservative inner fibrations are stable under pullbacks (along functors of∞-categories) hence
the left vertical arrow is also a conservative inner fibration. But this just means that the mapping
space is an ∞-groupoid.

Exercise 2.21. Show that the objects of Map
𝐶
(𝑐, 𝑑) are precisely morphisms 𝑓 : 𝑐 → 𝑑 in 𝐶,

and there is a morphism 𝑓 → 𝑔 iff 𝑓 ≃ 𝑔 as morphisms in 𝐶. In particular, 𝜋0 Map
𝐶
(𝑐, 𝑑) =

Homh(𝐶 ) (𝑐, 𝑑).
Deduce (or prove otherwise) that if 𝐶 is an ordinary category then Map

𝑁 (𝐶 ) (𝑐, 𝑑) is a
discrete space that can be identified with Hom𝐶 (𝑐, 𝑑).

Example 2.22. Let 𝑋 be a space and 𝑥 ∈ 𝑋 a point. Then the mapping space

Ω(𝑋 ) = Ω(𝑋, 𝑥) = Map
𝑋
(𝑥, 𝑥)

is the based loop space of 𝑋 . As you might be familiar with from algebraic topology, one has a
canonical homotopy equivalence

𝜋𝑛 (Ω(𝑋 ), id𝑥 ) ≃ 𝜋𝑛+1(𝑋, 𝑥), 𝑛 ≥ 0.

From Exercise 2.21, we see that the following definition generalizes fully faithfulness from
ordinary categories to ∞-categories.

Definition 2.23. Let 𝑓 : 𝐶 → 𝐷 be a functor between ∞-categories. By naturality of the
construction, it induces maps of spaces

Map
𝐶
(𝑐, 𝑑) →Map

𝐷
(𝑓 (𝑐), 𝑓 (𝑑))

for all objects 𝑐, 𝑑 ∈ 𝐶. We say that 𝑓 is fully faithful if these maps are all homotopy equivalences.

Commentary 2.24. By Exercise 2.21, a fully faithful functor 𝑓 : 𝐶 → 𝐷 induces a fully faith-
ful functor h(𝑓 ) : h(𝐶) → h(𝐷) on homotopy categories. However, the converse is not true
in general. (For example, let𝑋 be a connected, simply connected space that is not contractible.
The canonical map 𝑋 → Δ0 induces an equivalence on homotopy categories (that is, on fun-
damental groupoids; see Exercise 1.36) but is not fully faithful.)
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Construction 2.25. Let𝐶 be an∞-category and 𝜄 : h(𝐶)′ ↩→ h(𝐶) a subcategory of its homo-
topy category. (Not necessarily full.) We define a simplicial set 𝐶′ by the following pullback
diagram:

𝐶′ 𝐶

𝑁 (h(𝐶)′) 𝑁 (h(𝐶))𝜄

Here, the right vertical functor is the unit of the adjunction h ⊣ 𝑁 .

Exercise 2.26. Show that 𝐶′ is an ∞-category. It is the subcategory spanned by h(𝐶)′. (Despite
the name, it is not an ordinary category in general.)

Remark 2.27. If h(𝐶)′ ⊆ h(𝐶) is a full subcategory then the induced functor 𝐶′ → 𝐶 is fully
faithful. In fact, it induces not just homotopy equivalences on mapping spaces but isomor-
phisms of simplicial sets. This follows readily from the definitions.

Example 2.28. Let 𝐶 be an ∞-category and h(𝐶)≃ ⊆ h(𝐶) the core of h(𝐶). That is, it is
spanned by all isomorphisms in h(𝐶). We define the core of 𝐶, denoted 𝐶≃ to be the subcate-
gory spanned by h(𝐶)≃. Note that it is an ∞-groupoid, in fact, it is (obviously) the maximal
∞-groupoid contained in 𝐶.

Definition 2.29. Let 𝑓 : 𝐶 → 𝐷 be a functor between ∞-categories. It is called essentially
surjective if every object 𝑑 ∈ 𝐷 is isomorphic to an object in the image of 𝑓 , that is, 𝑓 (𝑐) � 𝑑
for some 𝑐 ∈ 𝐶.

Commentary 2.30. In contrast to fully faithfulness, essentiall surjectivity is detected at the
level of homotopy categories: The functor 𝑓 is essentially surjective iff h(𝑓 ) : h(𝐶) → h(𝐷) is
essentially surjective (in the sense of ordinary 1-categories).

Exercise 2.31. Let 𝑓 : 𝑋 → 𝑌 be a map of Kan complexes. Show that 𝑓 is essentially surjective
iff 𝜋0(𝑓 ) : 𝜋0(𝑋 ) → 𝜋0(𝑌 ) is surjective.

Remark 2.32. Combining Example 2.22 and Exercise 2.31, one sees that a map of spaces is
fully faithfulness and essentially surjective if and only if it is a homotopy equivalence. (One
also uses Whitehead’s theorem (Remark 2.12): It suffices to show it is a weak homotopy equiv-
alence.) This is a special case of the following result.

Proposition 2.33. Let 𝑓 : 𝐶 → 𝐷 be a functor between ∞-categories. Then 𝑓 is an equivalence iff it
is fully faithful and essentially surjective.

Sketch of proof. The forward direction being easy let us focus on the converse. Note first that
𝑓 is an equivalence iff 𝑓∗ : Fun(𝐾,𝐶)≃ → Fun(𝐾, 𝐷)≃ is an equivalence for all simplicial sets 𝐾 .
(This is an easy exercise. You only need 𝐾 = 𝐶 and 𝐾 = 𝐷.) By a dévissage argument one
reduces to 𝐾 = Δ1. Now, passing to cores preserves fully faithfulness and essential surjectivity.
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This implies that the bottom horizontal arrow in

Fun(Δ1,𝐶)≃ Fun(Δ1, 𝐷)≃

Fun(𝜕Δ1,𝐶)≃ Fun(𝜕Δ1, 𝐷)≃

is fully faithful and essentially surjective and thus a homotopy equivalence, by Remark 2.32.
Now, the vertical arrows turn out to be Kan fibrations hence one reduces to show homotopy
equivalences on the fibers. But the fibers are just the mapping spaces in 𝐶 and 𝐷, respectively,
so this follows from fully faithfulness of 𝑓 . □

Exercise 2.34. Show that for 𝑓 : 𝑋 → 𝑌 a map between Kan complexes, fully faithfulness
amounts to 𝑓 being the inclusion of a summand. That is, 𝑓 induces an equivalence 𝑌 = 𝑋

∐
𝑌 ′

for some Kan complex 𝑌 ′.

Exercise 2.35. Let 𝑓 : 𝐶 → 𝐷 be a functor of ∞-categories. Its essential image is the full sub-
category of 𝐷 spanned by the essential image of h(𝑓 ) : h(𝐶) → h(𝐷). Show that if 𝑓 is fully
faithful then it factors as an equivalence followed by the inclusion of a full subcategory.

Commentary 2.36. We finish this subsection with a more sophisticated version of Commen-
tary 1.23. Let 𝑐, 𝑑, 𝑒 ∈ 𝐶 be objects in an ∞-category and define the following simplicial set as
a pullback:

Map
𝐶
(𝑐, 𝑑, 𝑒) Fun(Δ2,𝐶)

Δ0 𝐶 ×𝐶 ×𝐶(𝑐,𝑑,𝑒 )

where the right vertical arrow is restriction to the three 0-simplices of Δ2. It turns out (see
Exercise 2.37 below) that Map

𝐶
(𝑐, 𝑑, 𝑒) is also a Kan complex and the canonical restriction map

Map
𝐶
(𝑐, 𝑑, 𝑒) 𝜕0×𝜕2−−−−→Map

𝐶
(𝑑, 𝑒) ×Map

𝐶
(𝑐, 𝑑)

is a trivial Kan fibration. Choosing a homotopy inverse one obtains a map

Map
𝐶
(𝑑, 𝑒) ×Map

𝐶
(𝑐, 𝑑) →Map

𝐶
(𝑐, 𝑑, 𝑒) 𝜕1−→Map

𝐶
(𝑐, 𝑒)

that one may interpret as a composition. It depends on the choice of the homotopy inverse
but only in the mildest manner possible: The choices form a contractible space. (Again, see
Exercise 2.37 below.)

Exercise 2.37. 1. Let 𝑝 : 𝑋 → 𝑌 be a trivial Kan fibration (Commentary 2.13). We already
observed that it admits a section. Show that the simplicial set of sections naturally forms a
contractible space. (Of course, this involves defining this simplicial set in the first place.)

2. Using Lemma 2.14, establish the claims made in Commentary 2.36.
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2.3 A construction

Commentary 2.38. So far, we have seen two classes of examples of ∞-categories, namely
ordinary categories and spaces. We have also seen several constructions that produce new
from old ones, such as functor categories or subcategories. Combining these one already gets
a decent selection of ∞-categories. Nevertheless, one important class of examples is missing:
Suppose 𝐶 is an ordinary category with a class of morphisms𝑊 ⊆ 𝐶1 that one would like to
‘invert’ (=localize at). Neglecting size issues this can always be done at the level of ordinary
categories but the result is often too crude to be useful. (For example, even if 𝐶 had all limits
and colimits the localization typically has few.) The theory of (∞, 1)-categories is supposed
to provide a framework in which such localizations can be performed in a refined way. Our
goal in this subsection is to explain this in the example of𝐶 the category of spaces (that is, Kan
complexes) and𝑊 the class of homotopy equivalences. However, it should be noted that the
same construction works in many other contexts of interest.

Commentary 2.39. The actual construction won’t be that important in the sequel and you
could in principle jump directly to Theorem 2.47. However, I want to convey that the re-
sulting ∞-category Spc is nothing mysterious but has an explicit (although complicated) de-
scription. Moreover, it is worth comparing the construction with the nerve of an ordinary
category.

Convention 2.40. Let 0 ≤ 𝑖 ≤ 𝑗 be two integers and denote by 𝑃𝑖, 𝑗 the set

𝑃𝑖, 𝑗 := {𝐼 ⊆ {𝑖, . . . , 𝑗} | min(𝐼 ) = 𝑖,max(𝐼 ) = 𝑗}

partially ordered by inclusion. (If 𝑖 > 𝑗 we agree that 𝑃𝑖, 𝑗 = ∅.)

Definition 2.41. Let 𝑛 ≥ 0. We define a simplicial category C[Δ𝑛] with:

• objects 0, 1, . . . , 𝑛;

• simplicial hom-sets HomC[Δ𝑛 ] (𝑖, 𝑗) = 𝑁 (𝑃𝑖, 𝑗 );

• composition is induced by the union of subsets.

Commentary 2.42. Note that C[Δ𝑛] and the totally ordered set h(Δ𝑛) = {0 < 1 < · · · < 𝑛}
have the same objects. But whereas there is a unique morphism 𝑖 → 𝑗 in h(Δ𝑛) if 𝑖 ≤ 𝑗 , in
C[Δ𝑛] there is—it turns out—a weakly contractible simplicial set of such morphisms.3 The
objects of this simplicial set are in bijection with all possible compositions

𝑖 = 𝑖0 < 𝑖1 < · · · < 𝑖𝑚 = 𝑗 .

And, again, while the composition of 𝑖 < 𝑗 and 𝑗 < 𝑘 in h(Δ𝑛) is just 𝑖 < 𝑘, in C[Δ𝑛] it is given
by 𝑖 < 𝑗 < 𝑘. One thinks of C[Δ𝑛] as a ‘thickened’ version of h(Δ𝑛) in which associativity of
composition on the nose is weakened to associativity up to coherent homotopy.

3A simplicial set is weakly contractible if its topological realization is (weakly) contractible.
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Example 2.43. • Let 𝑛 = 0. In this case, C[Δ0] is the terminal simplicial category with
one object and a singleton simplicial mapping space. Therefore, C[Δ0] and h(Δ0) are
really the ‘same’.

• Let 𝑛 = 1. In this case, C[Δ1] has two objects 0, 1 and all simplicial mapping spaces are
again trivial (empty or singletons). Hence we still see no thickening. (Of course, this is
because there are no interesting compositions.)

• The first genuine thickening occurs when 𝑛 = 2. In this case C[Δ2] has three objects
0, 1, 2. The only non-trivial simplicial hom-set is HomC[Δ2 ] (0, 2) = 𝑁 (𝑃0,2). Here, the
poset 𝑃0,2 is actually an ordered set on two elements (namely, {0, 2} ⊂ {0, 1, 2}). In other
words, HomC[Δ2 ] (0, 2) � Δ1.

Construction 2.44. Note that the construction in Definition 2.41 is functorial in 𝑛. Therefore
it makes sense to define a simplicial set Spc by the following formula (for all 𝑛 ≥ 0):

(2.45) Spc𝑛 = HomsSet(Δ𝑛, Spc) = homsCat(C[Δ𝑛],Kan)

Here, Kan denotes the simplicial category of Kan complexes with simplicial hom-sets as in
Definition 2.5.4 And sCat denotes the category of simplicial categories, so morphisms are
required to preserve the simplicial structure.

Example 2.46. From Example 2.43 we can determine the simplices of Spc in low dimension:

• The 0-simplices are just the objects of Kan, that is, the Kan complexes.

• The 1-simplices are the maps of Kan complexes.

• The 2-simplices are in bijection with maps of Kan complexes 𝑓 : 𝑋 → 𝑌 , 𝑔 : 𝑌 → 𝑍 ,
ℎ : 𝑋 → 𝑍 together with a homotopy 𝑔 ◦ 𝑓 ≃ ℎ.

I recommend verifying these statements. In particular, the last one requires some unpacking
of the definitions.

This description of the low-dimensional simplices might lend some plausibility to the fol-
lowing result.

Theorem 2.47. The simplicial set Spc is an ∞-category and for any Kan complexes 𝑋,𝑌 there is a
canonical homotopy equivalence of spaces

HomsSet(𝑋,𝑌 )
∼−→MapSpc(𝑋,𝑌 ) .

4Let 𝑋,𝑌, 𝑍 ∈ Kan. The composition

Hom(𝑌, 𝑍 ) ×Hom(𝑋,𝑌 ) → Hom(𝑋,𝑍 )

on 𝑛-simplices is given by

Hom(𝑌 × Δ𝑛, 𝑍 ) ×Hom(𝑋 × Δ𝑛, 𝑌 ) ◦−→ Hom(𝑋 × Δ𝑛 × Δ𝑛, 𝑍 ) → Hom(𝑋 × Δ𝑛, 𝑍 )

where the second map is restriction along the diagonal Δ𝑛 → Δ𝑛 × Δ𝑛 .
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Commentary 2.48. The construction of the∞-category Spc can be generalized. Given any
simplicial category C such that the simplicial hom-sets are Kan complexes,5 the homotopy co-
herent nerve 𝑁 (C) defined by the same formula as in (2.45),

HomsSet(Δ𝑛, 𝑁 (C)) = homsCat(C[Δ𝑛],C),

is an ∞-category, and its mapping spaces are the original simplicial mapping spaces (up to
canonical homotopy equivalence).

Sketch of proof. To check that 𝑁 (C) is an ∞-category we need to show the inner horn filling
condition. By definition (and as with the usual nerve), the homotopy coherent nerve is right
adjoint to the functor C[−] : sSet→ sCat constructed in the by now familiar way: You know
what to do on the simplex category, namely [𝑛] ↦→ C[Δ𝑛], and this forces what to do on
general simplicial sets (left Kan extend). So, by adjunction, the filling problem becomes an
analogous lifting problem in simplicial categories:

C[Λ𝑛𝑖 ] C

C[Δ𝑛]

It turns out (as you can easily check) that the two simplicial categories on the left have the
same objects and the same simplicial hom-sets except one, the one from 0 to 𝑛. Extending the
horizontal functor on this simplicial hom-set is possible exactly because the target in C is a
Kan complex.

There are relatively elementary proofs of the statement about the mapping spaces in the
homotopy coherent nerve but these are rather long and I won’t try to convey the combina-
torics involved. □

Exercise 2.49. If𝐶 is an ordinary category and𝐶 the canonical simplicial category associated
to it (with same objects and discrete simplicial mapping spaces) then we have a canonical
isomorphism of simplicial sets 𝑁 (𝐶) � 𝑁 (𝐶). This isomorphism is obtained from the canonical
simplicial functor C[Δ𝑛] → [𝑛]:

𝑁 (𝐶)𝑛 = homCat( [𝑛],𝐶) � homsCat( [𝑛],𝐶) → homsCat(C[Δ𝑛],𝐶) = 𝑁 (𝐶)𝑛

In this sense, the homotopy coherent nerve can be seen as a generalization of the nerve dis-
cussed in Construction 1.16.

Commentary 2.50. Somebody is going to complain that Spc isn’t a simplicial set and a for-
tiori not an ∞-category. Indeed, already the 0-simplices form a proper class and not a set.
(This ‘problem’ already arose when considering the nerve of an ordinary category, if the lat-
ter had a proper class of objects or wasn’t locally small.) As with ordinary categories there are

5We call these locally Kan. The simplicial category Kan is locally Kan, again, by the lifting properties of maps
of simplicial sets, cf. Commentary 2.8.
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different ways to deal with these issues, for example using Grothendieck universes and speak-
ing of ‘small’ and ‘large’ ∞-categories. In the case at hand, if Kan is the category of small Kan
complexes then the∞-category Spc has a large set of objects but for each𝑋,𝑌 ∈ Spc, the map-
ping space MapSpc(𝑋,𝑌 ) is small. It would therefore be classified as a locally small∞-category.
(As with ordinary categories, this implies that Fun(𝐶, Spc) is locally small whenever𝐶 is small.
Hopefully that will put you at ease when we start considering presheaf categories.)

I have been cavalier about size issues as I think they would just cause distraction and are
not really relevant at this point. When they become relevant I will highlight this.

Example 2.51. We define a simplicial category qCat as follows. (The simplicial category of
‘quasi-categories’, see Commentary 1.47.) Its objects are ∞-categories. The simplicial hom-
sets between two ∞-categories 𝐶, 𝐷 is given by Fun(𝐶, 𝐷)≃, the maximal ∞-groupoid inside
the functor∞-category. You can check that the composition in sSet restricts to a composition
in qCat, so that the latter is indeed a simplicial category. Note that by definition, the simplicial
hom-sets are Kan complexes hence

Cat∞ := 𝑁 (qCat)

is a (large) ∞-category, the ∞-category of (small) ∞-categories.
The objects of Cat∞ are ∞-categories, the morphisms are functors, and the 2-simplices

are homotopies (as in Example 2.46). Note how working with (∞, 1)-categories here does
not allow us to consider natural transformations that are not isomorphisms. But with this
restriction in mind, the object Cat∞ so defined really captures the ‘theory of ∞-categories’, as
the following exercise also indicates.

