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SUMMARY i

Abstract. This thesis consists of two independent parts. In the first part we ask how traces

in monoidal categories behave under homotopical operations. In order to investigate this

question we define traces in closedmonoidal derivators and establish some of their properties.

In the stable setting we derive an explicit formula for the trace of the homotopy colimit over

finite categories in which every endomorphism is invertible.

In the second part, we study motives of algebraic varieties over a subfield of the complex

numbers, as defined by Nori on the one hand and by Voevodsky, Levine, and Hanamura

on the other. Ayoub attached to the latter theory a motivic Galois group using the Betti

realization, based on a weak Tannakian formalism. Our main theorem states that Nori’s

and Ayoub’s motivic Galois groups are isomorphic. In the process of proving this result we

construct well-behaved functors relating the two theories which are of independent interest.

Zusammenfassung. Diese Dissertation besteht aus zwei voneinander unabhängigen Tei-

len. Im ersten Teil widmen wir uns der Frage, wie sich die Spur in monoidalen Kategorien

unter homotopischen Operationen verhält. Dazu definieren wir Spuren in abgeschlossenen

monoidalen Derivatoren und beweisen einige ihrer Eigenschaften. Im stabilen Fall leiten

wir schliesslich eine explizite Formel her für die Spur eines Homotopie-Kolimes über einer

endlichen Kategorie, in der alle Endomorphismen invertierbar sind.

Im zweiten Teil behandeln wir Motive algebraischer Varietäten über einem Unterkör-

per der komplexen Zahlen, wie sie von Nori einerseits, und von Voevodsky, Levine, und

Hanamura andererseits definiert wurden. Ayoub hat der letzteren der beiden Theorien eine

motivische Galoisgruppe zugeordnet, mit Hilfe der Betti-Realisierung und basierend auf

einem schwachen Tannakaformalismus. Unser Hauptresultat lautet, dass die motivischen

Galoisgruppen von Nori und von Ayoub isomorph sind. Im Laufe des Beweises konstruieren

wir auch Funktoren, welche die beiden Theorien miteinander in Verbindung setzen und die

unabhängig von Interesse sind.
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I
INTRODUCT ION

Since this thesis is composed of mathematical papers on different subjects we felt the need to

include this short introduction in which we explore how the chapters to come are related.

The answer, as we will try to explain, is that the relation doesn’t lie in the results but in some

of the methods used in obtaining them. These methods belong to the field which one could

reasonably call homotopy theory, and we start by outlining some aspects of what this field, as

we see it, is supposed to achieve. Then we sketch some of its methods, and how they will be

employed in the main body of the thesis. When writing this introduction we had in mind

a reader who might not be familiar with the terminology and context of the later chapters.

Since each of the subsequent chapters starts with a more detailed account of its content, the

reader may safely jump directly to page 1111.

Contents

1. Homotopy theory1. Homotopy theory 1
1.1. Localization1.1. Localization 1

1.2. Models and homotopy theory1.2. Models and homotopy theory 3

1.3. Model categories1.3. Model categories 4

1.4. Derivators1.4. Derivators 4

2. About this thesis2. About this thesis 5
2.1. Traces2.1. Traces 5

2.2. Motivic Galois groups2.2. Motivic Galois groups 8

1. Homotopy theory
1.1. Localization. Arguably, the classification problem is one of the fundamental math-

ematical questions. It asks, given a collection of objects, structured in some way, and a

notion of equivalence between them, for a useful description of the equivalence classes. This

description usually takes the form of a complete set of invariants which permit to decide

whether or not two objects fall into the same equivalence class.

In a number of mathematical fields such a collection of objects is nowadays often orga-

nized in a category C, and the equivalence is induced by a distinguished class of morphisms

W in C, often called weak equivalences. The classification problem then turns into the related

task of understanding the homotopy category C[W−1] obtained from C by “inverting” the
1



2 I. INTRODUCTION

morphisms inW , a process known as localization. Thus there is a functor C → C[W−1]
which mapsW to isomorphisms and it is universal for this property, in the sense that given

any functor C → D which mapsW to isomorphisms, there is a unique functor C[W−1] → D
making the triangle

C

��

// D

C[W−1]

;;

commute. More often than not, invariants in this setting are functors defined on C which
factor through the homotopy category.

Example 1.1
(1) One of the fundamental examples arises in topology when trying to classify spaces

“up to homotopy”. Topological spaces assemble into a category (with continuous maps

as morphisms) and the equivalence is induced by weak homotopy equivalences, i. e.

continuous maps inducing a bijection in π0 and isomorphisms of homotopy groups

for varying base points.11 The associated homotopy category hTop is sometimes called

simply the homotopy category. Clearly, π0 and the homotopy groups are most useful

invariants in this context.

Besides ordinary homotopy groups, topologists are also interested in stable homo-

topy groups of spaces. These are the fundamental invariants of the stable homotopy

category shTop obtained by localizing spectra with respect to stable weak equivalences.

Other important invariants in the context of both unstable and stable homotopy theory

include various cohomology theories.

(2) Many interesting functors f ∶ B → A between abelian categories turn out to preserve

only cokernels but not kernels (or vice-versa). Evaluation of such f at a short exact
sequence in B does not in general produce another short exact sequence inA but only a

long exact sequence involving so-called higher derived functors Ln f . It was an important

insight that these objects are only shadows of a structurally richer object, well-defined up

to some indeterminacy. More precisely, given an object b ∈ B one associates to it under

suitable assumptions a chain complex L f (b) inA, well-defined up to quasi-isomorphism.

Here, a quasi-isomorphism is a morphism of chain complexes inducing isomorphisms

in homology. Thus one is naturally led to consider the category of chain complexes inA
and localize it with respect to quasi-isomorphisms. The resulting homotopy category

D(A) is called the derived category ofA. Under suitable assumptions f induces a “total”
derived functor L f ∶ D(B) → D(A) and the higher derived functor Ln f is recovered
as the n-th homology object HnL f . (An analogous story of course applies to left-exact
functors.)

It is not difficult to see how C[W−1] can be constructed:22 It can be taken to have the

same objects as C and morphisms in C[W−1] to be represented by zig-zags of morphisms in

C, in general of arbitrary (finite) length, where the arrows pointing in the wrong direction

lie in W . However, certain zig-zags need to be identified and the whole thing quickly

becomes intractable. Thus unfortunately and, given the nature of the task, not unexpectedly,

the localization process and consequently the resulting homotopy category are difficult to

control in general.

1Another possibility is to consider the equivalence induced by homotopy equivalences.
2Ignoring set-theoretic issues, that is.
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And even when there is a better understanding of the morphisms, C[W−1] typically
behaves badly from a categorical point of view. Categorical operations (e. g. colimits and

limits), even if possible in C, often cannot be performed on the level of the homotopy category.

In the same vein, categorical structures present in C often fail to descend to C[W−1]. The

reason is of course that localization is a process of identifications and there is no reason for

these to be compatible with the operations or the structure.

Example 1.2

(1) Except in trivial cases the derived category D(A) is not abelian anymore. In fact, it

does not even possess kernels and cokernels. Instead, one has to content oneself with

the structure of a triangulated category where short exact sequences are replaced by

distinguished triangles

A αÐ→ B
βÐ→ C Ð→ A[1],

where [1] denotes the shift of a complex. α (called the cocone) is a weak kernel for β, and
conversely β (called the cone) is a weak cokernel for α. This means that the “universal”

property is formulated as an existence statement without the uniqueness part. It is one

of the fundamental problems in the theory of triangulated categories that (co)cones are

not functorial.

(2) Similarly, while hTop possesses (co)products, many other (co)limits do not exist. One of

the reasons why topologists prefer to work in the stable homotopy category is that it at

least possesses the structure of a triangulated category (the shift in the case of complexes

is replaced by the suspension).

1.2. Models and homotopy theory. Homotopy theory, at least in one interpretation, is

the mathematician’s tool kit to deal with the problems just mentioned. As a general rule, it

assumes that the pair (C ,W) comes with additional data which allow the construction of a

model for the homotopy category. Depending on the situation different types of additional

data are available and accordingly different types of models can be constructed. But they all

share the basic property that the homotopy category can be obtained from the model so that

the localization breaks into two steps:

(C ,W) + data // model // C[W−1]

Moreover, the second step is usually well-understood and therefore allows for a better grasp

of the homotopy category.

While such a model cannot magically create a (co)limit in the homotopy category which

did not exist before, it does allow to produce so-called homotopy (co)limits which often

represent a satisfactory substitute. Loosely speaking, the homotopy (co)limit of a diagram

F ∶ I → C is the (co)limit where one is allowed to replace diagrams by weakly equivalent ones.

If it exists it is an object in C[W−1], well-defined up to unique isomorphism. Although its

definition makes sense without a model, the latter is often needed in order to prove that the

object satisfies the universal property. Similarly, the model will not produce by itself some

structure on the homotopy category but it is often needed in order to prove the existence of

such a structure. In particular, it is often preferable to pass through a model to show that a

categorical structure present in C descends to C[W−1]. At the risk of oversimplification one

could say that while (C ,W) contains all the information lost in the localization process, it

is only the model which both has enough information and is organized in a homotopically

meaningful way.
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1.3. Model categories. By now, there is a large number ofmodels available in the literature,

many of them coming in different variants to accomodate as many situations as possible.