Exercise 2.52. Let 𝑓 , 𝑔 : 𝐶 → 𝐷 be functors between ∞-categories. Show that:

1. 𝑓 ≃ 𝑔 are equivalent in Cat∞ iff there exists a natural isomorphism between them.

2. 𝑓 is an isomorphism in Cat∞ iff 𝑓 is an equivalence of ∞-categories.

Example 2.53. Let𝐶, 𝐷 be two ordinary categories. We denote by Fun(𝐶, 𝐷)≃ the core of the
functor category, that is, the functors𝐶 → 𝐷 together with invertible natural transformations.
Let oCat be the simplicial category of ordinary 1-categories with simplicial hom-sets

HomoCat (𝐶, 𝐷) = 𝑁 (Fun(𝐶, 𝐷)≃) .

The composition is defined in the obvious way. (This is the simplicial category associated to
the strict (2, 1)-category of 1-categories, functors and invertible transformations.) We define
the ∞-category of 1-categories to be Cat1 := 𝑁 (oCat).

The following result refines parts of Theorem 1.46:

Corollary 2.54. 1. The identity on objects extends to a canonical fully faithful embedding Spc ↩→
Cat∞.

2. The nerve functor on objects extends to a canonical fully faithful embedding Cat1 ↩→ Cat∞.
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Proof. Every Kan complex is an ∞-category. We also already observed that for 𝑋,𝑌 ∈ Kan,
HomsSet(𝑋,𝑌 ) is again a Kan complex hence equal to its maximal sub-∞-groupoid. It follows
that the canonical simplicial functor Kan → qCat induces isomorphisms on simplicial hom-
sets. Applying the homotopy-coherent nerve we therefore obtain a fully faithful functor.

For the second statement, consider the simplicial functor oCat→ qCat that sends an ordi-
nary category 𝐶 to its nerve, and on simplicial hom-sets is the isomorphism

𝑁 (Fun(𝐶, 𝐷)≃) � Fun(𝑁 (𝐶), 𝑁 (𝐷))≃

induced by Exercise 2.7. Applying the homotopy-coherent nerve we therefore obtain a fully
faithful functor. □

2.4 Yoneda lemma

Commentary 2.55. Let 𝑑 ∈ 𝐶 be an object in an ordinary category. One defines a functor
y
𝑑

: 𝐶op → Set by the formula
y
𝑑
(𝑐) := Hom𝐶 (𝑐, 𝑑)

and pre-composition of morphisms in 𝐶. On the other hand, post-composition of morphisms
in 𝐶 shows that the association 𝑑 ↦→ y

𝑑
underlies a functor

(2.56) y : 𝐶 → Fun(𝐶op, Set),

called the Yoneda embedding.

Commentary 2.57. Now, let 𝑐, 𝑑 ∈ 𝐶 be objects in an∞-category and 𝑓 : 𝑐′ → 𝑐 a morphism.
We have already observed (Commentary 2.36) that composition with 𝑓 induces a map of spaces

Map
𝐶
(𝑐, 𝑑)

𝑓 ∗

−−→Map
𝐶
(𝑐′, 𝑑),

which is well-defined up to contractible choice. Unfortunately, this indeterminacy makes it a
non-trivial task to define an analogous functor y

𝑑
: 𝐶op → Spc. And if we want to produce an

analogue of (2.56) we have to cope with the same indeterminacy for post-composition.
It turns out that this is possible but non-trivial. This is a recurring theme in the theory of

∞-categories: It is impossible to solve infinite coherence issues ‘by hand’ so that the construc-
tion of ∞-categories and functors between them often is a major task.

In the case at hand, we will find a work-around by stepping outside the theory of∞-categories,
using the fact that Spc is the homotopy coherent nerve of a simplicial category, and that com-
position in simplicial categories is strictly functorial.

Convention 2.58. Let 𝐶 be an ∞-category. The opposite ∞-category 𝐶op is defined as the
functor

𝐶op : 𝚫op ∼−→ 𝚫
op → Set

where the first functor (an automorphism of the simplex category) swaps the order of the
elements of [𝑛]. (Explicitly, it sends [𝑛] to [𝑛] and 𝑑𝑖 : [𝑛 − 1] → [𝑛] (resp. 𝑠𝑖 : [𝑛 + 1] → [𝑛])
to 𝑑𝑛−𝑖 (resp. 𝑠𝑛−𝑖 ).) It is clear that 𝐶op is again an ∞-category.
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Convention 2.59. Let𝐶 be a small∞-category. We denote by P(𝐶) the functor∞-category
Fun(𝐶op, Spc). It is called the ∞-category of presheaves on 𝐶.

Theorem 2.60. There is a fully faithful functor y: 𝐶 → P(𝐶), called the Yoneda embedding,
such that for each 𝐹 ∈ P(𝐶) and 𝑐 ∈ 𝐶 , there is a homotopy equivalence of spaces

(2.61) Map
P(𝐶 ) (y𝑐 , 𝐹 ) ≃ 𝐹 (𝑐).

Commentary 2.62. Note in particular that for each𝑑 ∈ 𝐶, the functor y
𝑑

: 𝐶op → Spc satisfies

y
𝑑
(𝑐) ≃Map

P(𝐶 ) (y𝑐 , y𝑑 ) ≃Map
𝐶
(𝑐, 𝑑)

as desired.

Construction 2.63. Let us explain one possible way to define the Yoneda functor. Consider
the following composite of simplicial functors:

(2.64) C[𝐶op ×𝐶] → C[𝐶]op × C[𝐶]
HomC [𝐶 ]−−−−−−−→ sSet

Sing |− |
−−−−−−→ Kan

Here, the first arrow is the canonical functor, the second is the hom simplicial-set in C[𝐶],
and the composite Sing ◦| − | conveniently turns any simplicial set into a Kan complex without
changing the weak homotopy type. By adjunction, (2.64) corresponds to a functor

(2.65) 𝐶op ×𝐶 → 𝑁 (Kan) = Spc

or, again by adjunction, to a functor

(2.66) y : 𝐶 → Fun(𝐶op, Spc) = P(𝐶).

This is the sought-for Yoneda functor.

Sketch of proof. It is not difficult to deduce fully faithfulness of the Yoneda functor (2.66) from
fully faithfulness of its simplicial analogue. (Note that there is an enriched Yoneda lemma
for simplicial categories. The proof is the same as in the classical case.) To prove the more
precise (2.61), one similarly translates it to a statement about simplicial categories. However,
the translation is more involved in this case. Among other things, one needs to express P(𝐶)
as the nerve of a simplicial category. We will not get involved in that here. □

Remark 2.67. Note that the functor 𝐶op ×𝐶 → Spc constructed in (2.65) is pointwise equiv-
alent to the mapping spaces in 𝐶 but not equal. In other words, we have not really defined
a functor Map

𝐶
(−,−) : 𝐶op × 𝐶 → Spc.6 Nevertheless, one is often sloppy and pretends that

such a functor exists. In most situations that’s okay. But keep in mind that the more precise
statements should involve an actual functor, such as (2.65) (or another such functor, see for
example Remark A.32). (In fact, many ∞-categories in practice come with a preferred choice
of ‘mapping space bifunctor’, for example because they arise as the homotopy coherent nerve
of a simplicial category.)

6Except if 𝐶 is a 1-category.
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3 (Co)limits

Commentary 3.1. In this section we will discuss limits and colimits in∞-categories. We will
adopt a definition which is close to the intuition from ordinary category theory, and which
allows us to compute them in many examples quite explicitly. Developing the entire theory of
limits and colimits and computing these in more involved situations, however, would require
a different (but equivalent) approach, and more technology than we want to go into. For this
reason, more results in this sections will be stated without proof. (But see Section 3.3.)

3.1 Limits

Commentary 3.2. Let 𝐹 : 𝐼 → 𝐶 be a functor between categories. Recall that a limit is a
universal cone over 𝐹 . We can generalize this to ∞-categories in a straightforward way. In
that context it is also useful to allow 𝐼 to be an arbitrary simplicial set.

Convention 3.3. Throughout we fix a simplicial set 𝐼 , an ∞-category 𝐶, and a map of sim-
plicial sets 𝐹 : 𝐼 → 𝐶. Given an object ℓ ∈ 𝐶 we denote by

ℓ : 𝐼 → Δ0 ℓ−→ 𝐶

the constant functor with value ℓ . To shorten the notation we sometimes write 𝐶𝐼 instead of
Fun(𝐼 ,𝐶).

Definition 3.4. A cone over 𝐹 is a pair (ℓ, 𝜂) where ℓ ∈ 𝐶 and 𝜂 : ℓ → 𝐹 is a natural transfor-
mation. It is a limit cone if for each 𝑐 ∈ 𝐶 the following composite is a homotopy equivalence:

(3.5) Map
𝐶
(𝑐, ℓ)

(−)
−−−→Map

𝐶𝐼 (𝑐, ℓ)
𝜂∗−→Map

𝐶𝐼 (𝑐, 𝐹 )

In that case, we also say—abusively—that ℓ is the limit of 𝐹 and we write ℓ = lim𝐼 𝐹 =

lim𝑖∈𝐼 𝐹 (𝑖).

Commentary 3.6. The first arrow in (3.5) is induced by the diagonal map (−) : 𝐶 → 𝐶𝐼

(which by adjunction corresponds to the canonical projection 𝐶 × 𝐼 → 𝐶). The second ar-
row is post-composition with 𝜂. As we discussed in Commentary 2.36, this is unique only
up to contractible choice. Nevertheless, whether (3.5) is a homotopy equivalence or not is
independent of this choice.

Exercise 3.7. Show that any two limits are isomorphic. (In fact, this can be improved. The
simplicial set of limits is either empty or a contractible space. We will not prove this. But see
Corollary 3.45.)

Exercise 3.8. Show that if 𝐼 and 𝐶 are (nerves of ) ordinary categories, then Definition 3.4
recovers the notion of a limit in ordinary category theory.
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Example 3.9. Let 𝐼 be a discrete∞-category. The functor∞-category𝐶𝐼 �
∏
𝐼 𝐶 is the prod-

uct in simplicial sets so that Map
𝐶𝐼 (𝑐, 𝐹 ) �

∏
𝑖 Map

𝐶
(𝑐, 𝐹 (𝑖)). We deduce that, up to equiva-

lence, a morphism into the product
∏
𝑖 𝐹 (𝑖) := lim 𝐹 ∈ 𝐶 amounts to a family of morphisms

into each 𝐹 (𝑖) ∈ 𝐶, as in ordinary category theory.

Example 3.10. As a particular case of Example 3.9, let 𝐼 = ∅ so that 𝐶𝐼 = Δ0. We deduce that
ℓ ∈ 𝐶 is final if and only if every mapping space Map

𝐶
(𝑐, ℓ) is contractible.

Example 3.11. We now turn to an example where the∞-categorical limit behaves differently
than in ordinary categories. Let 𝐼 = Λ2

2 so that 𝐹 : 𝐼 → 𝐶 can be depicted as follows:

𝑟

𝑠 𝑡

𝑓

𝑔

We are going to see that, up to equivalence, a map from 𝑐 ∈ 𝐶 into the pullback 𝑟 ×𝑡 𝑠 := lim 𝐹

(if it exists) amounts to a commutative square (Example 2.6):

(3.12)
𝑐 𝑟

𝑠 𝑡

ℎ

𝑖 𝑓

𝑔

Similarly informally, one says, it amounts to maps ℎ : 𝑐 → 𝑟 , 𝑖 : 𝑐 → 𝑠, together with an
equivalence 𝑔 ◦ 𝑖 ≃ 𝑓 ◦ ℎ. Note how the equality 𝑔 ◦ 𝑖 = 𝑓 ◦ ℎ for pullbacks in ordinary
categories, is here replaced by additional data.

Proof. A natural transformation 𝑐 → 𝐹 is, by definition, a map of simplicial sets 𝜂 : Δ1×Λ2
2 → 𝐶

such that 𝜂 |0 = 𝑐 and 𝜂 |1 = 𝐹 . In other words, two commutative squares

(3.13)
𝑐 𝑐 𝑐

𝑠 𝑡 𝑟

id

𝑖 𝑘

id

ℎ

𝑔 𝑓

that share the vertical arrow 𝑘 in the middle. Recall that this amounts to four 2-simplices filling
the diagram like so:

(3.14)
𝑐 𝑐 𝑐

𝑠 𝑡 𝑟

id

𝑖
𝑦

𝑘

id

ℎ𝑥

𝑔 𝑓

It follows from transitivity of the equivalence relation that 𝑥 ≃ 𝑦 and therefore there exists a
2-simplex witnessing 𝑔 ◦ 𝑖 ≃ 𝑥 . From this 2-simplex together with the right-most 2-simplex
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in (3.14) we get a commutative square:

𝑐 𝑟

𝑠 𝑡

ℎ

𝑖
𝑥

𝑓

𝑔

Conversely, it is clear that every commutative square as in (3.12) gives rise to a diagram as
in (3.13). One can check (although it is quite tedious) that these two assignments induce a
bijection on equivalence classes of data as claimed. □

Remark 3.15. Assume 𝐶 = Spc is the ∞-category of spaces. If you know something about
the homotopy theory of spaces you can deduce from Example 3.11 that pullbacks in Spc can
be computed as homotopy pullbacks of spaces (for example, in the Quillen model structure on
simplicial sets). Exercise!

Commentary 3.16. The computation of limits in ordinary categories can be reduced to sets.
Similarly, the computation of limits in∞-categories can be reduced to spaces. For example, if
you inspect the argument of Example 3.9 you’ll see that it actually proves something stronger:

Map
𝐶
(𝑐, ∏

𝑖∈𝐼
𝐹 (𝑖)) ≃ ∏

𝑖∈𝐼
Map

𝐶
(𝑐, 𝐹 (𝑖))

are (canonically) homotopy equivalent spaces. Similarly, Example 3.11 can be improved to
show that

Map
𝐶
(𝑐, 𝑟 ×𝑡 𝑠) ≃Map

𝐶
(𝑐, 𝑟 ) ×Map

𝐶
(𝑐,𝑡 ) Map

𝐶
(𝑐, 𝑠),

where the right-hand side denotes the pullback in Spc (which, by Remark 3.15, is a homotopy
pullback of spaces).

Both of these are instances of the following general statement.

Remark 3.17. Let 𝐹 : 𝐼 → 𝐶 be a functor and (ℓ, 𝜂) a cone over 𝐹 . For 𝑐 ∈ 𝐶 we denote by
y𝑐 : 𝐶 → Sthe corepresented functor (the image under the contravariant Yoneda embedding).
Then (ℓ, 𝜂) is a limit cone if and only if for each 𝑐 ∈ 𝐶, the induced cone (y𝑐 (ℓ), y𝑐 (𝜂)) is a
limit cone over y𝑐 ◦𝐹 . Informally, we can summarize this by writing

Map
𝐶
(𝑐, lim

𝑖
𝐹 (𝑖)) ≃ lim

𝑖
Map

𝐶
(𝑐, 𝐹 (𝑖)) .

Note that this doesn’t really make sense because we haven’t constructed a functor Map
𝐶
(𝑐,−)

(but rather y𝑐 ). See Remark 2.67.

Remark 3.18. More formally, let 𝑓 : 𝐶 → 𝐷 be a functor of ∞-categories.

1. Assume first that 𝐹 : 𝐼 → 𝐶 admits a limit. We say that 𝑓 preserves limits of 𝐹 if given any
limit cone (ℓ, 𝜂) over 𝐹 , also the induced (𝑓 (ℓ), 𝑓 (𝜂)) is a limit cone over 𝑓 ◦ 𝐹 .

2. Now assume that 𝑓 ◦ 𝐹 : 𝐼 → 𝐷 admits a limit. We say that 𝑓 reflects limits of 𝐹 if (ℓ, 𝜂) is
a limit cone over 𝐹 whenever (𝑓 (ℓ), 𝑓 (𝜂)) is a limit cone over 𝑓 ◦ 𝐹 .
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The previous remark then says that the family of functors y𝑐 : 𝐶 → S (for 𝑐 ∈ 𝐶) detects and
reflects all limits that exist. This can be justified using a form of currying. For every space 𝑋
there is an equivalence of spaces fitting into a commutative square

MapSpc(𝑋,Map
𝐶𝐼 (𝑐, 𝐹 )) MapSpc𝐼 (𝑋, y𝑐 ◦𝐹 )

MapSpc(𝑋,Map
𝐶
(𝑐, ℓ)) MapSpc(𝑋, y𝑐 (ℓ))

∼

∼

The left vertical arrow detects whether ℓ is a limit of 𝐹 , and right vertical arrow detects whether
y𝑐 (ℓ) is a limit of y𝑐 ◦𝐹 .

Commentary 3.19. Looking at Example 3.9 and Remark 3.15 you won’t be surprised that
limits in Spc can be computed as homotopy limits in the more classical setting of, for example,
the Quillen model structure on simplicial sets. This is actually true more generally.

In any simplicial category C that is locally Kan there is a notion of homotopy limits and
colimits. One can prove (with some work) that these notions recover limits (and colimits to
be introduced below) in the associated ∞-category 𝑁 (C). This connects the discussion here
with the more classical theory of homotopy (co)limits. It has two further consequences that
we state separately:

Remark 3.20. Let 𝐶 be a small ∞-category. Then the Yoneda embedding y: 𝐶 → P(𝐶)
preserves all (small) limits that exist in 𝐶.

Proposition 3.21. Both Spc and Cat∞ admit all small limits and colimits. The inclusion Spc ↩→
Cat∞ preserves all small limits and colimits.

3.2 Colimits

Definition 3.22. The definition of a colimit is dual to the one of limit (Definition 3.4). Thus
a cone under 𝐹 : 𝐼 → 𝐶 is a pair (ℓ, 𝜂) where ℓ ∈ 𝐶 and 𝜂 : 𝐹 → ℓ a natural transformation. It is a
colimit cone if the induced map

Map
𝐶
(ℓ, 𝑐) →Map

𝐶𝐼 (𝐹, 𝑐)

is a homotopy equivalence for each 𝑐 ∈ 𝐶. In this case, we again write ℓ = colim𝐼 𝐹 =

colim𝑖∈𝐼 𝐹 (𝑖). We also use familiar notation for coproducts, pushouts, initial objects etc.

The following examples are justified just as in the case of limits.

Example 3.23. An object ℓ ∈ 𝐶 is initial iff Map
𝐶
(ℓ, 𝑐) is contractible for all 𝑐 ∈ 𝐶. More

generally, Map
𝐶
(∐𝑖 𝐹 (𝑖), 𝑐) ≃

∏
𝑖 Map

𝐶
(𝐹 (𝑖), 𝑐).