In this thesis we will employ two of them. The most prominent and influential model is a

model category. Two additional classes of morphisms in C are assumed to be given, called

cofibrations and fibrations, respectively, which together with the pair (C ,W) have to satisfy
a number of axioms. For example, one of the axioms requires C to possess small (co)limits,

and another states that every morphism can be factored into a cofibration followed by a

fibration, one of which may additionally be chosen to be a weak equivalence. From these

data (called a model structure), it is possible to mimick classical homotopical constructions

such as cylinder and path objects, and to define homotopies between morphisms. An object

is called cofibrant if the unique morphism it receives from the initial object is a cofibration,

and fibrant if the unique morphism to the terminal object is a fibration. The second axiom

above implies that every object c can be replaced, up to weak equivalence, by a cofibrant and

fibrant object c. One finally shows that in the homotopy category C[W−1] the morphisms

from c1 to c2 may be identified with homotopy classes of morphism from c1 to c2.
For several interesting choices of categories I, the category C I of I-diagrams in C admits

model structures such that the homotopy (co)limit of a diagram F ∶ I → Cmaybe computed as

the ordinary (co)limit of a (co)fibrant replacement.33 Moreover, there are established theories

of monoidal or stable model categories (among others) which under certain assumptions

permit to put a natural monoidal or triangulated structure on the homotopy category.

Example 1.3
(1) Topological spaces with weak homotopy equivalences admit a model structure whose

fibrations are Serre fibrations. With the cartesian product this category also possesses a

monoidal structure but this does not behave well for general spaces. However, if one

restricts to compactly generated spaces then the monoidal and the model structures are

compatible and endow the localization (which is equivalent to hTop) with a monoidal

structure.

The category of spectra with stable weak equivalences inherits a model structure

from the one on topological spaces. Moreover it is a pointed category and the suspension

acts as an equivalence on the homotopy category hence the model structure is stable and

the homotopy category possesses an induced triangulated structure. To endow it with a

monoidal structure one needs another model though, e. g. the category of symmetric
spectra with the smash product.

(2) Chain complexes in an abelian Grothendieck category with quasi-isomorphisms admit

a model structure whose cofibrations are monomorphisms. Since it has a zero object

and the shift functor is an autoequivalence this model structure is stable and the derived

category inherits a triangulated structure. IfA is a monoidal abelian category then the

category of chain complexes is so as well but the model structure described above and

themonoidal structure rarely interact well.44 Of course, in many cases of interest there are

other model structures which are compatible with the monoidal product thus rendering

the derived category a monoidal triangulated category. This is true, for example, in the

case of modules over a commutative ring and more generally sheaves on a ringed space.

1.4. Derivators. A rather different model is provided by the theory of derivators. For any
category I one definesW I to be the class of morphisms η in C I which are objectwise weak

equivalences, i. e. η(i) ∈ W for all i. Given a functor f ∶ J → I, precomposition with f

3Finding such a replacement is sometimes challenging though.
4In fact, we will have to confront this problem in the case of comodule categories over a bialgebra in chapter IVIV.
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provides a functor C I → C J which preserves weak equivalences. By the universal property of

the localization, it thus induces a functor on the level of homotopy categories, denoted by

f ∗. As a first approximation, the derivator D belonging to (C ,W) can be thought of as the

association

I ↦ C I[(W I)−1], f ↦ f ∗ .
Of course, the homotopy category is obtained by simply evaluatingD at the terminal category

⋆. The functors f ∗ are assumed to possess both left and right adjoints which are denoted by

f! and f∗, respectively. If pI ∶ I → ⋆ denotes the unique functor to the terminal category then

pI! , pI∗ ∶ D(I) → D(⋆) are nothing but the homotopy colimit and limit functors. As before

there is a theory of monoidal and stable derivators which endows the homotopy category

with monoidal and triangulated structures, respectively; in fact, all categories D(I) are then
monoidal and triangulated, with all f ∗ monoidal and exact, respectively.

For this simplicity in the formalism there is of course a price to pay. First one is often

forced to take recourse to another model in order to establish the existence55 and the axioms

of the derivator. And secondly, the formalism does not lend itself to explicit computations

in specific contexts. But, as we hope to illustrate in chapter IIII, it is very well suited to prove

something which is true in all (monoidal, stable, . . . ) derivators.

Example 1.4 If (C ,W) admits a model structure then the associated derivator exists and

satisfies the required axioms. Moreover, if the model category is monoidal or stable then so

is the associated derivator. In particular there are derivators associated topological spaces

(monoidal), spectra (stable monoidal), and chain complexes in Grothendieck abelian cate-

gories (stable, frequently also monoidal).

2. About this thesis
In §11 we described some of the goals of homotopy theory as we see it, and sketched

two models which are used in order to achieve these goals. Now we would like to relate

this story to the subsequent chapters of this thesis. “Doing homotopy theory” can mean

either enlarging the homotopy theoretic tool kit, or using homotopy theoretic tools to prove

statements outside of homotopy theory. The reader will find instances of both types in this

document although the focus is on the latter.

2.1. Traces. The starting point for chapter IIII is the simple observation that there is some-

thing common to the following elementary mathematical statements.

(1) If V andW are finite-dimensional vector spaces, then the dimension of their direct sum

is given by

dim(V ⊕W) = dim(V) + dim(W).
(2) If X ← Y → Z are maps of finite CW-complexes then the Euler characteristic of the

homotopy pushout of X and Z along Y satisfies

χ(X ∪hY Z) = χ(X) − χ(Y) + χ(Z).
(3) If G is a finite group, and A a finite G-set, then Burnside’s lemma states that the number

of G-orbits admits the following description:

#(A/G) = 1

#G ∑g∈G
#(Ag).

Here, #(Ag) is the number of fixed points of g acting on A.

5Again, the existence of the homotopy categories is set-theoretically problematic.
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Indeed, what seems to be common is that in each case the “size” of the result of some

operation is expressed in terms of the “sizes” of the data on which the operation is performed.

Often such formulas provide a means to reduce “size measurements” of more complicated

objects to simpler ones, and are therefore a very handy tool. Now, it had been realized long

before that the different “size” invariants appearing in the formulas above can be interpreted as

instances of a singlemathematical notion, called the trace, which is defined in any (symmetric

unitary) monoidal category (cf. §IIII.33).

Definition 2.1 Let (C ,⊗) be a (symmetric) monoidal category with unit 1.

(1) An object c in C is called dualizable with dual c∗ if there are morphisms η ∶ 1→ c ⊗ c∗
and ε ∶ c∗ ⊗ c → 1 such that (c ⊗ ε)(η ⊗ c) is the identity on c, and (ε ⊗ c∗)(c∗ ⊗ η) is
the identity on c∗.

(2) Given a dualizable object c with data as above, and an endomorphism f ∶ c → c, we
define its trace to be the composition

tr( f ) ∶ 1 ηÐ→ c ⊗ c∗
f⊗idÐÐ→ c ⊗ c∗ ∼Ð→ c∗ ⊗ c εÐ→ 1.

(3) The Euler characteristic χ(c) of a dualizable object c is the trace of the identity endomor-

phism.

Example 2.2
(1) The category of k-vector spaces with the tensor product is monoidal. An object V is

dualizable if and only if it is finite dimensional, and in this case the dual can be taken to

be the dual vector space V∗ with maps

k Ð→ V ⊗ V∗ V∗ ⊗ V Ð→ k

1z→
n
∑
i=1

v i ⊗ v∗i f ⊗ v z→ f (v)

where v1 , . . . , vn is a basis of V with dual basis v∗1 , . . . , v∗n . An easy computation shows

that under the identification End(k) ≅ k, the trace of an endomorphism on V coincides

with the usual trace from linear algebra. In particular, the Euler characteristic of V is

given by dim(V).
More generally, in the category of Λ-modules over a commutative ring Λ with

the usual tensor product, the dualizable objects are the finitely generated projective

modules, and the Euler characteristic is identified with the rank of a module. In both

these cases we can also consider these objects in the derived category which inherits

a monoidal structure (via the derived tensor product). The functorMod(Λ) → D(Λ)
clearly preserves dualizability and traces.

(2) While the category of topological spaces is monoidal, its only dualizable object is the

1-point space. However, we can consider spaces as objects in shTop which, as we saw

above, is monoidal. Any compact ENR (in particular any compact manifold or finite

CW-complex) is dualizable with dual the Thom space of its stable normal bundle. The

endomorphism ring of the unit spectrum is isomorphic to Z and the trace is given by

the fixed point index. In particular, the Euler characteristic coincides with the usual

Euler characteristic from topology.

(3) Finally, as the category of sets is cartesian monoidal, its only dualizable object is again

the terminal object. However, to a set we can associate the k-vector space with the set as

basis, and so the G-set A gives rise to a k-vector space V with a G-action. Notice that
the dimension of V/G is precisely #(A/G) while for any g ∈ G, the trace of g ∶ V → V is
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equal to #(Ag). Hence we find that if #G is invertible in k then Burnside’s lemma gives

a formula for the Euler characteristic of the quotient of V by G in terms of other traces.

Summarizing, we find that the three statements we started with can all be interpreted as

being about traces of endomorphisms in (stable) monoidal homotopy categories. Starting

with some objects in such a homotopy category, in each example we perform some homo-

topical operation (direct sum, homotopy pushout, (homotopy) quotient) and we obtain a

formula for the Euler characteristic of the resulting object. Moreover, the formula is in terms

of traces or Euler characteristics of the objects we started with. Hence the simple belief which

was our starting point turns into the quest for a general formula telling us how traces behave

under homotopical operations.

In a famous article, May essentially proved that the trace is additive in distinguished

triangles whenever the homotopy category comes from a stable monoidal model category.

He did so by laying down a list of rather complicated axioms which express some form of

compatibility between the monoidal and the triangulated structure. He then proved on the

one hand that these axioms imply the additivity result, and on the other that homotopy

categories of stable monoidal model categories satisfy the axioms. This recovers of course

the first formula above, and can be shown to recover also the second. However, it is not clear

how to recover the third or further formulas for other homotopical operations.

As we mentioned in section 11, the theory of derivators is well suited to prove formal

properties of all homotopical operations. Thus in chapter IIII we work with stable monoidal

derivators. Our main result gives an explicit formula for the trace of homotopy colimits over

any finite EI-category (i. e. a category in which every endomorphism is invertible), of which

we state here two prominent instances.