Example 3.24. For pushouts we have the formula

Map
𝐶
(𝑦 ⨿𝑥 𝑧, 𝑐) ≃Map

𝐶
(𝑦, 𝑐) ×Map

𝐶
(𝑥,𝑐 ) Map

𝐶
(𝑧, 𝑐)
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where the right-hand side denotes the pullback in Spc. (In this generality, this follows from
Remark 3.17 applied to pushouts in 𝐶op. You should be able to justify the statement directly
on 𝜋0.)

Example 3.25. Let 𝐼 be an ∞-category with final object ∞ ∈ 𝐼 . Then any functor 𝐹 : 𝐼 → 𝐶

admits a colimit, namely 𝐹 (∞).
This is because ∞ ∈ 𝐼 is final iff the inclusion Δ0 ∞−→ 𝐼 is right-anodyne.7 It follows that

Fun(𝐼 ,𝐶) ev∞−−−→ Fun(Δ0,𝐶) = 𝐶 is a trivial Kan fibration hence

Map
𝐶𝐼 (𝐹, 𝑐) ≃Map

𝐶
(𝐹 (∞), 𝑐) .

Exercise 3.26. Let 𝐼 = colim𝑗∈ 𝐽 𝐼 𝑗 be a colimit of simplicial sets. Show that the mapping spaces
in 𝐶𝐼 are limits, computed in sSet, of mapping spaces in the 𝐶𝐼 𝑗 . (These won’t be homotopy
limits in general, and will not therefore present limits in Spc.)

Exercise 3.27. Let 𝐼 ⊆ 𝑁 (N) be the 1-skeleton, that is, the sub-simplicial set generated by the
edges in 𝑁 (N). Equivalently,

𝐼 = Δ1 ⨿Δ0 Δ1 ⨿Δ0 Δ1 · · ·

so that a functor 𝐹 : 𝐼 → 𝐶 is given by a countable family of composable morphisms in 𝐶,

𝑑0
𝑓1−→ 𝑑1

𝑓2−→ 𝑑2 → · · · .

Show that the sequential colimit, colim 𝐹 , can be computed as the coequalizer of the diagram

⨿𝑛𝑑𝑛 ⨿𝑛𝑑𝑛
id

⨿𝑓𝑛
.

Hint: One possibility is to use Exercise 3.26 to understand Map
𝐶𝐼 (−,−). Similarly, the co-

equalizer shape • • is a quotient in simplicial sets of Δ1 ⨿ Δ1. Again, one can then
use Exercise 3.26.

Commentary 3.28. Our next goal is to generalize a criterion familiar from ordinary cate-
gories for when a category is cocomplete, that is, admits all (small, always) colimits. It is also
useful to have a finite version of that. For this we say that the simplicial set 𝐼 is finite if it
has finitely many non-degenerate simplices. A finite (co)limit in 𝐶 is a (co)limit of a functor
𝐹 : 𝐼 → 𝐶 where 𝐼 is finite.

Exercise 3.29. Characterize the 1-categories whose nerve is a finite simplicial set.

Proposition 3.30. For an ∞-category 𝐶 the following are equivalent:

1. 𝐶 admits (finite) colimits.

2. 𝐶 admits coequalizers and (finite) coproducts.
7This is defined exactly as inner-anodyne, starting from right horn inclusions Λ𝑛

𝑖
↩→ Δ𝑛 , 0 < 𝑖 ≤ 𝑛 instead of

inner horn inclusions. This statement is not obvious but should be quite plausible. For example, show that the
inclusion 2: Δ0 → Δ2 is right-anodyne.
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3. 𝐶 admits pushouts and (finite) coproducts.

Sketch of proof. It is clear that 1. implies 2. (and 3.) (in both the finite and the infinite version).
For 2.⇒3. you can translate a pushout

𝑎 𝑏

𝑐

𝑓

𝑔

into a coequalizer

𝑎 𝑏 ⨿ 𝑐
𝑓

𝑔

assuming that finite coproducts exist. Conversely, a coequalizer of

𝑥 𝑦
𝑓

𝑔

is translated into a pushout of

𝑥 ⨿ 𝑦 𝑦

𝑦

𝑓 ⨿id

𝑔⨿id

using finite coproducts. This shows 2.⇔3.
Let us say something about 2.,3.⇒1. and let us start with the finite version. We do in-

duction on the dimension 𝑛 of the simplicial set 𝐼 (that is, the maximal dimension of the non-
degenerate simplices). If 𝑛 = 0 we’re done since 𝐼 is finite discrete and we assume 𝐶 admits
finite coproducts. For 𝑛 > 0 one may write a pushout diagram

⨿𝜕Δ𝑛 𝐼𝑛−1

⨿Δ𝑛 𝐼

expressing the fact that 𝐼 is obtained from its (𝑛−1)-skeleton (that is the sub-simplicial set gen-
erated by the simplices in dimensions ≤ 𝑛−1) by attaching some non-degenerate 𝑛-simplices.
By induction, 𝐹 restricted to the top right vertex and the top left vertex admits colimits in 𝐶.
By Example 3.25 (and the existence of finite coproducts), so it does when restricted to the
bottom left vertex. One would like to conclude that 𝐹 admits a colimit given by the pushout
in 𝐶 of these colimits. This almost follows from Exercise 3.26. In fact, in this particular case
the limit in Exercise 3.26 is a homotopy limit so one concludes.

For the infinite version one may write 𝐼 = ∪𝑛𝐼𝑛 as union of its 𝑛-skeleta. Then Exercise 3.27
together with infinite coproducts reduces to finite-dimensional 𝐼 . One can now repeat the
induction argument using infinite coproducts instead of finite ones. □
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Exercise 3.31. Show that admitting finite colimits is also equivalent to having an initial object
and pushouts.

Remark 3.32. Of course, the dual statements about limits is equally true. This follows by
considering the opposite ∞-category.

Commentary 3.33. Proposition 3.30 offers another approach to showing that Spc and Cat∞
are complete and cocomplete than the one in Proposition 3.21. Namely, showing that they
admit (co)products and pushouts/pullbacks.

Commentary 3.34. Proposition 3.30 is more than a criterion to check for (co)completeness
of an ∞-category. Its proof provides a recipe for computing arbitrary (co)limits in terms of
the basic ones we have already studied in detail.

Remark 3.35. There is a relative version of Proposition 3.30: A functor between∞-categories
preserves (finite) colimits iff it preserves coequalizers and (finite) coproducts iff it preserves
pushouts and (finite) coproducts.

3.3 Alternative definitions

Commentary 3.36. If you read the literature on limits and colimits you will probably see
other definitions than the ones of Definitions 3.4 and 3.22. Here I will try to explain the
relation between these alternatives (and indeed of alternatives to earlier notions too). This also
allows me to introduce some of the ingredients that go into proving many of the results in
this section, and indeed, of earlier sections too. However, only little here will be used in the
sequel and if you’re happy with the preceding discussion you can safely skip this and refer to
it later if needed.

Commentary 3.37. Let us be given a functor 𝐹 : 𝐼 → 𝐶 of ordinary categories. Denote by
𝐼◁ = [0]★𝐼 the join (Commentary A.1). Then an extension to 𝐹 : 𝐼◁ → 𝐶 amounts to providing
a cone over 𝐹 . (Similarly, an extension to 𝐹 : 𝐼▷ := 𝐼 ★ [0] → 𝐶 amounts to providing a cone
under 𝐹 .) Note that this is equivalent to a natural transformation 𝜂 : ℓ → 𝐹 from a constant
diagram to 𝐹 .

In the ∞-categorical world these two approaches are not quite the same although equiv-
alent. I invite you at this point to consult the appendix (Appendices A.1 and A.2) for the join
construction and the slice construction in the ∞-categorical world.

Remark 3.38. Let 𝐹 : 𝐼 → 𝐶 be a diagram in an ∞-category 𝐶. We now have three different
notions of a cone over 𝐹 :

1. The one of Definition 3.22, that is, a natural transformation 𝜂 : 𝐼 × Δ1 → 𝐶 such that
𝜂 |1 = 𝐹 , 𝜂 |0 is constant.

2. A map 𝐹 : 𝐼◁ → 𝐶 extending 𝐹 .

3. An object of 𝐶/𝐹 .
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Exercise 3.39. Observe that there is a pullback diagram in simplicial sets:

Map
𝐶𝐼 (ℓ, 𝐹 ) 𝐶/𝐹

Δ0 𝐶
ℓ

Construction 3.40. Start with a cone (ℓ, 𝜂) over 𝐹 as in Remark 3.38. By definition, 𝜂 defines
an object of Map

𝐶𝐼 (ℓ, 𝐹 ) and, via the functor of Exercise 3.39, one of 𝐶/𝐹 . We identify this
with a map 𝜂 : Δ0 → 𝐶/𝐹 via the equivalence 𝐶/𝐹

∼−→ 𝐶/𝐹 of Lemma A.19. By adjunction, this
corresponds to a map 𝐹 : 𝐼◁ → 𝐶 extending 𝐹 . Note that this process is invertible. Starting
with 𝐹 we obtain 𝜂 and then (ℓ, 𝜂).

Continuing with this notation we then have:

Proposition 3.41. The following are equivalent:

1. (ℓ, 𝜂) is a limit cone over 𝐹 .

2. Restriction along 𝐼 ↩→ 𝐼◁ induces a homotopy equivalence of spaces for every 𝑐 ∈ 𝐶:

(3.42) Map
𝐶𝐼◁ (𝑐, 𝐹 ) →Map

𝐶𝐼 (𝑐, 𝐹 )

3. The object 𝜂 ∈ 𝐶/𝐹 is final.

Sketch of proof. By construction, 𝐹 |𝐼 = 𝐹 , 𝐹 (−∞) = ℓ , and 𝜂 extends to a natural transforma-
tion 𝜂 : ℓ → 𝐹 such that 𝜂 (−∞) = idℓ . We then have a commutative diagram:8

Map
𝐶
(𝑐, ℓ) Map

𝐶𝐼◁ (𝑐, ℓ) Map
𝐶𝐼◁ (𝑐, 𝐹 ) Map

𝐶
(𝑐, 𝐹 (−∞))

Map
𝐶𝐼 (𝑐, ℓ) Map

𝐶𝐼 (𝑐, 𝐹 )

𝜂 ev−∞
∼

𝜂

where the vertical arrows are induced by the inclusion 𝐼 ↩→ 𝐼◁. We already observed in
Example 3.25 that the right-most horizontal arrow is an equivalence. By construction, the
composition of the arrows in the top row is also an equivalence. It follows that 𝜂 is a limit cone
iff the right-most vertical arrow is an equivalence. This shows the equivalence between the
first two conditions.

The last condition, that is, 𝜂 ∈ 𝐶/𝐹 being final holds iff the canonical map𝐶/𝐹 � (𝐶/𝐹 )/𝐹 →
𝐶/𝐹 is (a trivial fibration, or equivalently,) an equivalence. (This requires justification.) More-
over, this can be tested on the fibers of the right fibrations to 𝐶. By Exercise 3.39, we identify
the fiber over 𝑐 ∈ 𝐶 with the map (3.42). This completes the (sketch of ) proof. □

Commentary 3.43. By Example 3.10, an object 𝑑 in an ∞-category 𝐷 is final iff Map
𝐷
(𝑐, 𝑑)

is a contractible space for all 𝑐 ∈ 𝐷. As we observed in the proof of Proposition 3.41, this is
8The middle horizontal arrows were only defined up to contractible choice. The statement is that there is a

choice of these making the square commute.
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also equivalent to the canonical map 𝐷/𝑑 → 𝐷 being a trivial fibration. Hence a different but
equivalent way of defining limits of 𝐹 is as objects in 𝐶/𝐹 that satisfy one of these equivalent
conditions. In fact, this translation can be used to prove most of the results on (co)limits
(although some of them still require much effort). We will give only one example of this,
strengthening Exercise 3.7.

Lemma 3.44. Let 𝐷 be an ∞-category and define 𝐷fin as the full subcategory spanned by the final
objects. Then 𝐷fin is either empty or a contractible space.

Proof. By Exercise 2.26, 𝐷fin is an ∞-category. (It then follows from Exercise 3.7 that 𝐷fin is a
space but we won’t need that.) If 𝐷fin is not empty and we are given a map 𝑓 : 𝜕Δ𝑛 → 𝐷fin we
need to extend it to Δ𝑛. If 𝑛 = 0 we can do so because of non-emptyness. For 𝑛 > 0 consider
now the following lifting problem:

𝜕Δ𝑛 𝐷

Δ𝑛

𝑓

Every such lift must factor through 𝐷fin since 𝜕Δ𝑛 contains all vertices of Δ𝑛. It is therefore
enough to solve this lifting problem.

Noting that 𝜕Δ𝑛 = Λ𝑛𝑛 ⨿𝜕Δ𝑛−1 Δ𝑛−1 this lifting problem translates to

Λ𝑛𝑛

𝜕Δ𝑛−1 Δ𝑛 𝐷

Δ𝑛−1

Finally, we observe that Λ𝑛𝑛 = 𝜕Δ𝑛−1 ★ Δ0 while Δ𝑛 = Δ𝑛−1 ★ Δ0 so that this translates to

𝜕Δ𝑛−1 𝐷/𝑓 (𝑛)

Δ𝑛−1 𝐷

Since 𝑓 (𝑛) ∈ 𝐷 is final the right vertical map is a trivial Kan fibration hence the lifting problem
admits a solution. □

Let 𝐹 : 𝐼 → 𝐶 be a diagram in an ∞-category 𝐶 and denote by Limits(𝐹 ) the ∞-category
of limits of 𝐹 , namely,

Limits(𝐹 ) := (𝐶/𝐹 )fin.

Corollary 3.45. The ∞-category Limits(𝐹 ) is either empty or a contractible space.
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Remark 3.46. Let 𝐼 be a simplicial set. If 𝐼 is not an ∞-category we can add fillers for all
inner horns to make it more like an ∞-category. This might create new inner horns that are
not filled so we repeat the process, and again, and again. . . . After countably many iterations,
however, the resulting simplicial set 𝐼 is an ∞-category. (Exercise!) Moreover, every functor
𝐼 → 𝐶 to an ∞-category extends to a functor 𝐼 → 𝐶 in an essentially unique way. Namely,
the functor

(3.47) Fun(𝐼 ,𝐶) → Fun(𝐼 ,𝐶)

is an equivalence.9 So, for the theory developed here we could have restricted to∞-categories 𝐼
as indexing diagrams. As mentioned at the top of this section it is useful to allow 𝐼 to be an
arbitrary simplicial set, however, because 𝐼 can be (much) smaller than 𝐼 .

Note that if you want to make the process 𝐼 ↦→ 𝐼 functorial it’s better to add fillers for all
inner horns, whether they already possess fillers or not.

3.4 Adjunctions

Definition 3.48. Let𝐶, 𝐷 be∞-categories. An adjunction between𝐶 and𝐷 is a pair of functors
𝑓 : 𝐶 → 𝐷 and 𝑔 : 𝐷 → 𝐶 together with unit 𝜂 : id𝐶 → 𝑔𝑓 and counit transformations 𝜖 : 𝑓 𝑔→
id𝐷 satisfying the usual triangle identities. We write 𝑓 ⊣ 𝑔 and say that 𝑓 is left adjoint to 𝑔, 𝑔 is
right adjoint to 𝑓 .

Commentary 3.49. To be absolutely clear, the triangle identities amount to 2-simplices

𝑓 𝑓

𝑓 𝑔𝑓

𝜂

id

𝜖

𝑔 𝑔

𝑔𝑓 𝑔

𝜂

id

𝜖

in Fun(𝐶, 𝐷) and Fun(𝐷,𝐶), respectively.
It is clear that this recovers the notion of an adjunction between ordinary categories.

Exercise 3.50. Show that an adjunction gives rise to a homotopy equivalence of spaces

(3.51) Map
𝐷
(𝑓 (𝑐), 𝑑)

𝑔
−→Map

𝐶
(𝑔𝑓 (𝑐), 𝑔(𝑑))

𝜂∗

−→Map
𝐶
(𝑐, 𝑔(𝑑))

for all 𝑐 ∈ 𝐶, 𝑑 ∈ 𝐷. (Of course, the dual with the counit instead of the unit is equally true.)

Remark 3.52. The converse of Exercise 3.50 is also true but harder to prove. In fact, even less
data is needed to produce an adjunction.

More precisely, suppose we are given a functor 𝑔 : 𝐷 → 𝐶. To produce an adjunction
𝑓 ⊣ 𝑔, it is enough to give, for each 𝑐 ∈ 𝐶 an object 𝑓 (𝑐) ∈ 𝐷, and a morphism 𝑐 → 𝑔(𝑓 (𝑐))
such that (3.51) is an equivalence for all 𝑑 ∈ 𝐷. Informally, it is enough to give the left adjoint 𝑓
and the natural transformation 𝜂 on 0-simplices. More formally, the claim is that there is a

9In fact, these statements can be improved: 𝐼 → 𝐼 is an inner anodyne map hence (3.47) is a trivial fibration.
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functor 𝑓 : 𝐶 → 𝐷 sending 𝑐 to 𝑓 (𝑐) such that 𝑓 ⊣ 𝑔. Moreover, the unit natural transforma-
tion 𝜂 : id𝐶 → 𝑔𝑓 of the adjunction can be chosen homotopic to the given maps.

We will not prove this as it requires straightening-unstraightening techniques. (For ordi-
nary categories you can easily convince yourself of the validity of this criterion.)

Example 3.53. Given an ∞-category 𝐶, associating its core 𝐶≃ assembles into a simplicial
functor qCat→ Kan (check!) and the inclusion 𝐶≃ ↩→ 𝐶 provides the counit of an adjunction
between simplicial categories:

Kan qCat
incl

(−)≃

⊣

(The inclusion Kan ↩→ qCat is fully faithful so the unit transformation is the identity.) Since
the triangle identities pass through the homotopy coherent nerve we obtain an adjunction of
∞-categories:

Spc Cat∞

incl

(−)≃

⊣

Example 3.54. Given an ∞-category 𝐶 there is a functorial way to add inverses to all mor-
phisms. One way to achieve this is as follows. Let 𝐽 be the walking isomorphism (that is,
the ordinary category with two objects, say 0 and 1, and singleton hom-sets, viewed as an
∞-category through its nerve) with the obvious inclusion Δ1 ↩→ 𝐽 . Consider then the follow-
ing canonical pushout in sSet:

⨿𝐶1Δ
1 𝐶

⨿𝐶1 𝐽 𝐷

𝐷 might not be an ∞-category yet, but we can make it into one by adding fillers 𝐷 → 𝐷̃ (see
Remark 3.46). It remains to check that h(𝐷̃) is a groupoid. It is a fact that inner anodyne maps
induce equivalences of homotopy categories so it suffices to show that h(𝐷) is a groupoid. But
the functor h: sSet→ Cat is a left adjoint and hence preserves pushouts. It is now easy to see
from the pushout in Cat,

⨿𝐶1 [1] h(𝐶)

⨿𝐶1 𝐽 h(𝐷)

that h(𝐷) is a groupoid.
We now claim that 𝐶 ↦→ 𝐷̃ extends to a left adjoint to the inclusion Spc ↩→ Cat∞, and to

prove this we apply Remark 3.52. The only thing left to prove is that the composite

MapSpc(𝐷̃, 𝑋 ) →MapCat∞ (𝐷̃, 𝑋 ) →MapCat∞ (𝐶,𝑋 )
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is a homotopy equivalence for each 𝐶 ∈ Cat∞ and 𝑋 ∈ Spc. From Corollary 2.54 we know
that the first map is an equivalence. Recall that the last two mapping spaces are given (up
to canonical homotopy equivalence) by Fun(−, 𝑋 )≃ = Fun(−, 𝑋 ) since 𝑋 is a space. We are
therefore reduced to show Fun(𝐷̃, 𝑋 ) → Fun(𝐶,𝑋 ) is an equivalence. But this factors as

Fun(𝐷̃, 𝑋 ) → Fun(𝐷,𝑋 ) → Fun(𝐶,𝑋 )

where the first map is a trivial fibration as 𝐷 → 𝐷̃ is inner anodyne. Using the definition of 𝐷
as a pushout it is easy to reduce to showing that

(3.55) Fun(𝐽 , 𝑋 ) → Fun(Δ1, 𝑋 )

is a trivial fibration. Now, it’s certainly true that the 1-category 𝐽 is obtained from [1] by
inverting the map 0 → 1 so if 𝑋 was an ordinary groupoid then (3.55) would actually be
an isomorphism. However, for an ∞-groupoid like our 𝑋 , the inverse of a morphism is not
unique so the statement is less obvious. Turning the idea that it is unique up to contractible
choice into a proof requires some work that we omit.

Commentary 3.56. To sum up the previous two examples, the inclusion Spc ↩→ Cat∞ admits
both a left and a right adjoint, given by ‘inverting all morphisms’ and ‘taking the core’.

Proposition 3.57. For an ∞-category 𝐶 the following are equivalent:

1. 𝐶 admits 𝐼-shaped colimits.

2. The constant functor (−) : 𝐶 → 𝐶𝐼 admits a left adjoint colim𝐼 : 𝐶𝐼 → 𝐶 such that colim𝐼 (𝐹 )
is a colimit of 𝐹 , for every 𝐹 ∈ 𝐶𝐼 .

Proof. We apply Remark 3.52. We take, given any 𝐹 : 𝐼 → 𝐶 the object colim𝐼 𝐹 ∈ 𝐶 to-
gether with the colimit cone 𝐹 → colim𝐼 𝐹 . Note how then (3.51) translates precisely into the
condition of this being a colimit cone.

The reverse direction is easy and left as an exercise. □

Remark 3.58. Similarly, 𝐶 admitting 𝐼-shaped limits is equivalent to the constant functor
having a right adjoint lim𝐼 .

Example 3.59. Let𝐶 be an∞-category and let𝐺 be a finite group, viewed as an∞-category 𝐵𝐺 .
(That is, it has a single object and morphisms given by the elements of 𝐺 .) The ∞-category
Fun(𝐵𝐺,𝐶) is the ∞-category of 𝐺-objects in 𝐶: an object 𝑐 in 𝐶 together with an isomor-
phism 𝑔 : 𝑐

∼−→ 𝑐 for each 𝑔 ∈ 𝐺 , a homotopy (𝑔1𝑔2) ≃ 𝑔1 ◦ 𝑔2 for each 𝑔1, 𝑔2 ∈ 𝐺 , and higher
coherences. Assume𝐶 admits 𝐵𝐺-shaped limits and colimits. The left and right adjoints to the
constant functor 𝐶 → Fun(𝐵𝐺,𝐶) are called

(homotopy) orbits (−)ℎ𝐺 : Fun(𝐵𝐺,𝐶) → 𝐶, (homotopy) fixed points (−)ℎ𝐺 : Fun(𝐵𝐺,𝐶) → 𝐶,

respectively.
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Proposition 3.60. Let 𝐼 , 𝐾 be simplicial sets and 𝐶 an ∞-category that admits 𝐼-shaped (co)limits.
Then Fun(𝐾,𝐶) also admits 𝐼-shaped (co)limits and these are computed pointwise. That is, the family
of functors, for 𝑘 ∈ 𝐾 ,

ev𝑘 : Fun(𝐾,𝐶) → 𝐶

preserves and reflects 𝐼-shaped (co)limits.

Proof. For the first statement (say, with colimits) we need to show, by Proposition 3.57, that
the constant functor (−) : Fun(𝐾,𝐶) → Fun(𝐼 , Fun(𝐾,𝐶)) has a left adjoint. We then take the
functor

Fun(𝐼 , Fun(𝐾,𝐶)) � Fun(𝐾, Fun(𝐼 ,𝐶))
Fun(𝐾,colim𝐼 )−−−−−−−−−−−→ Fun(𝐾,𝐶)

and this is left adjoint to Fun(𝐾, (−)) since the unit and counit transformations for colim𝐼 ⊣ (−)
induce unit and counit transformations after applying Fun(𝐾,−).

The second statement follows from the description of this left adjoint. □

We now come to a (almost: the) fundamental property of adjoint functors.

Proposition 3.61. Let 𝑓 : 𝐶 → 𝐷 be a left (resp. right) adjoint. Then 𝑓 preserves all colimits (resp.
limits) that exist in 𝐶 .

Commentary 3.62. One would like to argue as follows (for colimits and left adjoints):

Map
𝐷
(𝑓 (colim

𝑖
𝐹 (𝑖)), 𝑑) ≃Map

𝐶
(colim

𝑖
𝐹 (𝑖), 𝑔(𝑑))

≃ lim
𝑖

Map
𝐶
(𝐹 (𝑖), 𝑔(𝑑))

≃ lim
𝑖

Map
𝐷
(𝑓 (𝐹 (𝑖)), 𝑑)

≃Map
𝐷
(colim

𝑖
𝑓 (𝐹 (𝑖)), 𝑑)

As noted in Remark 2.67, this doesn’t really make sense since the mapping spaces are not
functors. There are ways to circumvent that (with functorial replacements) but we go down
another route for the proof instead.

Proof. Assume given a diagram 𝐹 : 𝐼 → 𝐶 which admits a colimit, represented by the dia-
gram 𝐹 : 𝐼▷ → 𝐶. (The case of limits is dual.) By Proposition 3.41, we need to show that the
restriction map induces a homotopy equivalence of spaces:

(3.63) Map
𝐷𝐼▷ (𝑓∗𝐹, 𝑑)

∼−→Map
𝐷𝐼 (𝑓∗𝐹, 𝑑)

for each 𝑑 ∈ 𝐷. As observed in the previous proof, the functor 𝑓∗ := 𝑓 ◦ − : 𝐶𝐾 → 𝐷𝐾 is left
adjoint to 𝑔∗ : 𝐷𝐾 → 𝐶𝐾 . From this you can check that (3.63) is homotopic to

(3.64) Map
𝐶𝐼▷ (𝐹, 𝑔∗𝑑)

∼−→Map
𝐶𝐼 (𝐹, 𝑔∗𝑑).

But 𝑔∗𝑑 = 𝑔(𝑑) so the claim follows again from Proposition 3.41. □
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Remark 3.65. Together with Commentary 3.56 this implies that the inclusion Spc ↩→ Cat∞
preserves all limits and colimits. Something we already saw in Proposition 3.21.

Remark 3.66. We will not prove this here, but if 𝑓 ⊣ 𝑔 then:

1. the left adjoint 𝑓 is fully faithful iff the unit id→ 𝑔𝑓 is an equivalence;

2. the right adjoint 𝑔 is fully faithful iff the counit 𝑓 𝑔→ id is an equivalence.

4 Presentability

Commentary 4.1. We just saw in Proposition 3.61 that left adjoint functors preserve all col-
imits that exist in the domain, generalizing the same statement from ordinary category theory.
There, ‘the’ adjoint functor theorem gives a partial converse: Under some assumptions on the
categories involved, every colimit preserving functor is left adjoint.

In this section we are going to see an analogue of this statement for∞-categories: For func-
tors between presentable∞-categories, being left adjoint and preserving colimits are equivalent
conditions. This version of the adjoint functor theorem (there are more general ones, but we
won’t discuss these) is more powerful than in the context of ordinary categories. This is because
constructing a functor ‘by hand’ is impossible. It also explains to some extent the importance
of presentability in the theory of ∞-categories.

We will also discuss some related topics, starting with the promised universal property of
the presheaf category.

4.1 Cocompletion

Commentary 4.2. In Commentary 2.1 we already noted that the presheaf category in or-
dinary category theory can be viewed as the free cocompletion of a small category. Now, we
want to prove the same for ∞-categories. To make sense of it we use the combination of
Propositions 3.21 and 3.60:

Corollary 4.3. Let 𝐶 be a small ∞-category. Then P(𝐶) admits all (small) limits and colimits and
these are computed pointwise.

Convention 4.4. Let𝐶, 𝐷 be∞-categories that are cocomplete. We denote by Fun𝐿 (𝐶, 𝐷) the
full subcategory of Fun(𝐶, 𝐷) spanned by the colimit preserving functors. (The superscript ‘L’
anticipates the adjoint functor theorem. If 𝐶 and 𝐷 are presentable, these are precisely the left
adjoint functors.)

We can now state the main result of this subsection.

Theorem 4.5. Let 𝐶 be a small ∞-category, and let 𝐷 be a cocomplete ∞-category. Then the
restriction induces an equivalence:

Fun𝐿 (P(𝐶), 𝐷) ∼−→ Fun(𝐶, 𝐷)

In other words, P(𝐶) is the free cocompletion of 𝐶 .
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Commentary 4.6. Let 𝐶 be an ordinary small category and 𝑃 (𝐶) the category of presheaves
of sets on 𝐶. Let us recall one way to prove the analogous statement in this context.

1. Every presheaf 𝐻 � colim𝑐∈𝐶/𝐻 y
𝑐
∈ 𝑃 (𝐶) is a canonical colimit of representables over

its category of elements 𝐶/𝐻 . (See below.)

2. It follows that every colimit preserving functor 𝑓 : 𝑃 (𝐶) → 𝐷 is uniquely determined by
its restriction to 𝑓 ′ : 𝐶 → 𝐷. And conversely, given 𝑓 ′, the formula𝐻 ↦→ colim𝑐∈𝐶/𝐻 𝑓

′(𝑐)
defines a colimit preserving functor 𝑓 : 𝑃 (𝐶) → 𝐷.

Both of these steps generalize to∞-categories but they require quite a bit more work. We will
do some of this work also in order to introduce an important technique in a situation where,
hopefully, intuition is somewhat easier to come by. I invite you to have a look at Appendix A.3
for an introduction to the discrete straightening-unstraightening.

Commentary 4.7. To prove 1 we evaluate at some 𝑐 ∈ 𝐶:

(4.8) 𝑟 : colim
𝑥 ′∈𝐻 (𝑐′ )

Hom𝐶 (𝑐, 𝑐′) → 𝐻 (𝑐)

which sends 𝑓 : 𝑐 → 𝑐′ over 𝑥 ′ to 𝐻 (𝑓 ) (𝑥 ′) ∈ 𝐻 (𝑐). One then proceeds as follows:

• There is an obvious section 𝑠 to (4.8) which sends 𝑥 ∈ 𝐻 (𝑐) to id𝑐 over 𝑥 .

• To show that the composite 𝑠𝑟 is also the identity start with 𝑓 : 𝑐 → 𝑐′ over 𝑥 ′. Then
𝑠𝑟 (𝑓 ) = id𝑐 over 𝐻 (𝑓 ) (𝑥 ′). But in the colimit these two elements are identified and we
win.

I invite you to translate this proof into the language of discrete fibrations in order to view the
analogy with the following argument in the ∞-categorical context.

Lemma 4.9. Let 𝐻 ∈ P(𝐶). The canonical functor (𝐶/𝐻 )▷ → P(𝐶) exhibits 𝐻 as a colimit of
representables.

Proof. By Corollary 4.3, it is enough to check that the induced map

(4.10) (𝐶/𝐻 )▷ → P(𝐶) ev𝑐−−→ Spc

is a colimit diagram, for each 𝑐 ∈ 𝐶. By the Yoneda lemma, evaluating at 𝑐 is equivalent
to mapping out of y

𝑐
, and as explained in Appendix A.3, the corresponding left fibration is

given by P(𝐶)𝑐/ → P(𝐶).10 It follows that the functor (4.10) classifies the left fibration 𝐸 =

(𝐶/𝐻 )▷ ×P(𝐶 ) P(𝐶)𝑐/ over (𝐶/𝐻 )▷. In the language of left fibrations, being a colimit diagram
translates to the inclusion

𝐸0 = 𝐶/𝐻 ×𝐶 𝐶𝑐/ ↩→ 𝐸

10The∞-category P(𝐶) is not small but this isn’t a problem. Either generalize the (un)straightening equivalence
to fibrations with ‘small fibers’ or pass to a larger universe.
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being a weak homotopy equivalence.11 To see this we will show that both sides deformation
retract onto 𝐸1 = 𝐶/𝐻 ×𝐶 {id𝑐 } ⊆ 𝐸0. (Note that 𝐸1 ≃ 𝐻 (𝑐) so this is analogous to the proof
strategy in the 1-categorical situation before.) The idea is quite simple. An object 𝑒 ∈ 𝐸0, say,
consists of a pair 𝑒 = (𝑐′ → 𝐻, 𝑐 → 𝑐′) and we may compose the two morphisms to get an
object (𝑐 → 𝑐′ → 𝐻, id𝑐) ∈ 𝐸1. This will give the retraction 𝑟 : 𝐸0 → 𝐸1. Noting that there is
a canonical map 𝑟 (𝑒) → 𝑒 in 𝐸0,

(𝑐 → 𝑐′ → 𝐻, id𝑐) → (𝑐′ → 𝐻, 𝑐 → 𝑐′),

we expect to be able to construct a natural transformation 𝐸0 × Δ1 → 𝐸0 from 𝑟 → id𝐸0 . (The
situation for 𝐸 is similar.) The actual construction of this natural transformation is, however,
not as straightforward as one would hope. At least, I haven’t found a slick argument. I suggest
that, at least on first reading, you skip the following exercise that should produce the natural
transformation. If you know a better argument, please let me know! □

Exercise 4.11. 1. Construct a functor 𝐹 : P(𝐶)/𝐻 ×P(𝐶 ) P(𝐶)𝑐/ → P(𝐶)Δ2 such that ev0 ◦
𝐹 = 𝑐 and ev2 ◦ 𝐹 = 𝐻 . It should send the object 𝑒 in the proof above to a composite
of 𝑐 → 𝑐′ and 𝑐′ → 𝐻 . Hint: Replace the slices by their fat analogues (Lemma A.19) and
use that for any ∞-category 𝐷, the canonical map Fun(Δ2, 𝐷) → Fun(Λ2

1, 𝐷) admits a
section (Lemma 2.14).

2. For any ∞-category 𝐷, construct a functor 𝐷Δ2 × Δ1 → 𝐷Δ1 based on the idea that in
a 2-simplex 𝜎 , the second face 𝑑2(𝜎) can be seen as a map 𝑑1(𝜎) → 𝑑0(𝜎). Hint: This
functor is induced (by adjunction) from a map of simplicial sets Δ1 × Δ1 → Δ2.

3. Observe that there is a canonical functor

P(𝐶)/𝐻 ×P(𝐶 ) P(𝐶)𝑐/ × Δ1 → P(𝐶)𝑐/ × Δ1 → P(𝐶)𝑐/,

first projection, and then the deformation retraction onto the initial object id𝑐 .

4. Combine the previous points to get a functor

P(𝐶)/𝐻 ×P(𝐶 ) P(𝐶)𝑐/ × Δ1 → P(𝐶)/𝐻 ×P(𝐶 ) P(𝐶)𝑐/.

5. Restrict to suitable full subcategories to obtain the maps 𝐸 × Δ1 → 𝐸 and 𝐸0 × Δ1 → 𝐸0

as claimed in the proof above.

Sketch of proof of Theorem 4.5. Let 𝑓 ′ : 𝐶 → 𝐷 be an arbitrary functor. We wish to extend it to
a colimit preserving functor 𝑓 : P(𝐶) → 𝐷. By Lemma 4.9 we are forced to set, for𝐻 ∈ P(𝐶),
𝑓 (𝐻 ) = colim𝑐∈𝐶/𝐻 𝑓

′(𝑐). In ordinary categories you would now argue that for 𝐻 → 𝐻 ′ there
is a canonical map 𝑓 (𝐻 ) → 𝑓 (𝐻 ′) by the definition of colimits. And using this canonicity, it
can be shown to define a functor.

11A map 𝑓 : 𝐷 → 𝐷′ between ∞-categories is a weak homotopy equivalence if the map between the associated
Kan complexes (Example 3.54) is a (weak) homotopy equivalence. (Equivalently, it induces a (weak) homotopy
equivalence on geometric realizations.) Such a map is not necessarily an equivalence of∞-categories. (For example,
consider the inclusion Δ1 ↩→ 𝐽 of Example 3.54.) Here we use the easily verified fact that the inclusion of a
deformation retract is a weak homotopy equivalence.
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It turns out12 that such an inductive construction of 𝑓 also works for ∞-categories. With
two caveats: You need a refined version of colimits and the canonicity of the simplices chosen
in this process. This is provided by the theory of Kan extensions. And you need to choose the
order of the simplices on which you successively define 𝑓 rather carefully.

Once we have constructed such extensions, we may apply Remark 3.52 to show that 𝑓 ↦→ 𝑓 ′

underlies a functor
y! : Fun(𝐶, 𝐷) → Fun𝐿 (P(𝐶), 𝐷)

which is left adjoint to y∗, restriction along y. (This also uses some properties of Kan exten-
sions.) By construction, the unit id → y∗ y! is an equivalence, and the last thing to check is
that the counit y! y∗(𝑓 ) → 𝑓 is an equivalence whenever 𝑓 is colimit preserving. This follows
from Lemma 4.9 again. □

Corollary 4.12. For any cocomplete 𝐷 , there is a canonical equivalence

Fun𝐿 (Spc, 𝐷) ≃ 𝐷

given by evaluating at Δ0. In other words, Spc is the free cocompletion of a point.