Theorem 2.3 Let D be a stable closed monoidal derivator, and I a finite poset. For any
fiberwise dualizable I-diagram A in D, and any endomorphism f of A, the following identity
holds:

tr(hocolimI f ) = ∑
i∈I

λ i tr( f i)

where
λ i = ∑

n≥0
(−1)n#{chains of length n in I starting at i}.

(Fiberwise dualizablemeans that for any i ∈ I, the “fiber”A i ∶= i∗A ∈ D(⋆) is dualizable.)

Example 2.4
(1) If we take I to be the discrete category on two objects a and b, then the theorem gives

back our first formula above:

tr( fa ⊕ fb) = tr( fa) + tr( fb).
(2) If we take I to be the span a ← b → c, we find the coefficients λa = λc = 1, and λb = −1

hence we recover the formula for the homotopy pushout above.

The last formula, Burnside’s lemma, is a consequence of the second instance of the

theorem we would like to record here.

Theorem 2.5 Let G be a finite group and D a stable closed monoidal derivator in which #G
is invertible. For any G-representation on a dualizable object A ∈ D(⋆), the following identity
holds:

χ(A/G) = 1

#G ∑g∈G
tr(g ∶ A→ A).
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The proof proceeds by defining the notion of a trace in such derivators, lifting the one

in the homotopy category, and establishing its basic properties. This first step is surprisingly

intricate and forms the technical heart of the chapter. In the second step we show that the

derivators we are interested in admit a particularly simple description when evaluated at

a finite EI-category. Finally, deducing the sought after formula is a beautiful exercise in

what one could call “categorical combinatorics”. For more details we refer the reader to the

introductory pages of chapter IIII.

2.2. Motivic Galois groups. We now pass to chapters IIIIII and IVIV of the thesis. One of

the basic objects in algebraic geometry are varieties over a field, and one powerful method to

study them is to compute their cohomology in different cohomology theories. Grothendieck

predicted the existence of a universal cohomology theory, called the theory of (mixed) motives,
from which all the others should be derived. Understanding this universal cohomological

invariant is therefore of utmost interest in algebraic geometry.

More formally, there should exist, for any field k, an abelian categoryM(k) of motives

over k together with a functor M ∶ (Var/k)op → M(k) associating to any variety over k
its motive. Every cohomology theory h ∶ (Var/k)op → A for varieties over k should factor

through a realization functor Rh ∶ M(k) → A, i. e. h(X) = Rh(M(X)). If the characteristic
of k is 0, one expects the realization functor for some cohomology theories h to present

M(k) as a neutral Tannakian category with dual an affine pro-algebraic group called the

motivic Galois group G(k). In other words,M(k) is the category of G(k)-representations.
The main practical advantage of this viewpoint is that it allows to translate geometric and

arithmetic questions about k-varieties into questions about (pro-)algebraic groups and their

representations.

Although the picture drawn above is still conjectural, there are candidates for these

objects and related constructions in specific situations. If k is a subfield of the complex

numbers, then there are essentially two existing approaches to motives, one due to Nori

and another due to several mathematicians, including Voevodsky.66 The difference between

the two approaches is extreme: Nori’s category of motives is provably abelian and even

Tannakian, whereas Voevodsky’s category has the structure of a triangulated category, and

is in fact a candidate not forM(k) but its derived category. And while Nori relies in his

construction essentially on the Betti realization for varieties (and therefore on transcendental

input), Voevodsky’s category of motives is defined purely in terms of algebro-geometric data.

Because of this, the morphisms and extensions in Nori’s category are highly intractable but

can be related to known algebro-geometric invariants in Voevodsky’s case. It is therefore

one of the ultimate goals in the theory of motives to create a bridge connecting the two

approaches in order to combine their individual advantages.

While this goal seems out of reach at the moment, our main result in chapter IVIV can

be seen as providing a weak link while sidestepping the more difficult and deep issues of

the theory. Ayoub defined a motivic Galois group for Voevodsky motives using the Betti

realization and a weak Tannakian formalism for monoidal categories, and we prove:

Theorem 2.6 Nori’s and Ayoub’s motivic Galois groups are isomorphic.

Of course this leaves open the question of the relation between Voevodsky motives and

representations of the motivic Galois group in the theorem. Conjecturally the former live in

the derived category of the latter but as we already mentioned, this is difficult to prove. Still,

we believe that the theorem strengthens our belief in the correctness of the two approaches to

6Both approaches have by now been extended to more general bases.
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motives. And we also expect to draw useful consequences from the isomorphism of groups

because their constructions differ in interesting ways.

We have now described the main result proved in chapter IVIV. It shouldn’t come as a

surprise that homotopy theory enters the proof since, as we mentioned, Voevodsky’s category

is a candidate for the derived categoryD(M(k)). It is a homotopy category which can be

modeled by a model category. (Since we want to prove statements about a specific model,

derivators would be of limited use.) We will need good models for certain objects in this

homotopy category and we want to be able to manipulate them efficiently, for example we

want to compute their image under certain derived functors. In other words, we will need

cofibrant and fibrant replacements which we understand sufficiently well, and for this it is

necessary to study the model category giving rise to Voevodsky motives.

Although there are different variants of the construction, the basic idea is always to

start with a category of geometric objects (smooth schemes over k, say) and to consider

chain complexes of presheaves on it. The geometric objects will give rise to “motives” in the

homotopy category, and moreover they should “generate” all motives. Taking presheaves

functions as both a linearization and a (co)completion of the geometric objects. One then

imposes relations one would like the candidate theory of motives to satisfy: descent with

respect to a well-chosen topology (étale or Nisnevich), A1-invariance and invertibility of

the “Tate twist”. It turns out that for our purposes the first relation is the crucial one. It

can be understood as a localization giving rise to the derived category of sheaves, and we

will perform a close analysis of its homotopy theory in chapter IIIIII. Although most of these

results are probably known to experts (even if they haven’t all appeared in print) we believe

that our mode of presentation might be interesting for emphasizing the universality of the

constructions as well as for its level of generality.

With these homotopy theoretic tools under our belt, we will, in chapter IVIV, relate

the two types of motives and representations by first constructing realization functors in

both directions using among other things the six functors formalism for motives without

transfer developed by Ayoub, as well as Nori’s and Beilinson’s “Basic Lemma”. Apart from the

application in our proof the existence of these well-behaved realizations may be used in other

contexts as well, for example to deduce well-behaved (derived) mixed Hodge realizations for

Voevodsky motives. We will see that the realization functors induce morphisms between the

two motivic Galois groups, and the hard part is to show that these are inverses to each other.

This relies on a close analysis of Ayoub’s model for the object representing Betti cohomology

on the one hand, and on our understanding of the good models and their image under the

Betti realization mentioned above on the other. For more details we refer to the introductory

pages of chapter IVIV.





II
TRACES IN MONOIDAL DER IVATORS

The additivity of traces. Let C be a symmetric monoidal category which in addition is

triangulated. Examples include various “stable homotopy categories” (such as the classical

and equivariant in algebraic topology, the motivic in algebraic geometry) or all kinds of

“derived categories” (of modules, of perfect complexes on a scheme, etc.). Let X, Y and Z be

dualizable objects in C,

D ∶ X → Y → Z →+

a distinguished triangle, and f an endomorphismofD. The additivity of traces is the statement

that the following relation holds among the traces of the components of f :

tr( fY) = tr( fX) + tr( fZ). (0.7)

Well-known examples are the additivity of the Euler characteristic of finite CW-complexes

(χ(Y) = χ(X) + χ(Y/X) for X ⊂ Y a subcomplex) or the additivity of traces in short exact

sequences of finite dimensional vector spaces. The additivity of traces should be considered

as a principle: Although incorrect as it stands, it embodies an important idea. One should

therefore try to find the right context to formulate this idea precisely and prove it.

In [5555], J. Peter May made an important step in this direction. He gave a list of axioms

expressing a compatibility of the monoidal and the triangulated structure, and proved that

if they are satisfied, then one can always replace f by an endomorphism f ′ with f ′X = fX
and f ′Y = fY such that (0.70.7) holds for the components of f ′. This result has two drawbacks

though: Firstly, there is this awkwardness of f ′ replacing f , and secondly, the axioms are

rather complicated.

As noted in [2727], both these drawbacks are related to the well-known deficiencies of

triangulated categories. Since the foremost example of a situation in which May’s compatibil-

ity axioms hold, is when C is the homotopy category of a stable monoidal model category,

it should not come as a surprise that May’s result can be reproved in the setting of stable

derivators. Moreover, since stable derivators eliminate some of the problems encountered in

triangulated categories, a more satisfying formulation of the additivity of traces should be

available. We will describe it now.

11
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Let D be a closed symmetric monoidal stable derivator11, and the free category on the

following graph:

(1, 1) (0, 1)oo

(1, 0).

OO
(0.8)

Let A be an object of D( ) with underlying diagram

X //

��

Y

0,

and suppose that both X and Y are dualizable objects of D(⋆), ⋆ denoting the terminal

category. Let f be an endomorphism of A, and denote by p the unique functor → ⋆.
Then there is a distinguished triangle

X → Y → p !A→+

in D(⋆), p !A is also dualizable, and the following relation holds:

tr( f(0,1)) = tr( f(1,1)) + tr(p ! f ).
This is the main theorem of [2727].