4.2 Ind objects

Commentary 4.13. Recall that an ordinary category 𝐶 is filtered if

• for any finite13 collection of objects 𝑐1, . . . , 𝑐𝑛 ∈ 𝐶 there is 𝑑 ∈ 𝐶 and morphisms 𝑐𝑖 → 𝑑,

• for any finite collection of parallel arrows 𝑓1, . . . , 𝑓𝑛 : 𝑐 → 𝑐′ there exists ℎ : 𝑐′ → 𝑑 such
that ℎ𝑓𝑖 = ℎ𝑓𝑗 for all 𝑖, 𝑗 .

Exercise 4.14. Show that 𝐶 is filtered iff for each 𝐹 : 𝐼 → 𝑁 (𝐶) from a finite simplicial set 𝐼
there exists an extension 𝐹 : 𝐼▷ → 𝐶.

We can then take this as our definition of filtered ∞-categories.

Definition 4.15. An ∞-category 𝐶 is called filtered if for any finite simplicial set 𝐼 and any
𝐹 : 𝐼 → 𝐶 there exists an extension 𝐹 : 𝐼▷ → 𝐶. A filtered colimit is one indexed by a filtered
∞-category.

Commentary 4.16. Following up on Remark 3.46 we could define an arbitrary simplicial set 𝐼
to be filtered if there exists a categorical equivalence 𝐼 → 𝐶 to a filtered ∞-category. (Here,
categorical equivalence means that for any∞-category 𝐷, Fun(𝐶, 𝐷) ∼−→ Fun(𝐼 , 𝐷).) We won’t
have the need for this generality. Note, incidentally, that if 𝐶 → 𝐶′ is an equivalence of
∞-categories then 𝐶 is filtered iff 𝐶′ is.

Definition 4.17. Let𝐶 be a small∞-category. We define the full subcategory Ind(𝐶) ⊆ P(𝐶)
spanned by right fibrations 𝐸 → 𝐶 such that 𝐸 is filtered. Equivalently, spanned by those

12maybe quite surprisingly, given that I’ve been emphasizing the impossibility of constructing∞-categories and
functors between them “by hand” or “one simplex at a time”. . .

13possibly empty
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presheaves 𝐻 such that 𝐶/𝐻 is filtered. It is called the Ind-completion of 𝐶, and its objects are
called Ind-objects. (“Ind” stands for “inductive” which is an old term for “filtered”.)

Example 4.18. Let 𝑐 ∈ 𝐶. Then𝐶/𝑐 has a final object id𝑐 . It is clear that every∞-category with
a final object is filtered. We conclude that all representable presheaves on 𝐶 belong to Ind(𝐶).
In other words, the Yoneda embedding factors through

𝐶 ↩→ Ind(𝐶).

Remark 4.19. By Lemma 4.9, we see that every Ind-object is a filtered colimit of representa-
bles. In fact, the converse is true as well: Any filtered colimit of representables in P(𝐶) belongs
to Ind(𝐶). This follows from the fact that Ind(𝐶) ⊆ P(𝐶) is closed under filtered colimits.
(That, in turn, can be reduced to homotopy colimits in certain model categories of simplicial
sets, and further to 1-categorical colimits. Eventually, this boils down to the observation that
a filtered colimit of filtered 1-categories is filtered.)

We can now state the ‘filtered’ analogue of Theorem 4.5.

Corollary 4.20. Let𝐶 be a small∞-category and let𝐷 be an∞-category that admits filtered colimits.
Then the canonical restriction functor is an equivalence:

Fun𝜔 (Ind(𝐶), 𝐷) ∼−→ Fun(𝐶, 𝐷)

(Here, the superscript refers to the fact that we only consider functors that preserve filtered colimits.) In
other words, Ind(𝐶) is obtained from 𝐶 by freely adjoining filtered colimits.

Proof. Let 𝑓 ′ : 𝐶 → 𝐷 be an arbitrary functor. There exists a fully faithful embedding 𝐷 ↩→ 𝐷 ′

which preserves and reflects all small colimits, and such that 𝐷 ′ admits all small colimits. (For
example, let SPC be the∞-category of small spaces with respect to a larger universe, so that 𝐷
becomes small. Set 𝐷 ′ = Fun(𝐷, SPC)op.) By Theorem 4.5, we obtain a colimit preserving
extension 𝑓 : P(𝐶) → 𝐷 ′ that we may restrict to a functor Ind(𝐶) → 𝐷 ′. By our assumption,
this factors through a functor Ind(𝐶) → 𝐷 that preserves filtered colimits.

The rest of the proof is similar to the one of Theorem 4.5. □

4.3 Compactness

Commentary 4.21. The representable objects in Ind(𝐶) share a covenient property. Namely,
for each 𝑐 ∈ 𝐶, the functor Ind(𝐶) → Spc corepresented by y

𝑐
preserves filtered colimits.

Indeed, this functor is the composite Ind(𝐶) ↩→ P(𝐶) → Spc of the canonical inclusion
followed by evaluation at 𝑐. The inclusion preserves filtered colimits by Remark 4.19, and the
second preserves all colimits, by Corollary 4.3. We take this as motivation to introduce the
following notion.

Definition 4.22. Let 𝐷 be an ∞-category which admits filtered colimits. An object 𝑑 ∈ 𝐷 is
called compact if the functor 𝐷 → SPC corepresented by 𝑑 preserves filtered colimits.

Commentary 4.23. Here we passed to a larger universe so that 𝐷 becomes small. SPC is the
∞-category of small spaces in that larger universe. The definition is independent of the choice
of such an universe.
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Exercise 4.24. (In contrast to our usual terminology, in this exercise we consider the 1-
category of topological spaces.) Let 𝑋 be a fixed topological space and consider the category
(poset)𝐶 of open subsets of 𝑋 . Then an object𝑈 ∈ 𝐶 is compact in the sense of Definition 4.22
iff it is (quasi-)compact in the usual sense: every open cover admits a finite subcover.

Example 4.25. As mentioned above, all representables are compact in Ind(𝐶).

Before giving more examples we need one result. For this recall the following notion.

Definition 4.26. Let𝐶 be an∞-category. A retraction diagram in𝐶 is a 2-simplex of the form:

𝑐 𝑐

𝑑

𝑖 𝑟

id𝑐

𝜎

If such a retraction diagram exists we say that 𝑐 is a retract of 𝑑.

Proposition 4.27. Let𝐶 be an∞-category that admits filtered colimits. The full subcategory𝐶𝜔 ⊆ 𝐶
of compact objects is closed under finite colimits and retracts that exist in 𝐶 .

Commentary 4.28. We will not give a proof of this proposition but try to make it plausible.
For this note that, in Spc, filtered colimits and finite limits commute. This can be reduced,
via Commentary 3.19, to a question about homotopy colimits and homotopy limits in the
Quillen model category on simplicial sets. And then to 1-categorical colimits and limits in sSet.
Eventually, this boils down to the fact that filtered colimits and finite limits commute in Set.

So, informally, given a finite diagram 𝑖 ↦→ 𝑏𝑖 ∈ 𝐶 of compact objects and a filtered dia-
gram 𝑗 ↦→ 𝑐 𝑗 ∈ 𝐶, we have

Map
𝐶
(colim

𝑖
𝑏𝑖 , colim

𝑗
𝑐 𝑗 ) ≃ lim

𝑖
Map

𝐶
(𝑏𝑖 , colim

𝑗
𝑐 𝑗 ) Remark 3.17

≃ lim
𝑖

colim
𝑗

Map
𝐶
(𝑏𝑖 , 𝑐 𝑗 ) compactness of 𝑏𝑖

≃ colim
𝑗

lim
𝑖

Map
𝐶
(𝑏𝑖 , 𝑐 𝑗 ) observation in first paragraph

≃ colim
𝑗

Map
𝐶
(colim

𝑖
𝑏𝑖 , 𝑐 𝑗 ) Remark 3.17,

“showing” that the colimit of 𝐹 is compact too.
If 𝑐 is a retract of 𝑑 then Map

𝐶
(𝑐,−) is a retract of Map

𝐶
(𝑑,−). If the latter preserves 𝐼-

shaped colimits then so does the former.

Example 4.29. An object 𝑋 ∈ Spc is compact iff it is a retract of a finite space. Here, a finite
space is an object of the smallest full subcategory containing the final object ∗ and closed under
finite colimits.
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Lemma 4.30. Let 𝐷 be an∞-category that admits filtered colimits and let 𝑓 : 𝐶 → 𝐷 be a fully faith-
ful functor. If 𝑓 factors through 𝐷𝜔 then the extension 𝐹 : Ind(𝐶) → 𝐷 (provided by Corollary 4.20)
remains fully faithful.

Commentary 4.31. Again, we only try to make this plausible. Let 𝑋,𝑋 ′ ∈ Ind(𝐶). By Re-
mark 4.19, we may write 𝑋 = colim𝑖 𝑐𝑖 , 𝑋 ′ = colim𝑗 𝑐

′
𝑗 , as filtered colimits of representables.

Informally, we then have

Map
𝐷
(𝐹 (𝑋 ), 𝐹 (𝑋 ′)) ≃Map

𝐷
(colim

𝑖
𝑓 (𝑐𝑖), colim

𝑗
𝑓 (𝑐′𝑗 ))

≃ lim
𝑖

Map
𝐷
(𝑓 (𝑐𝑖), colim

𝑗
𝑓 (𝑐′𝑗 )) Remark 3.17

≃ lim
𝑖

colim
𝑗

Map
𝐷
(𝑓 (𝑐𝑖), 𝑓 (𝑐′𝑗 )) 𝑓 (𝑐𝑖) compact

≃ lim
𝑖

colim
𝑗

Map
𝐶
(𝑐𝑖 , 𝑐′𝑗 ) 𝑓 fully faithful

≃Map
𝐶
(𝑋,𝑋 ′) as above

Corollary 4.32. Let 𝐶 be a small ∞-category. Then P(𝐶)𝜔 is also a small ∞-category. Moreover,
the canonical functor

(4.33) Ind(P(𝐶)𝜔 ) → P(𝐶)

is an equivalence.

Sketch of proof. The∞-category P(𝐶) is locally small. (This shouldn’t be surprising: for a rep-
resentable 𝑐 ∈ 𝐶 and 𝐻 ∈ P(𝐶) we have Map

P(𝐶 ) (𝑐, 𝐻 ) ≃ 𝐻 (𝑐) which is small. And a general
presheaf is a (small) colimit of representables (Lemma 4.9) which translates, on mapping spaces,
into a (small) limit of small spaces hence remains small.) For the first statement it therefore
suffices to show the set of isomorphism classes of objects in P(𝐶)𝜔 is small. Similarly to Ex-
ample 4.29, one can show that every compact object in P(𝐶) is a retract of a finite colimit of
representables. And there are indeed only a small set of these, up to isomorphism.

By Lemma 4.30, the functor (4.33) is fully faithful. Let 𝐻 ∈ P(𝐶) be an arbitrary presheaf.
By Lemma 4.9, 𝐻 is the colimit of a diagram 𝐾 → 𝐶

y
−→ P(𝐶). Writing 𝐾 = ∪𝑖∈𝐼𝐾𝑖 as the

union of its finite sub-simplicial sets one shows that 𝐻 is the filtered colimit of finite colimits
of representables. The latter belong to P(𝐶)𝜔 and we conclude that 𝐻 belongs to the essential
image of (4.33), finishing the proof. □

Commentary 4.34. In the terminology to be introduced below this says that P(𝐶) is com-
pactly generated. You see here already an important property of compactly generated∞-categories
(and more generally of presentable ∞-categories): While the Ind-category apriori only ad-
mits filtered colimits, in this case it actually has all colimits and limits. (Since it is equivalent
to P(𝐶).) In fact, this is a general phenomenon: If 𝐶 is a small ∞-category that admits finite
colimits then Ind(𝐶) is complete and cocomplete.

Warning 4.35. Let 𝐶 be a small ∞-category that admits finite colimits. We just mentioned
that Ind(𝐶) is cocomplete. Nevertheless Ind(𝐶) ≠ P(𝐶). The latter is the free cocompletion
of 𝐶. That is, it does not ‘remember’ the finite colimits in 𝐶.
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Rather, the fully faithful embedding Ind(𝐶) ↩→ P(𝐶) has a left adjoint P(𝐶) → Ind(𝐶)
(which is the unique colimit preserving extension of the canonical inclusion𝐶 ↩→ Ind(𝐶)) that
we may interpret as ‘enforcing’ these finite colimits in 𝐶. This is an example of a localization
that we discuss below.

4.4 Compact generation

Commentary 4.36. All that has be said in Sections 4.2 and 4.3 admits size-theoretic variants.
The ideas remain exactly the same but the greater generality allows for many more examples
of interest to be covered. Moreover, the theory becomes in some sense better if one considers
‘all size variants’ together. So, we indicate this generalization.

Remark 4.37. Let𝜅 be a regular cardinal.14 A set is called𝜅-small if its cardinality is less than𝜅.
We may then speak of a 𝜅-small simplicial set: one whose set of non-degenerate simplices is 𝜅-
small. Note that for 𝜅 = 𝜔 we recover the notion of a finite simplicial set.

You will have no trouble defining the following generalizations accordingly:

𝜔 𝜅

finite 𝜅-small
filtered 𝜅-filtered
Ind(𝐶) Ind𝜅 (𝐶)

compact 𝜅-compact
𝐷𝜔 𝐷𝜅

Whenever it makes sense, the statements in Sections 4.2 and 4.3 remain true, with 𝜔 replaced
by 𝜅. More precisely, the ‘𝜅-analogues’ of Remark 4.19, Corollary 4.20, Proposition 4.27,
Lemma 4.30, and Corollary 4.32 are also true.

We now come to the main definition of this section.

Definition 4.38. Let 𝜅 be a regular cardinal. An ∞-category 𝐶 is called 𝜅-compactly generated
if there exists a small ∞-category 𝐶′ that admits 𝜅-small colimits, and an equivalence 𝐶 ≃
Ind𝜅 (𝐶′). (For 𝜅 = 𝜔 we also just say compactly generated.) An ∞-category is presentable if it is
𝜅-compactly generated for some 𝜅.

Example 4.39. The∞-category Spc is compactly generated hence presentable. Indeed, Spc =
P(Δ0) and we now apply Corollary 4.32.

Example 4.40. It is also true that Cat∞ is compactly generated although we haven’t proved
that.

Exercise 4.41. If 𝐶 ≃ Ind𝜅 (𝐶′) is 𝜅-compactly generated then there is a canonical choice
for 𝐶′, namely 𝐶𝜅 . Indeed, show that there is a canonical equivalence Ind𝜅 (𝐶′) ≃ Ind𝜅 (𝐶𝜅).

14By convention, regular cardinals here are always assumed infinite. Recall that a cardinal 𝜅 is called regular if
it is not the union of fewer than 𝜅-many subsets of cardinality less than 𝜅. The smallest regular cardinal is 𝜔 , the
only countable cardinal.
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Commentary 4.42. The reason these ∞-categories are called (𝜅-)compactly generated is
hopefully clear: They are generated (under (𝜅-)filtered colimits) by their (𝜅-)compact ob-
jects. This means that while they are not necessarily small, they are ‘controlled’ by a small
amount of data, namely their subcategory of (𝜅-)compact objects.

To explain the term presentability we need some preparation.

Definition 4.43. A functor 𝑓 : 𝐶 → 𝐷 between ∞-categories is a localization if it admits a
fully faithful right adjoint.

Example 4.44. We saw in Example 3.54 that ’inverting all morphisms’ provides a localization
Cat∞ → Spc.

Definition 4.45. Let 𝑓 : 𝐶 → 𝐷 be a functor between ∞-categories. We say that 𝑓 is 𝜅-
accessible if 𝐶, 𝐷 have 𝜅-filtered colimits and 𝑓 preserves these.

We say that 𝑓 is accessible if it is 𝜅-accessible for some regular cardinal 𝜅.

Commentary 4.46. Why is that an interesting notion? Assume that 𝑓 : 𝐶 → 𝐷 is an accessible
functor between presentable ∞-categories. One can always find a large cardinal 𝜅 such that
𝐶, 𝐷 are 𝜅-compactly generated and 𝑓 : 𝐶 → 𝐷 restricts to 𝑓 ′ : 𝐶𝜅 → 𝐷𝜅 . So, just as 𝐶 and 𝐷
are determined by a small amount of data, so 𝑓 is determined by 𝑓 ′ (see Corollary 4.20).

Commentary 4.47. If 𝐶 ≃ Ind𝜅 (𝐶′) for some small ∞-category 𝐶′ which admits 𝜅-small
colimits then the inclusion Ind𝜅 (𝐶′) ↩→ P(𝐶′) preserves 𝜅-filtered colimits (Remark 4.19). As
remarked (without proof ) in Warning 4.35, this inclusion admits a left adjoint. This shows
the forward implication in the following characterization of presentable ∞-categories. (We
omit the proof of the backward implication.)

Proposition 4.48. Let 𝐶 be an ∞-category. Tfae:

1. 𝐶 is presentable.

2. 𝐶 is an accessible localization of a presheaf∞-category. That is, there exists a small∞-category𝐶′
and a localization P(𝐶′) → 𝐶 whose ( fully faithful) right adjoint is accessible.

Commentary 4.49. The presheaf category P(𝐶′) is freely generated by𝐶′, and the localization
can be thought of as imposing relations. This is analogous to how one presents a group by
generators and relations. In other words, Proposition 4.48 says that 𝐶 is presentable iff it
admits a presentation. This hopefully explains the terminology.

Corollary 4.50. Every presentable ∞-category admits all (small) limits and colimits.

Sketch of proof. We already know that P(𝐶′) is complete and cocomplete (Corollary 4.3). A
colimit in 𝐶 is computed in P(𝐶′) followed by applying the localization functor. A limit in 𝐶
is computed in P(𝐶′). □

The accessibility condition in the characterization of Proposition 4.48 is forced upon us,
as you can see from the following adjoint functor theorem. We omit the proof.
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Theorem 4.51. Let 𝑓 : 𝐶 → 𝐷 be a functor between presentable ∞-categories.

1. 𝑓 is a left adjoint iff it preserves colimits.

2. 𝑓 is a right adjoint iff it preserves limits and is accessible.

Example 4.52. As the inclusion Spc ↩→ Cat∞ preserves all limits and colimits (Proposition 3.21)
we deduce that it admits both left and right adjoints. This is something we proved ‘by hand’
before, see Commentary 3.56.