Thetrace of the homotopy colimit. Another advantage of the formulation in the context

of derivators is that it immediately invites us to consider the additivity of traces as a mere

instance of a more general principle. As a first step, we see that the condition A(1,0) = 0 is

not essential. Indeed, if A is an object of D( ) whose fibers are all dualizable objects in D(⋆)
and if f is an endomorphism of A then the formula above generalizes to

tr(p ! f ) = tr( f(0,1)) + tr( f(1,0)) − tr( f(1,1)). (0.9)

And now, in the second step, it is natural to replace the category by other categories I
and try to see whether there still is an explicit formula for tr(pI! f ). The main result of this

chapter states that this is the case for finite EI-categories, i. e. finite categories in which all

endomorphisms are invertible (such as groups or posets), provided that the derivator is

Q-linear. For each of these categories the trace of the homotopy colimit of an endomorphism

of a fiberwise dualizable object can be computed as a linear combination of “local traces”

(depending only on the fibers of the endomorphism and the action of the automorphisms of

the objects in the category) with coefficients which depend only on the category and can be

computed combinatorially.

As for the proof of this result, the idea is to define the trace of endomorphisms of

objects not only living inD(⋆) but inD(I) for general categories I. This trace should contain

enough information to relate the trace of the homotopy colimit to the local traces of the

endomorphism. The naive approach of considering D(I) as a monoidal category and taking

the usual notion of the trace doesn’t lead too far though since few objects in D(I) will be
dualizable in general even if inD(⋆) all of them are; in other words, being fiberwise dualizable

does not imply being dualizable.

This is why we will replace the “internal” tensor product by an “external product”

⊠ ∶ D(I) ×D(I) → D(I × I)

1See §11 for the definition of this notion.
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and the internal hom by an “external hom”

⟨−,−⟩ ∶ D(I)○ ×D(I) → D(I○ × I),
which has the property that for any object A of D(I) and objects i , j of I

⟨A,A⟩(i , j) = [A i ,A j]
(implying that fiberwise dualizable objects will be “dualizable with respect to the external

hom”) and which also contains enough information to compute [A,A] (among other desired

formal properties). As soon as this bifunctor is available we can mimic the usual definition

of the “internal” trace in a closed symmetric monoidal category to define an “external” trace

for any endomorphism of a fiberwise dualizable object, replacing the internal by the external

hom everywhere. It will turn out that this new trace encodes all local traces, and in good

cases allows us to relate these to the trace of the homotopy colimit, thus yielding the sought

after formula.

After this chapter had been accepted for publication ([2222]), Kate Ponto and Michael

Shulman independently obtained the same result in [6060]. However, their proof is quite

different from the one presented here, relying on the technology of bicategorical traces.

Outline of this chapter. We do not include an introduction to the theory of derivators

(see for this the references given in §1.31.3). However, as the definition of a derivator varies in the

literature we give in §1.31.3 the axioms we use. Moreover, the few results on derivators we need

are either proved or justified by a reference to where a proof can be found. In §1.41.4 we define

the notion of a (closed) monoidal derivator and describe its relation to the axiomatization

available in the literature. We also discuss briefly linear structures on derivators (1.51.5), stable

derivators (1.61.6), and the interplay between stability and monoidal structures on derivators

(1.71.7). Apart from this, §11 is intended to fix the notation used in the remainder of the chapter.

The main body of the text starts with §22 where the construction of the external hom

mentioned above is given. The proofs of the desired formal properties of this bifunctor are

lengthy and not needed in the sequel so they are deferred to appendix AA. Next we define the

external trace (§33) and prove its functoriality (§44). As a corollary we deduce that this trace

encodes all local traces.

The main result is to be found in §55. First we prove that in good cases the trace of the

homotopy colimit is a function of the external trace (again, the uninteresting part of the story

is postponed to the appendix; specifically to appendix BB). In the case of finite EI-categories

and a Q-linear stable derivator, this function can be made explicit, and this leads to the

formula for the trace of the homotopy colimit in terms of the local traces. Some technical

hypotheses used to prove this result will be eliminated in §66.

At several points in the text the need arises for an explicit description of an additive

derivator evaluated at a finite group. Although this description is certainly well-known, we

haven’t been able to find it in the literature and have thus included it as appendix CC.
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1. Conventions and preliminaries
In this section, we recall some notions and facts (mostly related to derivators) and fix

the notation used in the remainder of the chapter.

1.1. By a 2-category we mean a strict 2-category. The 2-category of (small) categories is

denoted by CAT (Cat). Given a 2-category C (encompassing the special case of a category),

C○ denotes the 2-category with the same objects, and C○(x , y) = C(y, x) for all objects x , y.
The 2-category C○,○ also has the same objects as C but C○,○(x , y) = C(y, x)○ (see [4545, p. 82]).
The (possibly large) sets of objects, 1-morphisms and 2-morphisms in a 2-category C are
sometimes denoted by C0, C1, and C2 respectively.

By a 2-functor we mean a strict 2-functor between 2-categories. Modifications are

morphisms of lax natural transformations between 2-functors (see [4545, p. 82]). For fixed

2-categories C andD, the 2-functors from C toD together with lax natural transformations

and modifications form a 2-category Funlax(C ,D).

1.2. Counits and units of adjunctions are usually denoted by adj. Given a functor u ∶ I → J,
and an object j ∈ J0, the category of objects u-under j is (abusively) denoted by j/I and the

category of objects u-over j by I/ j (see [5050, 2.6]). We also need the following construction

([5050, p. 223]): Given a category I, we define the twisted arrow category associated to I, denoted
by tw(I), as having objects the arrows of I and as morphisms from i → j to i′ → j′ pairs of
morphisms making the following square in I commutative:

i // j

��
i′

OO

// j′ .

There is a canonical functor tw(I) → I○ × I. In fact, this extends canonically to a functor

tw(−) ∶ Cat→ Cat together with a natural transformation tw(−) → (−)○ × (−).

1.3. Let us recall the notion of a derivator. For the basic theory we refer to [5252], [1616], [2626].

For an outline of the history of the subject see [1616, p. 1385].

A full sub-2-categoryDia of Cat is called a diagram category if:
(Dia1) Dia contains the totally ordered set 2 = {0 < 1};
(Dia2) Dia is closed under finite products and coproducts, and under taking the opposite

category and subcategories;

(Dia3) if I ∈ Dia0 and i ∈ I0, then I/i ∈ Dia0;
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(Dia4) if p ∶ I → J is a fibration (to be understood in the sense of [2929, exposé VI]) whose

fibers are all inDia, and if J ∈ Dia0, then also I ∈ Dia0.
By (Dia2)(Dia2), the initial category∅ and the terminal category ⋆ are both inDia. Wewill often use

thatDia is closed under pullbacks (as follows from (Dia2)(Dia2)). The smallest diagram category

consists of finite posets, other typical examples include finite categories, finite-dimensional

categories, all small posets or Cat itself.
A prederivator (of type Dia) is a 2-functor D ∶ Dia○,○ → CAT from a diagram category

Dia to CAT. If D is fixed in a context, Dia always denotes the domain of D. Given a

prederivatorD, categories I, J ∈ Dia0 and a functor u ∶ I → J, we denote by u∗ ∶ D(J) → D(I)
the value of D at u; if u is clear from the context, we sometimes denote u∗ by ∣I . Its left
and right adjoint (if they exist) are denoted by u! and u∗ respectively. The unique functor

I → ⋆ is denoted by pI . Given an object i ∈ I0, we denote also by i ∶ ⋆ → I the functor
pointing i. Thus for an object A ∈ D(I)0 and a morphism f ∈ D(I)1, their fiber over i
is i∗A and i∗ f , respectively, sometimes also denoted by A i and f i , respectively. Given a

natural transformation η ∶ u → v inDia, we denote by η∗ the value of D at η. It is a natural
transformation from v∗ to u∗. In particular, if h ∶ i → j is an arrow in I then we can consider

it as a natural transformation from the functor i ∶ ⋆ → I to j ∶ ⋆ → I, and therefore it

makes sense to write h∗; evaluated at an object A ∈ D(I)0, it yields a morphism of the

fibers A j → A i . The canonical “underlying diagram” functor D(I) → CAT(I○ ,D(⋆)) is
denoted by diaI . Finally, ifD is a prederivator and J ∈ Dia0, we denote byDJ the prederivator

DJ(−) = D(− × J).
A derivator (of type Dia) is a prederivator (of typeDia) D satisfying the following list of

axioms:

(D1) D takes arbitrary coproducts to products up to equivalence of categories.

(D2) For every I ∈ Dia0, the family of functors i∗ ∶ D(I) → D(⋆) indexed by I0 is jointly
conservative.

(D3) For all functors u ∈ Dia1, the left and right adjoints u! and u∗ to u∗ exist.
(D4) Given a functor u ∶ I → J inDia and an object j ∈ J0, the “Beck-Chevalley” transfor-

mations associated to both comma squares

j/I t //

p j/I

��

I

u
��

⋆
j
// J

;C
and I/ j

{�

s //

pI/ j

��

I

u
��

⋆
j
// J

are invertible: p j/I! t∗
∼Ð→ j∗u! and j∗u∗

∼Ð→ pI/ j∗s∗.
The derivator D is called strong if in addition

(D5) For every J ∈ Dia0, the functor dia2 ∶ DJ(2) → CAT(2○ ,DJ(⋆)) is full and essentially

surjective.

As an important example, ifM is a model category then the association

DM ∶ Cat○,○ Ð→ CAT

I z→MI○[W−1I ]

defines a strong derivator, whereMI○[W−1I ] denotes the category obtained fromMI○ by

formally inverting those morphisms of presheaves which are objectwise weak equivalences.

This result is due to Denis-Charles Cisinski (see [1414]). IfD is a (strong) derivator and J ∈ Dia0
then also DJ is a (strong) derivator.
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One consequence of the axioms we shall often have occasion to refer to is the following

result on (op)fibrations:

Fact 1.1 Given a derivator D of type Dia and given a pullback square
w //

v
��

u
��

x
//

in Dia with either u a fibration or x an opfibration, the canonical “Beck-Chevalley” transfor-
mation

v!w∗ Ð→ x∗u! (or, equivalently, u∗x∗ Ð→ w∗v∗)
is invertible.

For a proof see [2626, 1.30] or [3232, 2.7].

1.4. By a monoidal category we always mean a symmetric unitary monoidal category.

Monoidal functors between monoidal categories are functors which preserve the monoidal

structure up to (coherent) natural isomorphisms; in the literature, these are sometimes called

strong monoidal functors. Monoidal transformations are natural transformations preserving

the monoidal structure in an obvious way. We thus arrive at the 2-category of monoidal

categoriesMonCAT. The monoidal product is always denoted by ⊗ and the unit by 1. If

internal hom functors exist, we arrive at its closed variant ClMonCAT. (Notice that functors
between closed categories are not required to be closed. In other words, ClMonCAT is a full
sub-2-category ofMonCAT.) The internal hom functor is always denoted by [−,−].

A (closed) monoidal prederivator (of type Dia) is a prederivator with a factorization

D ∶ Dia○,○ → (Cl)MonCAT→ CAT,

where (Cl)MonCAT→ CAT is the forgetful functor. (Closed) monoidal prederivators were

also discussed in [22, 2.1.6] and [2525].

Let us now define the “external product” mentioned in the introduction. Given a

monoidal prederivator D and categories I, J inDia we define the bifunctor

⊠ ∶ D(I) ×D(J) → D(I × J)
(A, B) ↦ A∣I×J ⊗ B∣I×J .

Given two functors u ∶ I′ → I and v ∶ J′ → J in Dia, A ∈ D(I)0 and B ∈ D(J)0, we define a
morphism

(u × v)∗(A⊠ B) → u∗A⊠ v∗B (1.2)

as the composition

(u × v)∗(A∣I×J ⊗ B∣I×J)
∼Ð→ (u × v)∗A∣I×J ⊗ (u × v)

∗B∣I×J
= (u∗A)∣I′×J′ ⊗ (v

∗B)∣I′×J′ .

Hence we see that (1.21.2) is in fact an isomorphism, and it is clear that it is also natural in A and

B. Putting these and similar properties together one finds that the external product defines a

pseudonatural transformation of 2-functors

D ×D→ D ○ (− × −),
i. e. a 1-morphism in Funlax(Dia○,○ ×Dia○,○ ,CAT) with invertible 2-cell components.
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Nowfix amonoidal prederivatorD, a functor u ∶ I → J ∈ Dia1, andA ∈ D(I)0, B ∈ D(J)0.
We can define the projection morphism

u!(A⊗ u∗B) → u!A⊗ B (1.3)

by adjunction as the composition

A⊗ u∗B
adjÐ→ u∗u!A⊗ u∗B ∼←Ð u∗(u!A⊗ B).

It is clearly natural in A and B. Fix a second functor v ∶ I′ → J′ in Dia and consider the

following morphism (A ∈ D(I)0, B ∈ D(I′)0):

(u × v)!(A⊠ B) → u!A⊠ v!B, (1.4)

obtained by adjunction from

A⊠ B adjÐ→ u∗u!A⊠ v∗v!B
∼←Ð (u × v)∗(u!A⊠ v!B).

Of course, it is also natural in A and B.

Lemma 1.5 Let D be a monoidal prederivator which satisfies the axioms of a derivator. Then
the following conditions are equivalent:

(1) The projection morphism (1.31.3) is invertible for all u = pI , I ∈ Dia0.
(2) The projection morphism (1.31.3) is invertible for all fibrations u in Dia.
(3) (1.41.4) is invertible for all u, v ∈ Dia1.

If D is a closed monoidal prederivator then condition (2)(2) is also equivalent to each of the
following ones:

(4) u∗[B, B′] → [u∗B, u∗B′] is invertible for all fibrations u in Dia.
(5) [u!A, B] → u∗[A, u∗B] is invertible for all fibrations u in Dia.

Definition 1.6 A (closed) monoidal derivator is a (closed) monoidal prederivator which

satisfies the axioms of a derivator as well as the equivalent conditions of Lemma 1.51.5.

Proof of Lemma 1.51.5. Assume condition (1)(1). Let u ∶ I → J be a fibration in Dia and
consider, for any j ∈ J0, the following pullback square:

I j
w //

pI j
��

I

u
��

⋆
j
// J .

Since u is a fibration the base change morphism pI j !w
∗ → j∗u! is an isomorphism, by Fact 1.11.1.

Hence for any A ∈ D(I)0, B ∈ D(J)0, all vertical morphisms in the commutative diagram
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below are invertible:

j∗u!(A⊗ u∗B) // j∗(u!A⊗ B)

��
pI j !w

∗(A⊗ u∗B)

OO

��

j∗u!A⊗ j∗B

pI j !(w
∗A⊗w∗u∗B) pI j !w

∗A⊗ j∗B

OO

pI j !(w
∗A⊗ p∗I j j

∗B) // pI j !w
∗A⊗ j∗B.

By assumption, the bottom horizontal arrow is an isomorphism hence so is the top one.

Condition (2)(2) now follows from (D2)(D2).

For condition (3)(3), write u × v = (u × 1) ○ (1 × v) hence by symmetry of the monoidal

product we reduce to the case where u = 1I , v ∶ J′ → J. We use (D2)(D2), thus let i ∈ I0, j ∈ J0.
The fiber of (1.41.4) over (i , j) is easily seen to be the following composition (w denotes the

fibration i/I × j/J′ → i/I):

(i , j)∗(1I × v)!(A∣I×J′ ⊗ B∣I×J′)
∼←Ð p i/I!w!(A∣i/I× j/J′ ⊗ B∣i/I× j/J′)
∼Ð→ p i/I!(A∣i/I ⊗w!B∣i/I× j/J′)
∼Ð→ p i/I!(A∣i/I ⊗ p∗i/I p j/J′ !B∣ j/J′)
∼Ð→ p i/I!A∣i/I ⊗ p j/J′ !B∣ j/J′
∼Ð→ i∗A⊗ j∗v!B
∼←Ð (i , j)∗(A∣I×J ⊗ (v!B)∣I×J)

The first, the third and the fifth arrows come from (D4)(D4), while the second and the fourth are

invertible by condition (2)(2), the last one is clearly invertible.

Putting u = pI , v = 1⋆ in condition (3)(3), one obtains precisely condition (1)(1). This finishes

the proof of the first statement in the lemma.

From now on we assume that D is a closed monoidal prederivator. For condition (4)(4),

notice that u∗ ○ [B,−] → [u∗B,−] ○ u∗ corresponds via the adjunctions

u! ○ (− ⊗ u∗B) ⊣ [u∗B,−] ○ u∗ and (− ⊗ B) ○ u! ⊣ u∗ ○ [B,−]

to the projection morphism

u!(− ⊗ u∗B) → u!− ⊗ B.
And similarly, the morphism [u!A,−] → u∗ ○ [A,−] ○ u∗ corresponds via the adjunctions

u!A⊗ − ⊣ [u!A,−] and u! ○ (A⊗ −) ○ u∗ ⊣ u∗ ○ [A,−] ○ u∗

to the projection morphism

u!(A⊗ u∗−) → u!A⊗ −.

Hence conditions (4)(4) and (5)(5) are both equivalent to condition (2)(2). (For more details, see [22,

2.1.144, 2.1.146].) ☐
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In contrast to this, in a closed monoidal prederivator, the canonical morphism

[A, u∗B] → u∗[u∗A, B] (1.7)

is always invertible, even if u is not a fibration.

If D is a (strong) derivator of type Cat then precomposition with the 2-functor (−)○ ∶
Cat○ → Cat○,○ defines a (strong) derivator D in the sense of [2727], and conversely start-

ing with a (strong) derivator in their sense, precomposition with (−)○ yields a (strong)
derivator of type Cat. By Lemma 1.51.5, D being monoidal corresponds to D being symmet-

ric monoidal. By [2727, 8.8] then, D being closed monoidal corresponds to D being closed

symmetric monoidal. In particular, [2727, 9.13] establishes that ifM is a symmetric monoidal

cofibrantly generated model category then the induced derivator DM is a closed monoidal,

strong derivator (of type Cat).
Again, if D is a (closed) monoidal derivator, then so is DJ for any J ∈ Dia0.

1.5. A few words on linear structures on derivators (see [2525, section 3] for the details). An

additive derivator is a derivator D such that D(⋆) is an additive category. It follows that

D(I), u∗ , u∗ , u! are additive for all I ∈ Dia0, u ∈ Dia1. We define RD to be the unital ring

D(⋆) (1, 1).
If D is additive and monoidal, then RD is a commutative ring and D(I) is canonically

endowed with an RD-linear structure for any I ∈ Dia0, making u∗ , u∗ , u! all RD-linear
functors, u ∈ Dia1. Given f ∈ D(I) (A, B), λ ∈ RD, λ f is defined by

A ∼←Ð p∗I 1⊗ A
p∗I λ⊗ f
ÐÐÐ→ p∗I 1⊗ B ∼Ð→ B.

1.6. We now recall the notion of a stable derivator. Let � be the partially ordered set

considered as a category:

(1, 1) (0, 1)oo

(1, 0)

OO

(0, 0),

OO

oo

and the full subcategory defined by the complement of (1, 1). Thus there are two canonical

embeddings i ∶ → � and i ∶ → �. We say that an object A ∈ D(�)0 is cartesian (resp.

cocartesian) if the unit

A→ i ∗ i∗A (resp. the counit i ! i∗A→ A)

is an isomorphism.