Exercise 4.53. Let 𝐶 be a presentable ∞-category, and let 𝐶′ be a small ∞-category. Show
that Fun(𝐶′,𝐶) is also presentable.

4.5 The ∞-category of presentable ∞-categories

Commentary 4.54. We will now study the collection of all presentable ∞-categories. A
morphism between two presentable ∞-categories 𝐶 and 𝐷 should be given by an adjunction:

𝐶 𝐷

⊣

The left adjoint determines the right adjoint and vice-versa. This leads to two equivalent ways
of encoding the collection of presentable ∞-categories, see Proposition 4.56 below.

Definition 4.55. The ∞-category of presentable ∞-categories and left adjoint functors PrL has
as objects presentable ∞-categories, and as morphisms the colimit preserving functors. The
∞-category of presentable ∞-categories and right adjoint functors PrR has as objects presentable
∞-categories, and as morphisms the limit preserving functors that are accessible.

Both of these are defined as subcategories of the∞-category CAT∞ of not necessarily small
∞-categories.

We now state a number of facts about these ∞-categories. For time reasons most proofs
will be omitted.

Proposition 4.56. There is an equivalence (PrL)op ≃ PrR that can be thought of as exchanging left
and right adjoints.

In other words, it is the identity on objects, and sends a left adjoint 𝑓 : 𝐶 → 𝐷 ∈ PrL to its
right adjoint 𝑔 : 𝐷 → 𝐶 ∈ PrR.

Proposition 4.57. The ∞-categories PrL and PrR admit all small limits. Moreover, the forgetful
functor to CAT∞ preserves these.

Corollary 4.58. The ∞-categories PrL and PrR admit all small colimits. These are computed as
follows: Pass to the adjoint diagram via Proposition 4.56 and compute the limit in CAT∞.

Proof. This is immediate from Propositions 4.56 and 4.57. □
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Warning 4.59. The forgetful functors PrL,PrR → CAT∞ do not preserve colimits. Therefore,
it is important to specify in each case where such a colimit is computed.

We know from Proposition 4.57 that PrR is closed under all small limits in CAT∞. In
fact, the collection of presentable ∞-categories is stable under many other constructions. It is
therefore a very convenient framework to work in. We give the following examples.

Proposition 4.60. Assume that 𝐶 and 𝐷 are presentable ∞-categories, and 𝐾 a small simplicial set.

1. Fun(𝐾,𝐶) and Fun𝐿 (𝐶, 𝐷) are presentable.

2. 𝐶/𝑝 and 𝐶𝑝/ are presentable for any diagram 𝑝 : 𝐾 → 𝐶 .

Remark 4.61. Let 𝐶, 𝐷, 𝐸 be presentable ∞-categories and consider the full subcat Fun
′ (𝐶 ×

𝐷, 𝐸) ⊆ Fun(𝐶 × 𝐷, 𝐸) spanned by functors that preserve colimits in each variable separately.
One can show that

Fun
′ (𝐶 × 𝐷, 𝐸) ≃ Fun𝐿 (𝐶 ⊗ 𝐷, 𝐸)

for some presentable∞-category𝐶 ⊗𝐷. This is the underlying tensor product for a symmetric
monoidal structure on PrL. (I won’t be able to discuss symmetric monoidal structures on
∞-categories but for now you can think of a symmetric monoidal structure on the homotopy
category that comes with additional coherence data.) We can then interpret Fun𝐿 (𝐷, 𝐸) of
Proposition 4.60 as an internal mapping object, in the sense that

MapPrL (𝐶, Fun𝐿 (𝐷, 𝐸)) ≃MapPrL (𝐶 ⊗ 𝐷, 𝐸).

In fact, the same equivalence holds with the mapping spaces replaced by the ∞-categories
Fun𝐿 (−,−).

Example 4.62. The unit for this tensor product is given by the presentable ∞-category Spc.
Indeed,

MapPrL (𝐶 ⊗ Spc, 𝐸) ≃MapPrL (𝐶, Fun𝐿 (Spc, 𝐸)) ≃MapPrL (𝐶, 𝐸),

where I used Corollary 4.12 for the last equivalence. This easily implies that 𝐶 ⊗ Spc ≃ 𝐶 for
arbitrary presentable ∞-categories 𝐶.

Exercise 4.63. Let 𝐶,𝐶′ be two small ∞-categories. Show that P(𝐶) ⊗ P(𝐶′) ≃ P(𝐶 ×𝐶′).

Commentary 4.64. Starting with this information and given that every presentable∞-category
is an accessible localization of a presheaf category (Proposition 4.48) you will have no difficulty
guessing what the tensor product of any two presentable ∞-categories is.

5 Further topics

In the remainder of the course I want to discuss two successes of the theory of ∞-categories:
spectra and 𝐾-theory. For lack of time the discussion will be even sketchier than before. In
particular, if you don’t know a little bit about these two topics already, you might not be too
impressed.
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5.1 The ∞-category of spectra

Commentary 5.1. Recall that a spectrum 𝐸 is a collection of pointed topological spaces (𝐸𝑛)𝑛≥0
together with bonding maps Σ𝐸𝑛 → 𝐸𝑛+1 from the reduced suspension of the preceding one to
the next. (With an obvious notion of maps between such spectra.) Such a spectrum attempts
to be a (generalized) cohomology theory on, say, pointed CW-complexes:

𝐸𝑛 (𝑋 ) := [𝑋, 𝐸𝑛]

the set of homotopy classes of pointed maps. It is not difficult to clarify under what assumptions
on 𝐸 this succeeds. Namely, one needs that 𝐸𝑛+1(Σ𝑋 ) � 𝐸𝑛 (𝑋 ) which translates into the
condition that the map adjoint to the bonding map is a homotopy equivalence

(5.2) Ω𝐸𝑛+1 ≃ 𝐸𝑛 .

(Sometimes, this condition goes by the term Ω-spectrum.) Conversely, every cohomology
theory can be obtained through this process (Brown representability). If we formally invert
the maps of (Ω-)spectra 𝐸 → 𝐹 that induce isomorphisms on corresponding cohomology
theories we obtain the stable homotopy category SH. By the preceding discussion, we have a
canonical bijection:

{objects in SH}/� ←→ {cohomology theories}/�

Example 5.3. 1. Let 𝑋 be a pointed topological space. Its suspension spectrum Σ∞𝑋 is the
spectrum (Σ𝑛𝑋 )𝑛 with identity bonding maps.

2. The sphere spectrum S is the suspension spectrum Σ∞(𝑆0) = (𝑆𝑛)𝑛 of the 0-sphere. We also
denote S𝑘 = Σ∞(𝑆𝑘 ) = (𝑆𝑛+𝑘 )𝑛. The groups homSH(S𝑘 ,S) = 𝜋𝑘 (S) = colim𝑛 𝜋𝑛+𝑘 (𝑆𝑛)
are the stable homotopy groups of spheres.

3. Let𝐺 be an abelian group. The spectrum (𝐾 (𝐺,𝑛))𝑛 of Eilenberg-MacLane spaces with
bonding maps adjoint to the canonical homotopy equivalence 𝐾 (𝐺,𝑛) ≃ Ω𝐾 (𝐺,𝑛 + 1)
defines the Eilenberg-MacLane spectrum associated with 𝐺 . (In particular, this is an Ω-
spectrum.) It represents singular cohomology with coefficients in 𝐺 .

Commentary 5.4. The category SH is triangulated and comes with a compatible symmetric
monoidal structure. It took a lot of effort to make this structure available at the level of model
categories, and even then it is arguably not an entirely satisfactory solution. In this section we
are going to see how an ∞-categorical model can be constructed that has, in addition, many
other nice properties. This is due to Lurie. You can find it in his Higher Algebra.

Definition 5.5. An ∞-category is pointed if it has a zero object, that is, an object that is both
initial and final. We typically denote it by 0.

Exercise 5.6. Show that this is equivalent to the existence of an initial object ∅, a final object ∗,
and a morphism ∗ → ∅.

Remark 5.7. If𝐶 has a final object we can define the∞-category of pointed objects𝐶∗ as the full
subcategory of 𝐶Δ1 spanned by morphisms 𝑐 → 𝑑 where 𝑐 is a final object. By the following

52



exercise together with Proposition 4.60, this is a presentable ∞-category whenever 𝐶 is. For
example, this is true of Spc∗, the ∞-category of pointed spaces.

Exercise 5.8. Pick a final object 1 ∈ 𝐶. Show that 𝐶∗ ≃ 𝐶1/.

Construction 5.9. Let 𝐶 be a pointed ∞-category and 𝑐 ∈ 𝐶. Assuming the relevant limits
or colimits exist, we define the suspension and loop functors Σ,Ω : 𝐶 → 𝐶 by15 the following
pushout and pullback diagram, respectively:

𝑋 0

0 Σ𝑋

Ω𝑋 0

0 𝑋

Example 5.10. Let𝐶 = Spc∗ be the∞-category of pointed spaces. Then these functors recover
the usual (reduced) suspension and loop functors. Note that there is an adjunction Σ ⊣ Ω.

Definition 5.11. A pointed∞-category𝐶 is stable if it satisfies any of the following equivalent
conditions:

1. 𝐶 admits pushouts and the suspension functor Σ : 𝐶 → 𝐶 is an equivalence.

2. 𝐶 admits pullbacks and the loop functor Ω : 𝐶 → 𝐶 is an equivalence.

3. 𝐶 admits finite limits and colimits and a square is a pushout square iff it is a pullback
square.

Commentary 5.12. There is an obvious idea to turn an ∞-category 𝐶 with finite limits into
a stable ∞-category, namely by inverting the loop functor. That is, by taking the sequential
limit,

(5.13) 𝐶∗
Ω←− 𝐶∗

Ω←− 𝐶∗
Ω←− · · ·

Definition 5.14. Let 𝐶 be an ∞-category with finite limits. We define its stabilization Sp(𝐶)
to be the limit in CAT∞ of the sequence (5.13). If 𝐶 = Spc we denote the result simply by
Sp = Sp(Spc) and call it the ∞-category of spectra.

Commentary 5.15. An object of Sp can thus be identified with a collection (𝐸𝑛)𝑛 of pointed
spaces together with equivalences Ω𝐸𝑛+1 ≃ 𝐸𝑛 as in (5.2). In other words, the objects of Sp can
be identified with Ω-spectra. In fact, it is true that

h(Sp) ≃ SH .

Definition 5.16. Let 𝐶 and 𝐷 be two ∞-categories with finite limits (resp. colimits). We say
that a functor 𝑓 : 𝐶 → 𝐷 is left-exact (resp. right-exact) if it preserves these finite limits (resp.
colimits). It is exact if it is both left- and right-exact.

15One needs to explain how these are functors. It isn’t terribly hard but requires technology we haven’t discussed.
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Exercise 5.17. Assume 𝑓 : 𝐶 → 𝐷 is a functor between stable ∞-categories. Show that the
following are equivalent:

1. 𝑓 is exact.

2. 𝑓 is left-exact.

3. 𝑓 is right-exact.

Proposition 5.18. Let 𝐶 be an ∞-category with finite limits. The stabilization Sp(𝐶) is stable.
Moreover, the canonical functor Ω∞ : Sp(𝐶) → 𝐶 induces an equivalence

Funlex(𝐷, Sp(𝐶)) ∼−→ Funlex(𝐷,𝐶)

on ∞-categories of left-exact functors (defined as usual) for any stable ∞-category 𝐷 .

Remark 5.19. The ∞-category of spectra Sp is presentable. This follows immediately from
Proposition 4.57 and the fact that Ω : Spc∗ → Spc∗ is right adjoint to the suspension functor.
It also follows from Corollary 4.58 that it is the colimit of the sequence

Spc∗
Σ−→ Spc∗

Σ−→ Spc∗
Σ−→ · · ·

in PrL. We conclude that Ω∞ : Sp→ Spc∗ admits a left adjoint, the infinite suspension functor
Σ∞ : Spc∗ → Sp.

There is another way to describe Sp which is also reminiscent of classical constructions
of SH. Namely, consider the sequence

Spcfin
∗

Σ−→ Spcfin
∗

Σ−→ Spcfin
∗

Σ−→ · · ·

at the level of finite pointed spaces (Example 4.29). Take the colimit of this sequence in Cat∞.
(This is (maybe up to idempotent completion) the category of finite spectra.) Finally, take the
Ind-completion:

Sp ≃ Ind(colim(Spcfin
∗ , Σ))

(This is a general fact about filtered colimits in PrL of diagrams of compactly generated
∞-categories with compact-preserving left adjoints.)

Corollary 5.20. Let 𝐷 be a stable presentable ∞-category. Evaluation at the sphere spectrum S

induces an equivalence
Fun𝐿 (Sp, 𝐷) ∼−→ 𝐷.

In other words, Sp is the stable ∞-category freely generated under colimits by a point.

Sketch of proof. Let Fun𝑅 (−,−) denote the full subcategory on right adjoints. We then have

Fun𝐿 (Sp, 𝐷) ≃ Fun𝑅 (𝐷, Sp)op,

which, by Proposition 5.18, we may identify with a full subcategory of Funlex(𝐷, Spc∗)op. It
turns out that it is exactly the subcategory

Fun𝑅 (𝐷, Spc∗)op ≃ Fun𝐿 (Spc∗, 𝐷) ≃ Fun𝐿 (Spc, 𝐷) ≃ 𝐷,
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where we used that passing to pointed objects is left adjoint to the canonical forgetful func-
tor, as well as Corollary 4.12. Tracing through the proof one observes that the composite
equivalence is evaluation at Σ∞(∗ ⨿ ∗) = S. □

Remark 5.21. Let 𝐶 be a stable ∞-category. For any two objects 𝑐, 𝑑 ∈ 𝐶 consider ‘the’
composition map

Map
𝐶
(0, 𝑑) ×Map

𝐶
(𝑐, 0) →Map

𝐶
(𝑐, 𝑑) .

Since the domain of this map is contractible we obtain a well-defined element 0 ∈ 𝜋0 Map
𝐶
(𝑐, 𝑑) �

Homh(𝐶 ) (𝑐, 𝑑) which we call the zero map from 𝑐 to 𝑑. In fact, note that we have equivalences
(cf. Example 3.24)

Map
𝐶
(Σ𝑐, 𝑑) ≃ Ω Map

𝐶
(𝑐, 𝑑)

so that 𝜋0 Map
𝐶
(Σ𝑐, 𝑑) � 𝜋1 Map

𝐶
(𝑐, 𝑑) has a group structure. Similarly, 𝜋0 Map

𝐶
(Σ2𝑐, 𝑑) �

𝜋2 Map
𝐶
(𝑐, 𝑑) has the structure of an abelian group. But since Σ : 𝐶 → 𝐶 is an equivalence, we

can choose 𝑐′ so that Σ2𝑐′ = 𝑐 and deduce that the preceding discussion works for any choice
of two objects. It is not difficult to prove that in fact, h(𝐶) is an additive category.

Remark 5.22. Recall that a triangulated category𝑇 is an additive category which comes with
an equivalence [1] : 𝑇 ∼−→ 𝑇 and a collection of distinguished triangles 𝑋 → 𝑌 → 𝑍 → 𝑋 [1]
satisfying a bunch of axioms. Now, let 𝐶 be a stable ∞-category. We will indicate how its
homotopy category h(𝐶) inherits a triangulated structure. For𝐶 = Sp this recovers the classical
triangulated structure on the stable homotopy category.

We already saw in the previous remark that h(𝐶) is additive. The translation functor is
induced by the suspension functor Σ : 𝐶 → 𝐶 which is an equivalence by assumption. And,
roughly speaking, the distinguished triangles are those that fit into a pushout (or, equivalently,
a pullback) square of the form

(5.23)
𝑋 𝑌

0 𝑍

together with the canonical map 𝑍 → 𝑋 [1] in h(𝐶) induced by the functoriality of
pushouts. You might find it instructive to try to prove that this defines indeed a triangulated
structure. Be warned, however, that some of the axioms are rather subtle to check.

Commentary 5.24. We now turn to the symmetric monoidal structure on Sp. For this re-
call that PrL has a symmetric monoidal structure, see Remark 4.61. Let us denote by PrL

st
the full subcategory spanned by stable presentable ∞-categories. (Note incidentally that, by
Exercise 5.17, every morphism in this ∞-category is exact.) Our goal is to exhibit this as a
localization of PrL and show that the symmetric monoidal structure on PrL can be localized
to one on PrL

st so that the localization PrL → PrL
st becomes symmetric monoidal.

Lemma 5.25. Let 𝐶 be any presentable ∞-category. We have, canonically,

𝐶 ⊗ Sp ≃ Sp(𝐶)
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Sketch of proof. As mentioned in Remark 4.61, the symmetric monoidal structure on PrL is
closed (admits internal mapping spaces) so, in particular, the tensor product preserves colimits
in each variable. It follows (Remark 5.19) that 𝐶 ⊗ Sp is the sequential colimit in PrL of

𝐶 ⊗ Spc∗
Σ−→ 𝐶 ⊗ Spc∗

Σ−→ · · ·

One now proves similarly that 𝐶 ⊗ Spc∗ ≃ 𝐶∗ canonically, and the claim follows. □

Proposition 5.26. The inclusion PrL
st ↩→ PrL admits a left adjoint given by Sp(−) = Sp ⊗ −.

Proof. Given a presentable ∞-category 𝐶, consider the canonical functor 𝐶 → Sp(𝐶) in PrL.
We need to show (Remark 3.52) that precomposition with this functor induces an equivalence

MapPrL
st
(Sp(𝐶), 𝐷) →MapPrL (𝐶, 𝐷)

for any stable presentable∞-category 𝐷. This follows from Proposition 5.18, as in in the proof
of Corollary 5.20. □

Construction 5.27. It follows from the last two results (and their proofs) that PrL
st inherits a

symmetric monoidal structure such that the stabilization functor Sp : PrL → PrL
st is symmetric

monoidal. The tensor product of stable presentable ∞-categories 𝐶, 𝐷 is given by Sp(𝐶 ⊗ 𝐷)
with unit the ∞-category of spectra Sp. The right adjoint to a symmetric monoidal functor
is always lax symmetric monoidal and therefore preserves commutative algebra objects. In
other words, the ∞-category Sp ∈ PrL underlies a commutative algebra object, whose tensor
product we can identify with a bifunctor

∧ : Sp × Sp→ Sp

that can be seen as the smash product of spectra. Tracing through the construction we see that
it ‘extends’, colimit-preserving in each variable, the smash product on finite pointed spaces,
induced from the Cartesian product on spaces.