A stable derivator is a strong derivator D such that D(⋆) is pointed and objects in

D( ) are cartesian if and only if they are cocartesian. IfM is a stable model category, then

the derivator DM associated toM is stable. Also, if D is a stable derivator then so is DJ
for any J ∈ Dia0. Any stable derivator factors canonically through the forgetful functor

TrCAT→ CAT from triangulated categories to CAT. In particular, every stable derivator is

additive. This result is due to Georges Maltsiniotis ([5353, Théorème 1]; see also [2626, 4.15, 4.19]),

and the triangulated structure is given explicitly. We will need the description of it on D(⋆).
(The description on D(I) can then be deduced by replacing D by DI .) Thus given an object
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A ∈ D(⋆)0 one defines canonically an object in D(�) with underlying diagram

A //

��

0

��
0 // ΣA,

some ΣA ∈ D(⋆)0, as i !(1, 1)∗A. Then we can define the suspension functor Σ ∶ D(⋆) →
D(⋆) as (0, 0)∗ i !(1, 1)∗. Moreover, if we denote by � the partial order considered as a

category

(2, 1) (1, 1)oo (0, 1)oo

(2, 0)

OO

(1, 0)oo

OO

(0, 0),

OO

oo

there are three canonical embeddings i ∶ � → � and we say that an object A ∈ D(�)0 is
a triangle if A(2,0) ≅ A(0,1) ≅ 0 and i∗A is (co)cartesian for all three embeddings. It then

follows that one has a canonical isomorphism A(0,0) ≅ ΣA(2,1) (see the proof of Lemma 1.101.10

below) and therefore a triangle in D(⋆):
A(2,1) → A(1,1) → A(1,0) → ΣA(2,1) . (1.8)

The distinguished triangles are those isomorphic to one of the form of (1.81.8).

1.7. We are also interested in some aspects of the interplay between monoidal and triangu-

lated structures on derivators.

Definition 1.9 A (closed) monoidal stable derivator is a (closed) monoidal and stable deriva-

tor.

Under the correspondence D↭ D above, a closed monoidal stable derivator of type Cat
corresponds to a “closed symmetric monoidal, strong, stable derivator” in [2727]. Translating

the results in [2727] back to our setting we see that every such derivator factors canonically

through ClMonTrCAT, the 2-category of closed monoidal categories with a “compatible”

triangulation (in the sense of [5555]), such that the following diagram commutes:

TrCAT
))

Dia○,○ // ClMonTrCAT

33

**
CAT.

ClMonCAT

55

Here, it is understood that following the path on the upper part of the diagram yields the

canonical factorization of the stable derivator, while the path through the lower part yields

the factorization of the monoidal prederivator. All we will need from this statement is the

following lemma.

Lemma 1.10 ([2727, 4.1, 4.8]) Let D be a monoidal stable derivator and I ∈ Dia0. Then the
monoidal product ⊗ ∶ D(I) ×D(I) → D(I) is canonically triangulated in both variables.

Proof. First of all, replacing D by DI we reduce to the case I = ⋆. Moreover, by

symmetry of the monoidal product we may fix B ∈ D(⋆)0 and only prove − ⊗ B to be

triangulated. Then the condition that the projection morphism pJ!(A⊗ p∗J B) → pJ!A⊗ B
be invertible for all A ∈ D(J)0 in the case of a finite discrete category J says precisely that
− ⊗ B is additive.
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The following claim is also a consequence of our definition of a monoidal derivator:

(*) Let A ∈ D(�)0 be a cocartesian object. Then also A⊠ B is cocartesian.

Indeed, this follows from the following factorization of the counit morphism:

i ! i∗ (A⊠ B)
∼Ð→ i !(i∗A⊠ B)
(1.41.4)ÐÐÐ→
∼

i ! i∗A⊠ B
adjÐ→
∼

A⊠ B.

Now let A ∈ D(⋆)0 be an arbitrary object and consider C = i !(1, 1)∗A ∈ D(�)0. Since
i ! is fully faithful (this is an easy computation; see [1616, 7.1]), C is cocartesian, and by (*), this

is also true of C ⊠ B. Moreover (C ⊠ B)(1,0) ≅ C(1,0) ⊗ B ≅ 0 and, similarly, (C ⊠ B)(0,1) ≅ 0.
It follows from the following claim (**) that Σ(A ⊗ B) ≅ Σ(C(1,1) ⊗ B) is isomorphic to

C(0,0) ⊗ B ≅ ΣA⊗ B, naturally in A.
(**) Let A ∈ D(�)0 be a cocartesian object with A(1,0) ≅ A(0,1) ≅ 0. Then there is a

canonical isomorphism Σ(A(1,1)) ≅ A(0,0), natural in A.
The condition that those fibers vanish implies that the counit of the adjunction

i∗A→ (1, 1)∗(1, 1)∗ i∗A
is invertible (again, an easy computation, cf. [1616, 8.11]). But the left hand side becomes

isomorphic to A after applying i ! by assumption, so we get the required isomorphism after

applying (0, 0)∗ i !.

Now let D be a distinguished triangle in D(⋆), associated to a triangle A ∈ D(�)0.
Essentially by (*), A⊠ B is again a triangle, and essentially by (**), the distinguished triangle

associated to A⊠ B is isomorphic to D ⊗ B. ☐

1.8. For I an object of Cat, throughout the chapter we fix the notation as in the following

diagram where both squares are pullback squares:

2tw(I) r2 //

r1
��

tw(I)○

q2
��

tw(I)
q1 // I○ × I

p2 //

p1
��

I

pI
��

I○
pI○ // ⋆.

(∆I)

Explicitly, the objects of 2tw(I) are pairs of arrows in I of the form

i // i′ ,oo

and morphisms from this object to j // j′oo are pairs of morphisms (i ← j, i′ → j′)
rendering the following two squares commutative:

i // i′

��
j //

OO

j′ ,

i i′

��

oo

j

OO

j′ .oo

Note that if I lies in some diagram category then so does the whole diagram (∆I∆I).
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2. External hom
Fix a closedmonoidal derivatorD of typeDia. As explained in the introductionwewould

like to define an “external hom” functor which will play an essential role in the definition of

the trace. It should behave with respect to the external product as does the internal hom with

respect to the internal product (i. e. the monoidal structure). As a first indication of its nature,

the external hom of A ∈ D(I)0 and B ∈ D(J)0 should be an object of D(I○ × J), denoted by

⟨A, B⟩. Additionally, we would like the fibers of ⟨A, B⟩ to compute the internal hom of the

fibers of A and B, because fiberwise dualizability should imply dualizability with respect to

⟨−,−⟩; moreover, [A, B] should be expressible in terms of ⟨A, B⟩ in the case I = J. These and

other desired properties of the external product are satisfied by the following construction

which is due to Joseph Ayoub.

Given small categories I and J inDia, we fix the following notation, all functors being
the obvious ones:

tw(I) × J r //

q

##

p
��

J

I○ × J I.

(ΠI , J)

For any A in D(I)0 and B in D(J)0 set
⟨A, B⟩ ∶= p∗[q∗A, r∗B].

This defines a bifunctor

⟨−,−⟩ ∶ D(I)○ ×D(J) → D(I○ × J),
whose properties we are going to list now. For the proofs the reader is referred to appendix AA.

Naturality. For functors u ∶ I′ → I and v ∶ J′ → J inDia there is an invertible morphism

Ψ ∶ (u○ × v)∗⟨A, B⟩ ∼Ð→ ⟨u∗A, v∗B⟩,
natural in A ∈ D(I)0, B ∈ D(J)0. Moreover, Ψ behaves well with respect to functors and

natural transformations inDia. In other words, ⟨−,−⟩ defines a 1-morphism inFunlax(Dia○×
Dia○,○ ,CAT) from D(−)○ × D(−) to D(−○ × −) with invertible 2-cell components (i. e. a

pseudonatural transformation).

Internal hom. In the case I = J there is an invertible morphism

Θ ∶ [A, B] ∼Ð→ p2∗q2∗q∗2 ⟨A, B⟩ (with the notation of (∆I∆I)),

natural in A and B ∈ D(I)0. Moreover, for any functor u ∶ I′ → I inDia, the canonical arrow
u∗[A, B] → [u∗A, u∗B] is compatible with Ψ via Θ. In other words, Θ defines an invertible

2-morphism in Funlax((Dia≤1)○ ,CAT) between 1-morphisms from D(−)○ ×D(−) to D(−).
Here,Dia≤1 is the 2-subcategory ofDia obtained by removing all non-identity 2-cells.

External product. Given categories I(k), k = 1, . . . , 4, in Dia, Ak ∈ D(I(k))0, there is a
morphism

Ξ ∶ ⟨A1 ,A2⟩ ⊠ ⟨A3 ,A4⟩ → τ∗⟨A1 ⊠ A3 ,A2 ⊠ A4⟩,
natural in all four arguments, where

τ ∶ I○(1) × I(2) × I○(3) × I(4) → I○(1) × I○(3) × I(2) × I(4)
interchanges the two categories in the middle. Moreover, Ξ is compatible with Ψ and (1.21.2).

In other words, it defines a 2-morphism in Funlax(Dia○ × Dia○,○ × Dia○ × Dia○,○ ,CAT)
between 1-morphisms from D(−)○ ×D(−) ×D(−)○ ×D(−) to D(−○ × − × −○ × −).
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Adjunction. Given three categories inDia, there is an invertible morphism

Ω ∶ ⟨A, ⟨B,C⟩⟩ ∼Ð→ ⟨A⊠ B,C⟩,
natural in all three arguments. Moreover, Ω is compatible with Ψ and (1.21.2). In other

words, it defines an invertible 2-morphism in Funlax(Dia○ ×Dia○ ×Dia○,○ ,CAT) between
1-morphisms from D(−)○ ×D(−)○ ×D(−) to D(−○ × −○ × −).

Biduality. For fixed B ∈ D(⋆)0, there is a morphism

Υ ∶ AÐ→ ⟨⟨A, B⟩, B⟩,
natural in A ∈ D(I)0. Moreover, Υ defines a 2-morphism in Funlax(Dia○,○ ,CAT) between
1-endomorphisms of D.

Normalization. Given J ∈ Dia0, there is an invertible morphism

Λ ∶ [p∗J A, B]
∼Ð→ ⟨A, B⟩,

natural in A ∈ D(⋆)0 and B ∈ D(J)0. Again, Λ is compatible with v∗ for any v ∶ J′ → J inDia,
therefore it defines an invertible 2-morphism in Funlax(Dia○,○ ,CAT) between 1-morphisms

from D(⋆)○ ×D(−) to D(−). Moreover under this identification, all the morphisms in the

statements of the previous properties reduce to the canonical morphisms in closed monoidal

categories. (These morphisms are made explicit in appendix AA; see p. 4545.)

3. Definition of the trace
Recall that in a closed monoidal category C, an object A is called dualizable (sometimes

also strongly dualizable) if the canonical morphism

[A, 1] ⊗ B → [A, 1⊗ B] (3.1)

is invertible for all B ∈ C0, and in this case one defines a coevaluation

coev ∶ 1 adjÐ→ [A, 1⊗ A] ∼←Ð [A, 1] ⊗ A. (3.2)

It has the characterizing property that the following diagram commutes (see [4949, 1.4]):

[A, 1] ⊗ A

∼
��

ev // 1

∼
��

[[A, 1] ⊗ A, 1]
[coev,1]

// [1, 1].

(3.3)

Here the vertical morphism on the left is defined as the composition

[A, 1] ⊗ A→ [A, 1] ⊗ [[A, 1], 1] → [A⊗ [A, 1], 1⊗ 1] ∼Ð→ [[A, 1] ⊗ A, 1], (3.4)

while the one on the right is

1
adjÐ→ [1, 1⊗ 1] ∼Ð→ [1, 1].

[A, 1] is called the dual of A, and is often denoted by A∗. Dualizability of A implies that the

canonical morphism

A→ (A∗)∗ (3.5)

is invertible.

For dualizable A, the trace map
tr ∶ C(A,A) → C(1, 1)
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sends an endomorphism f to the composition

1
coevÐÐ→ A∗ ⊗ A

1⊗ fÐÐ→ A∗ ⊗ A evÐ→ 1.

More generally, [5151] and [4242] independently introduced a (twisted) trace map for any S and
T in C (A still assumed dualizable),

tr ∶ C(A⊗ S ,A⊗ T) → C(S , T),
which sends a “twisted endomorphism” f to the composition

S ∼←Ð 1⊗ S coev⊗1ÐÐÐ→ A∗ ⊗ A⊗ S
1⊗ fÐÐ→ A∗ ⊗ A⊗ T ev⊗1ÐÐ→ 1⊗ T ∼Ð→ T .

We will mimic this definition in our derivator setting. So fix a closed monoidal derivator

D of typeDia. First of all, here is our translation of dualizability:

Definition 3.6 Let I ∈ Dia0, A ∈ D(I)0. We say that A is fiberwise dualizable if A i is

dualizable for all i ∈ I0. The dual of A is defined to be ⟨A, 1D(⋆)⟩ ∈ D(I○)0, also denoted by

A∨.

Let I and A as in the definition, A fiberwise dualizable. Then, as was the case for

dualizable objects in closed monoidal categories, the morphisms corresponding to (3.13.1)

and (3.53.5) are invertible (for any B ∈ D(I)0):

A∨ ⊠ B ≅ ⟨A, 1⟩ ⊠ [p∗I 1, B]
ΛÐ→
∼
⟨A, 1⟩ ⊠ ⟨1, B⟩ ΞÐ→

∼
⟨A⊠ 1, 1 ⊠ B⟩ ≅ ⟨A, B⟩, (3.7)

Υ ∶ A ∼Ð→ (A∨)∨ . (3.8)

This follows from the naturality and the normalization properties of the external hom. We

now go about defining a coevaluation and an evaluation morphism. This will rely on the

results of the previous section.

Using the relation between internal and external hom, we can consider the composition

1D(I)
adjÐ→ [A, 1⊗ A] ∼Ð→ [A,A] ΘÐ→

∼
p2∗q2∗q∗2 ⟨A,A⟩

and, by adjunction, we obtain

coev ∶ q2!1→ ⟨A,A⟩
(3.73.7)←ÐÐÐ
∼

A∨ ⊠ A. (3.9)

Next, inspired by (3.33.3), we define the evaluation morphism to be simply the dual of the

coevaluation morphism. For this, notice that A being fiberwise dualizable implies that also

A∨ is. Hence there is an analogue of (3.43.4):

A⊠ A∨ ΥÐ→
∼
(A∨)∨ ⊠ A∨ (3.73.7)ÐÐ→

∼
⟨A∨ ,A∨⟩ ΩÐ→

∼
⟨A∨ ⊠ A, 1D(⋆)⟩. (3.10)

Denote by µ ∶ I × I○ → I○ × I the canonical isomorphism. Then we define

ev ∶ A∨ ⊠ A ∼ // µ∗(A⊠ A∨)
(3.103.10)

∼
// µ∗⟨A∨ ⊠ A, 1⟩

⟨coev,1⟩// µ∗⟨q2!1, 1⟩
Ψ // µ∗(q2)○∗⟨1, 1⟩
∼ // q1∗1.
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Here, Ψ is obtained by adjunction from Ψ:

Ψ ∶ ⟨q2!1, 1⟩
adj // q○2∗q○∗2 ⟨q2!1, 1⟩

∼
Ψ // q○2∗⟨q∗2 q2!1, 1⟩
adj // q○2∗⟨1, 1⟩.

It follows immediately that the following diagram commutes for any u ∶ I′ → I inDia:

(u × u○)∗⟨q2!1, 1⟩ //

Ψ

��

⟨q′2!tw(u)○∗1, 1⟩

Ψ

��
(u × u○)∗q○2∗⟨1, 1⟩ // q′○2∗⟨tw(u)○∗1, 1⟩.

(3.11)

In the sequel we will sometimes denote by the same symbol Ψ other morphisms obtained by

adjunction from Ψ in a similar way. It is hoped that this will not cause any confusion.

Finally we can put all the pieces together and define the trace:

Definition 3.12 Let I ∈ Dia0, A ∈ D(I)0 fiberwise dualizable, and S , T ∈ D(I)0 arbitrary.
Then we define the (twisted) trace map

Tr ∶ D(I) (A⊗ S ,A⊗ T) → D(I○ × I) (q2!1⊗ p∗2 S , q1∗1⊗ p∗2T)
as the association which sends a twisted endomorphism f to the composition

q2!1⊗ p∗2 S
coev⊗1 // (A∨ ⊠ A) ⊗ p∗2 S

∼ // A∨ ⊠ (A⊗ S)

1⊠ f
��

q1∗1⊗ p∗2T (A∨ ⊠ A) ⊗ p∗2Tev⊗1
oo A∨ ⊠ (A⊗ T)∼

oo

called the (twisted) trace of f .

Remark 3.13 Although defined in this generality, we will be interested mainly in traces of

endomorphisms twisted by “constant” objects, i. e. coming from objects in D(⋆). In this case

(S , T ∈ D(⋆)0), the trace map is an association

D(I) (A⊠ S ,A⊠ T) → D(I○ × I) (q2!1 ⊠ S , q1∗1 ⊠ T) .
Now, let g be an element of the target of this map. It induces the composite

q2!S∣tw(I)○
∼←Ð q2!1 ⊠ S

gÐ→ q1∗1 ⊠ T → q1∗T ∣tw(I)
and by adjunction

q∗2 S∣I○×I → q∗2 q1∗q∗1 T ∣I○×I
∼Ð→ r2∗r∗1 q∗1 T ∣I○×I

or, by another adjunction, a morphism

S∣
2tw(I) → T ∣

2tw(I) . (3.14)

Applying the functor dia2tw(I) we obtain an element of

D(⋆)(2tw(I))
○

(dia2tw(I)(S∣2tw(I)), dia2tw(I)(T ∣2tw(I))) ≅ ∏
π0(2tw(I))

D(⋆) (S , T) .

The component corresponding to γ ∈ π0(2tw(I)) is called the γ-component of g.

Lemma 3.15 Suppose that the following hypotheses are satisfied:
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(H1) q1∗1 ⊠ A→ q1∗(1 ⊠ A) is invertible for all A ∈ D(⋆)0;
(H2) for each connected component γ of 2tw(I), the functor p∗γ is fully faithful.
Then the map

D(I○ × I) (q2!1 ⊠ S , q1∗1 ⊠ T) → ∏
π0(2tw(I))

D(⋆) (S , T)

defined above is a bijection. In particular, any morphism q2!1 ⊠ S → q1∗1 ⊠ T is uniquely
determined by its γ-components, γ ∈ π0(2tw(I)).

Proof. (H1)(H1) implies that the morphism g ∶ q2!1 ⊠ S → q1∗1 ⊠ T in the remark above

can equivalently be described by (3.143.14). Moreover, starting at the bottom right corner and

going once around the following square represents the identity map:

D(2tw(I))(S∣
2tw(I) , T ∣2tw(I))

dia2tw(I) //

∼

��

D(⋆)2tw(I)○(Scst , Tcst)

∼

��
∏

γ∈π0(2tw(I))
D(γ)(S∣γ , T ∣γ) ∏

γ∈π0(2tw(I))
D(⋆)(S , T).

(p∗γ )γoo

Here, the left vertical arrow is invertible by (D1)(D1). (H2)(H2) now implies that the horizontal arrow

on the top is a bijection. ☐

In particular we see that in favorable cases (and these are the only ones we will have

much to say about) the seemingly complicated twisted trace is encoded simply by a family

of morphisms over the terminal category. The goal of the following section is to determine

these morphisms.