Commentary 5.28. What we have really shown is that the functor Σ∞+ : Spc → Sp exhibits
the latter as an idempotent algebra in PrL. One also deduces that modules over this algebra
canonically identify with PrL

st:
ModPrL (Sp) ≃ PrL

st

5.2 The universal property of K-theory

Commentary 5.29. We now turn to algebraic 𝐾-theory. Let 𝐶 be a category with a notion
of ‘exact sequence’ (for example, an abelian or triangulated category). An Euler characteristic
(on 𝐶) is a function 𝜒 : 𝐶0/� → 𝐴 from isomorphism classes of objects to an abelian group 𝐴
such that

(5.30) 𝜒 (𝑐) − 𝜒 (𝑑) + 𝜒 (𝑒) = 0
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whenever there is an exact sequence 𝑐 → 𝑑 → 𝑒. The Grothendieck group 𝐾0(𝐶) is the target
of the universal Euler characteristic in that

HomAb(𝐾0(𝐶), 𝐴)
∼−→ {𝜒 : 𝐶0/�→ 𝐴 Euler characteristic}

via the Euler characteristic 𝐶0/� → 𝐾0(𝐶). (Of course, you can describe 𝐾0(𝐶) as the free
abelian group on 𝐶0/� modulo the obvious relation suggested by (5.30).)

Example 5.31. If𝑋 is a (paracompact) topological space we may consider the category of com-
plex vector bundles VB(𝑋 ) on 𝑋 in which exact sequences are split. Then 𝐾0(𝑋 ) := 𝐾0(VB(𝑋 ))
is better known as the Grothendieck group of vector bundles on 𝑋 . If (𝑋, 𝑥) is pointed, one
may consider the kernel

𝐾̃0(𝑋 ) := ker
(
𝐾0(𝑋 ) → 𝐾0(𝑥) = Z

)
,

and set 𝐾̃−𝑛 (𝑋 ) = 𝐾̃0(Σ𝑛𝑋 ). This satisfies Bott periodicity, 𝐾𝑈 2−𝑛 (𝑋 ) � 𝐾𝑈 −𝑛 (𝑋 ), which one
may take to extend this to positive degrees. In fact, this extends to a generalized cohomology
theory as in Commentary 5.1, called topological 𝐾-theory. Therefore it is represented by a
spectrum, typically denoted 𝐾𝑈 , with

𝐾𝑈𝑛 =

{
Z × 𝐵𝑈 : 𝑛 even
𝑈 : 𝑛 odd

Topological 𝐾-theory was one of the first generalized cohomology theories to be discovered
and put to use. For example, it can be used to give an elementary solution to the Hopf invariant
one problem.

Commentary 5.32. Later on, higher 𝐾-theory groups 𝐾𝑖 (𝐶) (even for negative 𝑖) were re-
alized as the homotopy groups of the 𝐾-theory spectrum 𝐾 (𝐶). (We will not discuss the non-
connective 𝐾-theory spectrum.) This turns out to be an unreasonably powerful invariant in
many areas of algebraic topology, algebraic geometry and number theory.

Example 5.33. Let 𝑅 be a ring of integers in a number field. The 𝐾-groups 𝐾𝑖 (𝑅) are defined
as the 𝐾-groups 𝐾𝑖 (Projfg(𝑅)) of the category of finitely generated projective 𝑅-modules (that
is, vector bundles on Spec(𝑅); every exact sequence splits).

1. 𝐾0(𝑅) = Pic(𝑅) × Z is essentially the ideal class group.

2. 𝐾1(𝑅) = 𝑅× is the group of units.

3. 𝐾2(𝑅) is the group of certain symbols in class field theory.

4. All 𝐾𝑖 (𝑅) are finitely generated. Their ranks are known and related to the number of
real and complex embeddings of the number field.

5. The torsion part of 𝐾𝑖 (𝑅) for 𝑖 > 2 is not known in general. A lot of progress has
come from the relation (Bloch-Kato conjecture, now a theorem) with étale cohomology.
For the ring 𝑅 = Z, the order of the known groups exhibit beautiful number-theoretic
properties (they are related to Bernoulli numbers). The remaining effort centers around
the Kummer-Vandiver conjecture.
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Example 5.34. The 𝐾-theory groups in the previous example could have been defined in
a similar way for any ring. And globalizing we may also define an invariant of schemes.
Namely, if 𝑋 is a scheme, let VB(𝑋 ) be the category of vector bundles on 𝑋 , or equivalently,
locally free O𝑋 -module of finite rank. There is an obvious notion of exact sequence (coming
from exactness in O𝑋 -modules; these don’t necessarily split) thus we may define the algebraic
𝐾-theory of 𝑋 as 𝐾 (𝑋 ) := 𝐾 (VB(𝑋 )).

If 𝑋 is a smooth complex projective variety there is a natural map 𝐾0(𝑋 ) → 𝐾0(𝑋 (C)) to
the topological 𝐾-theory of the underlying manifold 𝑋 (C). The Hodge conjecture describes the
image of this map after tensoring with Q.

Commentary 5.35. Not only are the groups 𝐾𝑖 (𝐶) hard to compute but, in contrast to 𝐾0(𝐶),
the spectrum 𝐾 (𝐶) isn’t defined through a universal property anymore, at least not in an ob-
vious way. While there was work in that direction, these attempts lacked the right formalism.
The definite treatment was given using the language of∞-categories, by Blumberg-Gepner-
Tabuada in the article A universal characterization of higher algebraic 𝐾-theory. My goal is to
sketch this characterization and what goes into the proof.

Commentary 5.36. The notion of an exact sequence makes sense in a stable ∞-category,
namely those fitting into a biCartesian square as in (5.23). So, it is natural to feed stable
∞-categories into the 𝐾-theory machine. It is a general phenomenon (known as ‘Eilenberg
swindle’) that 𝐾-theory of large categories tends to be ill-behaved (often trivial). We will
therefore be interested in small stable ∞-categories. These assemble into Catex

∞ , the subcate-
gory of Cat∞ on stable ∞-categories and exact functors.

Construction 5.37. Let 𝐶 be a stable ∞-category. We are going to construct the spec-
trum 𝐾 (𝐶). For exact (ordinary) categories (or more generally for Waldhausen categories),
this is known as the (iterated) 𝑆•-construction, due to Waldhausen. The exact details are not as
important. The point is that this is a concrete construction and will look very ad-hoc to you
if you haven’t worked with 𝐾-theory before.

Let Gap
𝑛
(𝐶) be the full subcategory of Fun(𝑁 ( [𝑛] [1]),𝐶) spanned by functors 𝐹 such that

𝐹 (𝑖 → 𝑖) ≃ 0 for each 0 ≤ 𝑖 ≤ 𝑛 and the square

𝐹 (𝑖 → 𝑗) 𝐹 (𝑖 → 𝑘)

𝐹 ( 𝑗 → 𝑗) 𝐹 ( 𝑗 → 𝑘)

is pushout/pullback. This is still a stable ∞-category.
One then defines a simplicial∞-category 𝑆𝑛 (𝐶) = Gap

𝑛
(𝐶). Finally, Ω | (𝑆•𝐶)≃ |where |−| is

the geometric realization (colimit), is the 𝐾-theory space. One can reiterate this construction,
and 𝐾 (𝐶) := ( | (𝑆𝑛• (𝐶))≃ |)𝑛 is a spectrum, the 𝐾-theory spectrum. Moreover, it isn’t hard to
exhibit a functor 𝐾 : Catex

∞ → Sp which sends 𝐶 ↦→ 𝐾 (𝐶).

Definition 5.38. In an ad-hoc fashion, we define the idempotent completion of 𝐶 ∈ Catex
∞ to

be 𝐶♮ := Ind(𝐶)𝜔 . This is also a small stable ∞-category. And we will say that 𝐶 ∈ Catex
∞
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is idempotent complete if the canonical fully faithful functor 𝐶 → 𝐶♮ is an equivalence. Small
idempotent complete stable ∞-categories will also be called perfect in the following.

Commentary 5.39. Let 𝐶 ∈ Catex
∞ . The map 𝐾 (𝐶) → 𝐾 (𝐶♮) induced by the idempotent

completion is an isomorphism in all positive degrees and an injection 𝐾0(𝐶) ↩→ 𝐾0(𝐶♮). In
fact, as a full dense stable subcategory of 𝐶♮ (that is, whose idempotent completion is 𝐶♮), 𝐶 is
characterized by the subgroup 𝐾0(𝐶) ⊆ 𝐾0(𝐶♮). Hence, the computation of 𝐾 (𝐶) splits into
two steps: first compute 𝐾 (𝐶♮), and then identify this subgroup of 𝐾0(𝐶♮). The first one is the
more interesting and harder one, of course, so we focus on that one.

This suggests restricting to perfect ∞-categories which form a full subcategory Catperf
∞ ⊆

Catex
∞ . Idempotent completion defines a left adjoint (−)♮ : Catex

∞ → Catperf
∞ which is thus a

localization. In fact, both ∞-categories are compactly generated and this is an accessible lo-
calization. (In particular, both are complete and cocomplete.)

Commentary 5.40. Algebraic 𝐾-theory then gives a functor 𝐾 : Catperf
∞ → Sp and our goal

is to characterize this functor. One of the most important and useful computational tools is
Waldhausen’s additivity theorem which we want to formulate as the 𝐾-theory functor taking
split exact sequences to cofiber sequences. Together with the basic fact that it preserves filtered
colimits this will characterize the functor already!

Definition 5.41. Let 𝜄 : 𝐴 ↩→ 𝐵 be a fully faithful in Catperf
∞ . We define the Verdier quotient 𝐵/𝐴

as the cofiber of 𝜄, that is, as the pushout in Catperf
∞ :

𝐴 𝐵

0 𝐵/𝐴

𝜄

(𝐵/𝐴 is the localization of 𝐵 at the morphisms whose cofibers lie in 𝐴. The homotopy cat-
egory of 𝐵/𝐴 is the idempotent completion of h(𝐵)/h(𝐴), the classical Verdier quotient of
triangulated categories.) We then say more generally that a sequence 𝐴

𝜄−→ 𝐵
𝜋−→ 𝐶 is an exact

sequence if the composite is the zero functor, 𝜄 is fully faithful, and the induced 𝐵/𝐴→ 𝐶 is an
equivalence. We say that the sequence splits if both 𝜄 and 𝜋 admit right adjoints.

Remark 5.42. It is enough to ask for one of the right adjoints. The second is then automatic.
Moreover, it is then also automatic that 𝜋 is a localization in the sense of Definition 4.43.

Definition 5.43. An additive invariant is a functor 𝐸 : Catperf
∞ → 𝐷 into a stable presentable

∞-category 𝐷 with the following properties:

• 𝐸 preserves filtered colimits.

• 𝐸 takes split-exact sequences to cofiber sequences in 𝐷.

We denote by Funadd(Catperf
∞ , 𝐷) the ∞-category of additive invariants.
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Remark 5.44. As announced above, 𝐾-theory is an additive invariant. Indeed, 𝐾 : Catperf
∞ →

Sp preserves filtered colimits since the∞-categories that enter in the construction (𝑁 ( [𝑛] [1]))
are compact in Cat∞ and filtered colimits in Catperf

∞ are computed in Cat∞ (and (−)≃ also pre-
serves filtered colimits). The second property is implied by Waldhausen’s additivity theorem
for the 𝐾-theory of Waldhausen categories.

Exercise 5.45. The second condition for an additive invariant can be phrased differently. Let
𝐴

𝜄−→ 𝐵
𝜋−→ 𝐶 be a split-exact sequence, and 𝜌 a right adjoint to 𝜋 . Show that 𝐸 takes this

sequence to a cofiber sequence if and only if

𝐸 (𝐴) ⨿ 𝐸 (𝐶)
𝜄⨿𝜌
−−−→ 𝐸 (𝐵)

is an equivalence.

Proposition 5.46. There is a universal additive invariant [−] : Catperf
∞ →M𝑎𝑑𝑑 in that

[−]∗ : Funadd(Catperf
∞ , 𝐷) ∼−→ FunL(M𝑎𝑑𝑑 , 𝐷)

for any stable presentable 𝐷 .

Sketch of proof. How does one construct this universal additive invariant? Suppose we dropped
the second condition in the definition of additive invariants. (That is, we consider functors
that preserve filtered colimits.) Then we have

Fun𝜔 (Catperf
∞ , 𝐷) ≃ Fun((Catperf

∞ )𝜔 , 𝐷) ≃ FunL(P((Catperf
∞ )𝜔 ), 𝐷) ≃ FunL(Sp(P((Catperf

∞ )𝜔 )), 𝐷)

so that the universal invariant would be given by

𝜓 : Catperf
∞ → Sp(P((Catperf

∞ )𝜔 )) ≃ Fun((Catperf
∞ )𝜔,op, Sp) .16

Now we add in the second condition to the mix. We should invert the canonical maps
𝛾𝑒 : 𝜓 (𝐵)/𝜓 (𝐴) → 𝜓 (𝐶) for any split-exact sequence 𝑒 of the form 𝐴 → 𝐵 → 𝐶 in Catperf

∞ .
It turns out that every split-exact sequence can be written as a filtered colimit of split-exact
sequences belonging to a small set E of representatives. It follows that the localization with
respect to {𝛾𝑒 | 𝑒 ∈ E} is enough.

In conclusion,
M𝑎𝑑𝑑 = Fun((Catperf

∞ )𝜔,op, Sp) [𝛾−1
𝑒 | 𝑒 ∈ E]

with the canonical functor Catperf
∞ →M𝑎𝑑𝑑 . □

Exercise 5.47. Let 𝐼 be a small simplicial set. Show that Sp(Fun(𝐼 , Spc)) ≃ Fun(𝐼 , Sp) canon-
ically.

Remark 5.48. It follows from Propositions 5.46 and 4.60 that Funadd(Catperf
∞ , 𝐷) is a stable

presentable ∞-category.
16See Exercise 5.47 below.
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Remark 5.49. The∞-category Catperf
∞ is equivalent to compactly generated stable∞-categories

and compact-preserving left adjoints. In one direction you take Ind(−), in the other (−)𝜔 .
It follows that the ∞-category of compact spectra Sp𝜔 has a convenient universal property
in Catperf

∞ . Namely, given any perfect ∞-category 𝐶, we have

Funex(Sp𝜔 ,𝐶) ≃ FunL,cpt(Sp, Ind(𝐶)) ≃ Ind(𝐶)𝜔 ≃ 𝐶

given by evaluating at the sphere spectrum, see Corollary 5.20. This explains why compact
spectra will appear frequently below.

Before stating the main theorem we need to observe that mapping spaces in stable∞-categories
naturally underlie spectra.

Construction 5.50. Let𝐶 be a small stable∞-category. Essentially by definition, Ω∞ : Sp(𝐶) ∼−→
𝐶. Note also that the stabilization is functorial in left exact functors. We may therefore consider
the following composite:

ỹ : 𝐶 ≃ Sp(𝐶)
y
−→ Sp(Fun(𝐶op, Spc)) ≃ Fun(𝐶op, Sp)

which is the stable Yoneda functor. (The last equivalence holds by the previous exercise.) The
adjoint functor

map
𝐶
(−,−) : 𝐶op ×𝐶 → Sp

then defines mapping spectra. Note that by construction we have Ω∞map
𝐶
(𝑐, 𝑑) ≃Map

𝐶
(𝑐, 𝑑)

for any two 𝑐, 𝑑 ∈ 𝐶

Theorem 5.51. For any perfect ∞-category 𝐶 there is a canonical equivalence of spectra

map
M𝑎𝑑𝑑
( [Sp𝜔 ], [𝐶]) ≃ 𝐾 (𝐶) .

Commentary 5.52. We may interpret this statement as a corepresentability result for alge-
braic 𝐾-theory.

Sketch of proof. Consider the functor 𝐾𝐶 : (Catperf
∞ )𝜔,op → Sp defined by

𝐾𝐶 (𝐵) = 𝐾 (Funex(𝐵,𝐶)) .

This functor sends split-exact sequences to cofiber sequences and thus defines an object of M𝑎𝑑𝑑 .
The main computation is that this object is nothing but [𝐶]. The slogan is that Waldhausen’s
𝑆•-construction acts as the suspension on M𝑎𝑑𝑑 . It now follows that

𝐾 (𝐶) = 𝐾𝐶 (Sp𝜔 ) ≃ map
Fun( (Catperf

∞ )𝜔,op,Sp)
(Sp𝜔 , 𝐾𝐶 )

by the spectral Yoneda lemma. Note we used here Remark 5.49 which also implies that Sp𝜔

is indeed compact in Catperf
∞ . Because 𝐾𝐶 sends split-exact sequences to cofiber sequences, this

last mapping spectrum is also

map
M𝑎𝑑𝑑
( [Sp𝜔 ], 𝐾𝐶 ) ≃ map

M𝑎𝑑𝑑
( [Sp𝜔 ], [𝐶]),

concluding the proof. □
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Convention 5.53. Let 𝐸, 𝐹 : Catperf
∞ → 𝐷 be two additive invariants with same target. We

denote by
Nat(𝐸, 𝐹 ) = map

Funadd (Catperf
∞ ,𝐷 )

(𝐸, 𝐹 )

the spectrum of natural transformations.

Corollary 5.54. Let 𝐸 : Catperf
∞ → Sp be an additive invariant valued in spectra. Then there is a

natural equivalence of spectra
Nat(𝐾, 𝐸) ≃ 𝐸 (Sp𝜔 ).

Proof. By Proposition 5.46, the mapping spectrum Nat(𝐾, 𝐸) can be computed in FunL(M𝑎𝑑𝑑 , Sp).
More precisely,𝐾, 𝐸 factor essentially uniquely through colimit-preserving functors 𝐾̄, 𝐸 : M𝑎𝑑𝑑 →
Sp, and

(5.55) Nat(𝐾, 𝐸) ≃ mapFunL (M𝑎𝑑𝑑 ,Sp) (𝐾̄, 𝐸).

By Theorem 5.51, 𝐾̄ is corepresented by [Sp𝜔 ] so that, by the spectral version of the Yoneda
lemma, the spectrum (5.55) identifies with

𝐸 ( [Sp𝜔 ]) ≃ 𝐸 (Sp𝜔 ) .

This concludes the proof. □

Definition 5.56. An (associative) algebra object in Sp (with the symmetric monoidal struc-
ture of Section 5.1) is called a ring spectrum. For such an 𝑅 one can consider its module cate-
gory Mod(𝑅)whose compact objects are called perfect𝑅-modules, that is, Perf (𝑅) := Mod(𝑅)𝜔 .
This is a perfect ∞-category (small, stable, idempotent-complete). For any additive invariant
𝐸 : Catperf

∞ → 𝐷 we then define 𝐸 (𝑅) := 𝐸 (Perf (𝑅)) ∈ 𝐷.

Example 5.57. 1. If 𝑅 = S is the sphere spectrum (the tensor unit) then Perf (S) = Sp𝜔 so
we can reformulate Corollary 5.54 as

Nat(𝐾, 𝐸) ≃ 𝐸 (S) .

2. If 𝑅 is a (discrete) ring in the usual sense there is an associated ring spectrum 𝐻𝑅 which
represents the (multiplicative) cohomology theory H•(−, 𝑅). The module category Mod(𝑅)
is an ∞-categorical enhancement of the unbounded derived category 𝐷 (𝑅). There-
fore, Perf (𝑅) is an ∞-categorical enhancement of the derived category of perfect com-
plexes on 𝑅. These are exactly the bounded complexes of finitely generated projective
𝑅-modules. From this, one deduces that 𝐾 (𝑅) ≃ 𝐾 (𝐻𝑅).

Commentary 5.58. As mentioned, computing 𝐾-theory is hard. A lot of progress has come
from trace maps, natural transformations 𝐾 → 𝐸 to invariants that are easier to compute. An
example of such an invariant is topological Hochschild homology.
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Construction 5.59. Let𝑅 be a commutative ring spectrum. One defines the topological Hochschild
homology of 𝑅 as

THH(𝑅) := 𝑅 ⊗𝑅∧𝑅 𝑅 ∈ Sp

where 𝑅 is viewed as an (𝑅, 𝑅)-bimodule in an obvious way. (Actually, this can be done for
arbitrary ring spectra. Also, THH(𝑅) comes with more structure that we won’t discuss.)

Commentary 5.60. In fact, there is an additive invariant THH: Catperf
∞ → Sp which spits

out THH(𝑅) upon feeding it Perf (𝑅). In that case, the relevant trace map

𝐾 → THH

is known as the Dennis trace map. Several constructions of this map are known but Corol-
lary 5.54 allows one to explain its existence and to characterize it:

Proposition 5.61. The unit in Z = 𝜋0(S) corresponds, via

Nat(𝐾,THH) ≃ THH(S) ≃ S,

to the Dennis trace map.
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A Appendix

A.1 Joins

Commentary A.1. We will start with the join construction. Recall that for two ordinary
categories𝐶, 𝐷, their join𝐶★𝐷 is the category essentially uniquely determined by the following
properties:

1. There are fully faithful embeddings 𝐶, 𝐷 ↩→ 𝐶 ★𝐷 and together they are surjective on
objects.

2. There are no maps from objects in 𝐷 to objects in 𝐶.

3. There is a single map from any object in 𝐶 to any object in 𝐷.

Example A.2. If 𝐷 = [0] is the final category then 𝐶★ [0] =: 𝐶▷ adds a new final object to 𝐶.
Similarly, [0] ★𝐶 =: 𝐶◁ adds a new initial object.

Exercise A.3. Show that there are canonical isomorphisms of categories [𝑚]★[𝑛] � [𝑚+𝑛+1].

Commentary A.4. We now want to generalize the join construction to simplicial sets. In
particular, we want the nerve functor to preserve this construction. So we define it on the
simplex category as the bifunctor

(A.5) ★: 𝚫 × 𝚫→ 𝚫, ( [𝑚], [𝑛]) ↦→ 𝑁 ( [𝑚] ★ [𝑛]) .

Recall now that sSet = Fun(𝚫op, Set) so that every simplicial set is a (canonical) colimit of
representables Δ𝑛.

Definition A.6. The join operation★: sSet×sSet→ sSet is defined as the unique such functor
extending (A.5) and such that for every simplicial set 𝐼 , the functors 𝐼 ★ (−), (−) ★ 𝐼 : sSet →
sSet𝐼/ preserve arbitrary colimits.

Remark A.7. One can easily deduce an explicit formula for the join construction. Namely,

(𝐼 ★ 𝐼 ′)𝑛 = 𝐼𝑛 ∪
( ⋃
𝑖+𝑗=𝑛−1

𝐼𝑖 × 𝐼 𝑗

)
∪ 𝐼𝑛 .

We notice the following easy consequence: If 𝐶 and 𝐷 are ∞-categories then so is 𝐶 ★ 𝐷.
Moreover, in that case the canonical functors 𝐶, 𝐷 → 𝐶 ★𝐷 are fully faithful. (Exercises!)

Example A.8. Let 𝐼 be a simplicial set and consider the right cone on 𝐼 , 𝐼▷ := 𝐼★Δ0. We describe
its low-dimensional non-degenerate simplices:

0. All objects of 𝐶 and one additional object that we denote by ∞. It is called the cone
point.

1. All non-degenerate morphisms in𝐶, and a unique morphism from any object in𝐶 to∞.

2. The non-degenerate 2-simplices of 𝐶 and a unique 2-simplex
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𝑐 ∞

𝑑

𝑓

for each morphism 𝑓 : 𝑐 → 𝑑 in 𝐶.

Exercise A.9. Show that (Λ2
0)
▷ � Δ1×Δ1 (which is what you might have expected anyway!).

Exercise A.10. Assume that 𝐼 is an ∞-category. Show that the cone point ∞ ∈ 𝐼▷ is a final
object.

A.2 Slices

Commentary A.11. We now define an∞-categorical version of an overcategory. Recall that
if𝑑 ∈ 𝐶 is an object in an ordinary category then the overcategory𝐶/𝑑 has as objects morphisms
𝑐 → 𝑑 and as morphisms morphisms in the domain that make the obvious triangle commute.
This can be expressed by the following universal property, for each ordinary category 𝐾 :

HomCat(𝐾,𝐶/𝑑 ) = Hom𝑑 (𝐾▷,𝐶)

where the right-hand side consists of those functors that take the cone point to 𝑑 ∈ 𝐶.

Definition A.12. Let 𝐹 : 𝐼 → 𝐶 be a map of simplicial sets. By construction, the functor
(−) ★ 𝐼 : sSet→ sSet𝐼/ commutes with colimits, hence by the adjoint functor theorem admits
a right adjoint. We define the slice over 𝐹 , denoted 𝐶/𝐹 , as the value of this right adjoint at 𝐹 .
That is, it is the simplicial set 𝐶/𝐹 with the following universal property, for each 𝐾 ∈ sSet:

HomsSet(𝐾,𝐶/𝐹 ) = Hom𝐹 (𝐾 ★ 𝐼 ,𝐶)

where on the right-hand side we only consider maps of simplicial sets that restrict to 𝐹 on 𝐼 .
Note that restricting along 𝐾 ↩→ 𝐾 ★ 𝐼 produces a map Hom𝐹 (𝐾 ★ 𝐼 ,𝐶) → Hom(𝐾,𝐶) which
corresponds to a map of simplicial sets 𝐶/𝐹 → 𝐶.

Remark A.13. If 𝐶 is an∞-category then so is 𝐶/𝐹 . The same holds for the dual construction
of slice under 𝐹 , denoted 𝐶𝐹/. In fact, the projection 𝐶/𝐹 → 𝐶 is always a right fibration while
𝐶𝐹/ → 𝐶 is a left fibration.

Example A.14. Let 𝑑 ∈ 𝐶 be an object in an∞-category, classified by the functor 𝑑 : Δ0 → 𝐶.
The corresponding slice category 𝐶/𝑑 is called the overcategory. Note that its simplices are as
follows:

0. The objects of 𝐶/𝑑 are morphisms 𝑐 → 𝑑 in 𝐶.

1. The morphisms of 𝐶/𝑑 are 2-simplices in 𝐶 with final vertex 𝑑.

2. More generally, the 𝑛-simplices of 𝐶/𝑑 are the (𝑛 + 1)-simplices in 𝐶 with final vertex 𝑑.
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Note that in particular 𝑁 (𝐶/𝑑 ) � 𝑁 (𝐶)/𝑑 for any ordinary category 𝐶.

We now turn to a ‘fatter’ variant of slices.

Construction A.15. Let 𝑑 ∈ 𝐶 where 𝐶 is an ∞-category. We define the fat overcategory 𝐶/𝑑
by the following pullback diagram in sSet:

𝐶/𝑑 Fun(Δ1,𝐶)

𝐶 𝐶 ×𝐶

ev0×ev1

id𝐶 ×𝑑

Remark A.16. Recall our definition of mapping spaces in Definition 2.18. Note that for
any 𝑐 ∈ 𝐶, we have a pullback diagram

Map
𝐶
(𝑐, 𝑑) 𝐶/𝑑

Δ0 𝐶
𝑐

In other words, we may think of𝐶/𝑑 as a parametrized version of the mapping spaces Map
𝐶
(𝑐, 𝑑)

for varying 𝑐. We will make this more precise in Appendix A.3.

Definition A.17. More generally, let 𝐹 : 𝐼 → 𝐶 be a map of simplicial sets. We define the fat
slice over 𝐹 in a similar way, through the following pullback diagram in sSet:

𝐶/𝐹 Fun(𝐼 × Δ1,𝐶)

𝐶 = 𝐶 × Δ0 Fun(𝐼 ,𝐶) × Fun(𝐼 ,𝐶)

ev0×ev1

(−)×𝐹

Remark A.18. Just as with the ordinary slices, the canonical map 𝐶/𝐹 → 𝐶 is a right fibration
and the dual 𝐶𝐹/ → 𝐶 is a left fibration. In fact, the ordinary and fat slices are connected in
another intimate way:

Lemma A.19. Let 𝐶 be an ∞-category and let 𝐹 : 𝐼 → 𝐶 be a diagram in 𝐶 . There are canonical
equivalences of ∞-categories

𝐶/𝐹
∼−→ 𝐶/𝐹 , 𝐶𝐹/

∼−→ 𝐶𝐹/.

Sketch of proof. By definition, the ordinary slice is defined as a right adjoint to (−)★ 𝐼 : sSet→
sSet𝐼/. Turning this around we define a new operator (−) ⋄ (−) : sSet × sSet → sSet (the
‘fat join’) by a similar adjointness property from the fat slice. With model category some
work, the statement then translates to one about the left adjoints, namely the canonical map
𝑋 ⋄𝑌 → 𝑋 ★𝑌 . A longer dévissage reduces further to a single map Δ1 ⋄Δ1 → Δ1 ★Δ1, which
is a very explicit calculation. □
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Remark A.20. Lemma A.19 together with Remark A.16 suggests another definition of map-
ping spaces, namely as fibers of the ordinary slice. In the literature, these are known as left and
right mapping spaces (for 𝑐, 𝑑 ∈ 𝐶 in an ∞-category):

Map𝑙
𝐶
(𝑐, 𝑑) 𝐶𝑐/

Δ0 𝐶
𝑑

Map𝑟
𝐶
(𝑐, 𝑑) 𝐶/𝑑

Δ0 𝐶
𝑐

Since the right vertical maps are left (resp. right) fibrations so are the left vertical ones. But
this implies that these left/right mapping spaces are indeed Kan complexes.

Passing to fibers in the equivalences of Lemma A.19 we get the following result:

Corollary A.21. There are canonical homotopy equivalences of spaces

Map𝑙
𝐶
(𝑐, 𝑑) ∼−→Map

𝐶
(𝑐, 𝑑) ∼←−Map𝑟

𝐶
(𝑐, 𝑑) .

A.3 (Un)straightening, discrete

Commentary A.22. We start in the 1-categorical context. Let𝐶 be a small ordinary category
and 𝐻 ∈ 𝑃 (𝐶) a presheaf of sets on𝐶. The category of elements 𝐶/𝐻 can be thought of in various
(equivalent) ways:

(i) Explicitly, it has objects elements 𝑥 ∈ 𝐻 (𝑐) and morphisms from 𝑥 ∈ 𝐻 (𝑐) to 𝑥 ′ ∈ 𝐻 (𝑐′)
morphisms 𝑓 : 𝑐 → 𝑐′ such that 𝐻 (𝑓 ) (𝑥 ′) = 𝑥 .

(ii) As the full subcategory 𝐶/𝐻 ⊂ 𝑃 (𝐶)/𝐻 spanned by representables.

(iii) As the Grothendieck construction applied to 𝐻 : 𝐶op → Set. Note that the category of
elements comes with an obvious projection 𝜋 : 𝐶/𝐻 → 𝐶 and this has two prominent
features:

• Each fiber 𝜋−1(𝑐) := (𝐶/𝐻 ) ×𝐶 {𝑐} � 𝐻 (𝑐) is a discrete category (that is, a set).
• For each map 𝑓 : 𝑐 → 𝑐′ ‘downstairs’ and any object 𝑥 ′ ∈ 𝐻 (𝑐′) � 𝜋−1(𝑐′) ‘over’ 𝑐′,

there is a unique ‘lift’ 𝑥 → 𝑥 ′ of 𝑓 . (The latter means that 𝜋 (𝑥 → 𝑥 ′) = 𝑓 .)

A functor 𝜋 : 𝐸 → 𝐶 satisfying these two properties is known as a discrete fibration. It is
clear that you can reconstruct the functor 𝐻 from its category of elements and in fact,
this induces an equivalence of categories

(A.23) 𝑃 (𝐶) = Fun(𝐶op, Set) ≃ DFib(𝐶)

where the right-hand side denotes the full subcategory DFib(𝐶) ⊂ Cat/𝐶 spanned by
discrete fibrations.

Exercise A.24. If you haven’t seen (A.23) before show this.
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There is a direct analogue of this equivalence for ∞-categories. For this recall that a right
fibration of simplicial sets has the RLP with respect to right horn inclusions Λ𝑛𝑖 ↩→ Δ𝑛, 0 < 𝑖 ≤
𝑛.

Proposition A.25 (Straightening-unstraightening, discrete version). Let𝐶 be a small∞-category.
There is an equivalence of ∞-categories

P(𝐶) = Fun(𝐶op, Spc) ≃ RFib(𝐶)

where RFib(𝐶) ⊂ (Cat∞)/𝐶 denotes the full subcategory spanned by right fibrations.
Similarly, there is an equivalence for left fibrations:

Fun(𝐶, Spc) ≃ LFib(𝐶)

Commentary A.26. This is not an abstract existence statement. The equivalence can be
given quite explicitly (although we won’t do that here). One says that a fibration straightens to
or is classified by a functor. And the functor, in turn, unstraightens to or classifies the fibration.

From the explicit description one deduces that pullbacks on the left fibration side corre-
spond to pre-composition on the functor side. When 𝐶 = Δ0 is a point then the equivalence
is trivial:

P(Δ0) � Spc ∼←− Spc/Δ0 = RFib(Δ0)
Together the properties alluded to above imply that 𝜋−1(𝑐) ≃ 𝑓 (𝑐).

which, as a first approximation, can be thought of as sending a functor𝐺 : 𝐶 → Spc to the
similarly defined 𝐶𝐺/ → 𝐶.

Commentary A.27. In fact, on objects, an explicit incarnation of this equivalence takes a
presheaf 𝐻 ∈ P(𝐶) and sends it to the right fibration 𝐶/𝐻 → 𝐶, the full subcategory of the
slice P(𝐶)/𝐻 on representables.17 Note how the fiber over 𝑐 ∈ 𝐶 is indeed given by

𝐶/𝐻 ×𝐶 {𝑐} ≃Map𝑟
P(𝐶 ) (y𝑐 , 𝐻 ) Remark A.20

≃Map
P(𝐶 ) (y𝑐 , 𝐻 ) Corollary A.21

≃ 𝐻 (𝑐) (2.61).

Now, suppose we are given a morphism 𝑓 : 𝑐 → 𝑐′ ∈ 𝐶. We should construct a map of
spaces 𝐻 (𝑓 ) : 𝐻 (𝑐′) → 𝐻 (𝑐) from the right fibration. For example, given a point 𝑥 ′ ∈ 𝐻 (𝑐′)
viewed as a map Δ0 = Λ1

1 → 𝐶/𝐻 we may consider

Λ1
1 𝐶/𝐻

Δ1 𝐶

𝑥 ′

𝑓

17It is the pullback of the right fibration from Remark A.13 hence itself a right fibration:

𝐶/𝐻 P(𝐶)/𝐻

𝐶 P(𝐶)
y
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and since the right vertical map is a right fibration, a dotted lift exists. (In contrast to the
1-categorical case we lost uniqueness of a lift but that was to be expected.) The lower com-
mutative triangle says that it lifts 𝑓 and the upper commutative triangle says that it ends in 𝑥 ′.
In particular, it is of the form 𝑥 → 𝑥 ′ for some 𝑥 ∈ 𝐻 (𝑐) as sought for. Of course, construct-
ing such a map of spaces simplex-by-simplex 𝐻 (𝑐′) → 𝐻 (𝑐) would be difficult which is why
Proposition A.25 is a powerful statement.

Example A.28. Consider the special case where 𝐻 is representable, say by 𝑑 ∈ 𝐶. Consider
the right fat slice fibration 𝐶/𝑑 → 𝐶 (Remark A.18). By straightening, this is classified by a
functor 𝐶op → Spc whose value at 𝑐 ∈ 𝐶 is equivalent to

𝐶/𝑑 ×𝐶 {𝑐} ≃Map
𝐶
(𝑐, 𝑑) .

This explains Remark A.16 where we described 𝐶/𝑑 as a parametrized mapping space.

Commentary A.29. The previous example suggests that we might be able to define a Yoneda
functor 𝐶op × 𝐶 → Spc by constructing a suitable left/right fibration over 𝐶op × 𝐶 and then
apply straightening. This is indeed possible, and we sketch this now.

Construction A.30. Let 𝐶 be an ∞-category. The twisted arrow category Tw(𝐶) of 𝐶 is the
simplicial set

Tw(𝐶)𝑛 := HomsSet(Δ𝑛 ★ (Δ𝑛)op,𝐶)

Note that Δ𝑛★ (Δ𝑛)op � Δ𝑛★Δ𝑛 � Δ2𝑛+1 so that the 𝑛-simplices of the twisted arrow category
are in bijection with the (2𝑛 + 1)-simplices of 𝐶. But writing it in this way makes plain the
face and degeneracy maps.

Exercise A.31. Figure out what’s going on here. Let 𝐶 be an ordinary category and de-
scribe Tw(𝑁 (𝐶)). Explain why it is called the twisted arrow category.

Remark A.32. The inclusions Δ𝑛, (Δ𝑛)op ↩→ Δ𝑛 ★ (Δ𝑛)op induce a map of simplicial sets

Tw(𝐶) → 𝐶 ×𝐶op

which turns out to be a right fibration. Hence, by straightening, it is classified by a functor
𝐶op ×𝐶 → Spc which one can take as an alternative to the construction of the Yoneda functor
in (2.65).
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