4. Functoriality of the trace
Our immediate goal is to describe the components S → T ∈ D(⋆)1 associated to the trace

of a (twisted) endomorphism of a fiberwise dualizable object as explained in the previous

section. However, we take the opportunity to establish a more general functoriality property

of the trace (Proposition 4.34.3). Our immediate goal will be achieved as a corollary to this

result.

Throughout this section we fix a category I ∈ Dia0. An object of 2tw(I) is a pair of
arrows

i
h1 // j
h2
oo (4.1)

in I (cf. 1.81.8). There is always a morphism in 2tw(I) from an object of the form

(i , h) ∶ i
1 i // i
h

oo

to (4.14.1), given by the pair of arrows (1i , h1) if h = h2h1. Hence we can take some of the

(i , h) as representatives for π0(2tw(I)) and it is sufficient to describe the component S → T
corresponding to (i , h). This motivates the following more general functoriality statement.

Let u ∶ I′ → I be a functor, η ∶ u → u a natural transformation in Dia; consider the
basic diagram (∆I∆I). Notice that this diagram is functorial in I hence there is a canonical
morphism of diagrams (∆I′)(∆I′)→(∆I)(∆I) and we will use the convention that the arrows in (∆I′)(∆I′)
will be distinguished from their I-counterparts by being decorated with a prime.
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Definition 4.2 Let S, T ∈ D(I)0. Define a pullback map

(u, η)∗ ∶ D(I○ × I) (q2!1⊗ p∗2 S , q1∗1⊗ p∗2T) Ð→
D(I′○ × I′) (q′2!1⊗ p′∗2 u∗S , q′1∗1⊗ p′∗2 u∗T)

by sending a morphism g to the composition

q′2!tw(u)○∗1⊗ p′∗2 u∗S → (u○ × u)∗(q2!1⊗ p∗2 S)
gÐ→ (u○ × u)∗(q1∗1⊗ p∗2T)

(1×η)∗ÐÐÐ→ (u○ × u)∗(q1∗1⊗ p∗2T) → q′1∗tw(u)∗1⊗ p′∗2 u∗T .

Proposition 4.3 Let u, η, S, T as above, assume A ∈ D(I)0 is fiberwise dualizable. For any
f ∶ A⊗ S → A⊗ T, we have

(u, η)∗Tr( f ) = Tr(η∗ ○ u∗ f ), (4.4)

where η∗ ○ u∗ f is any of the two paths from the top left to the bottom right in the following
commutative square:

u∗A⊗ u∗S
u∗ f //

η∗A⊗S
��

u∗A⊗ u∗T

η∗A⊗T
��

u∗A⊗ u∗S
u∗ f
// u∗A⊗ u∗T .

Proof. The two outer paths in the following diagram are exactly the two sides of (4.44.4):

q′2!tw(u)○∗1⊗ p′∗2 u∗S //

coev

��

(u○ × u)∗(q2!1⊗ p∗2 S)

coev

��
(u∗A)∨ ⊠ u∗A⊗ p′∗2 u∗S

1⊠u∗ f
��

(u○ × u)∗(A∨ ⊠ A⊗ p∗2 S)
Ψoo

1⊠ f
��

(u∗A)∨ ⊠ u∗A⊗ p′∗2 u∗T

1⊠η∗

��

(u○ × u)∗(A∨ ⊠ A⊗ p∗2T)
Ψoo

1×η∗

��
(u∗A)∨ ⊠ u∗A⊗ p′∗2 u∗T

∼
��

(u○ × u)∗(A∨ ⊠ A⊗ p∗2T)
Ψoo

∼
��

µ′∗⟨(u∗A)∨ ⊠ u∗A, 1⟩ ⊗ p′∗2 u∗T

⟨coev,1⟩
��

(u○ × u)∗(µ∗⟨A∨ ⊠ A, 1⟩ ⊗ p∗2T)
Ψoo

⟨coev,1⟩
��

µ′∗⟨q′2!1, 1⟩ ⊗ p′∗2 u∗T

��

(u○ × u)∗(µ∗⟨q2!1, 1⟩ ⊗ p∗2T)
Ψoo

��
q′1∗tw(u)∗1⊗ p′∗2 u∗T (u○ × u)∗(q1∗1⊗ p∗2T).oo

Hence it suffices to prove the commutativity of this diagram. The second and third square

clearly commute, the fourth and sixth square do so by the functoriality statements in sec-

tion 22 (use also (3.113.11)). The fifth square commutes if the first does so we are left to show

commutativity of the first one.
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By definition, coev is the composition

q2!1→ ⟨A,A⟩
∼←Ð A∨ ⊠ A

and we already know that the second arrow behaves well with respect to functors in Dia.
Thus it suffices to prove that the following diagram commutes:

q′2!q′∗2 p′∗2 1

∼
��

// q′2!q′∗2 p′∗2 p′2∗q′2∗q′∗2 ⟨u∗A, u∗A⟩
adj // ⟨u∗A, u∗A⟩

q′2!q′∗2 p′∗2 u∗1

��

// q′2!q′∗2 p′∗2 u∗p2∗q2∗q∗2 ⟨A,A⟩

��

Ψ

OO

(u○ × u)∗q2!q∗2 p∗21 // (u○ × u)∗q2!q∗2 p∗2 p2∗q2∗q∗2 ⟨A,A⟩
adj

// (u○ × u)∗⟨A,A⟩.

Ψ

OO

The top left square commutes by the internal hom property in section 22, the bottom left

square clearly commutes, and the right rectangle is also easily seen to commute. ☐

Of course, in the Proposition we can take u = i to be an object of I, and η to be the

identity transformation. Denote the pullback morphism (i , 1)∗ by i∗.
Corollary 4.5 Let i ∈ I0. For any A, S , T ∈ D(I)0, A fiberwise dualizable, and for any
f ∶ A⊗ S → A⊗ T, we have

i∗Tr( f ) = tr( f i)
modulo the obvious identifications.

Proof. By the proposition, i∗Tr( f ) = Tr(i∗ f ). It remains to prove that in the case

I = ⋆, the maps Tr and tr coincide. Thus assume I = ⋆ and consider the following diagram:

1!1⊗ S

∼
��

coev // A∨ ⊗ A⊗ S
f // A∨ ⊗ A⊗ T ev // 1∗1⊗ T

1⊗ S
coev

// A∗ ⊗ A⊗ S
f
//

∼ Λ

OO

A∗ ⊗ A⊗ T
ev
//

∼Λ

OO

1⊗ T .

∼

OO

The composition of the top horizontal arrows is Tr( f ) while the composition of the bottom

horizontal arrows is tr( f ). The middle square clearly commutes. The left square commutes

by the normalization property of the external hom, and commutativity of the right square

can be deduced from this and (3.33.3). ☐

Let us come back to the situation considered at the beginning of this section. Here the

proposition implies:

Corollary 4.6 Let A ∈ D(I)0 fiberwise dualizable, S , T ∈ D(⋆)0, i ∈ I0, h ∈ I(i , i), and
f ∶ A⊠ S → A⊠ T ∈ D(I)1. Then, modulo the obvious identifications, the (i , h)-component of
Tr( f ) is tr(h∗ ○ f i).

Proof. h defines a natural transformation i → i and we have

(i , h)∗Tr( f ) = Tr(h∗ ○ i∗ f ) by the proposition above,

= tr(h∗ ○ i∗ f ) by the previous corollary.

We need to prove that the left hand side computes the (i , h)-component. The pair (1i , h)
defines an arrow in tw(I)○ from h to 1i . The composition of the vertical arrows on the left of
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the following diagram is the (i , h)-component of Tr( f )while the composition of the vertical

arrows on the right is (i , h)∗Tr( f ):

(i , h)∗S∣
2tw(I)

adj

��

h∗S∣
tw(I)○

adj

��

1∗i S∣tw(I)○

adj

��
(i , h)∗r∗2 q∗2 q2!(1 ⊠ S)

∼
��

h∗q∗2 q2!(1 ⊠ S)

∼
��

1∗i q∗2 q2!(1 ⊠ S)
(1 i ,h)∗oo

∼
��

(i , h)∗r∗2 q∗2 (q2!1 ⊠ S)

Tr( f )
��

h∗q∗2 (q2!1 ⊠ S)

Tr( f )
��

1∗i q∗2 (q2!1 ⊠ S)
(1 i ,h)∗oo

Tr( f )
��

(i , h)∗r∗2 q∗2 (q1∗1 ⊠ T)

��

h∗q∗2 (q1∗1 ⊠ T)

��

1∗i q∗2 (q1∗1 ⊠ T)
(1 i ,h)∗oo

��
(i , h)∗r∗2 q∗2 q1∗(1 ⊠ T)

∼
��

h∗q∗2 q1∗(1 ⊠ T)

∼
��

1∗i q∗2 q1∗(1 ⊠ T)
(1 i ,h)∗oo

(1 i×h)∗

��
(i , h)∗r∗1 q∗1 q1∗T ∣tw(I)

adj

��

1∗i q∗1 q1∗T ∣tw(I)
adj

��

1∗i q∗1 q1∗T ∣tw(I)
adj

��
(i , h)∗T ∣

2tw(I) 1∗i T ∣tw(I) 1∗i T ∣tw(I) .

The unlabeled arrows are the canonical ones; all squares clearly commute. ☐

Knowing the components of the trace we now give a better description of the indexing

set π0(2tw(I)), at least for “EI-categories”:

Definition 4.7 An EI-category I is a category whose endomorphisms are all invertible, i. e.

such that for all i ∈ I0, G i ∶= I(i , i) is a group.

EI-categories have been of interest in studies pertaining to different fields ofmathematics,

especially in representation theory and algebraic topology; closest to our discussion in the

sequel is their role in the study of the Euler characteristic of a category (see [2121], [4747]). We

will see examples of EI-categories below.

Let I be an EI-category; we define the endomorphism category end(I) associated to I
to be the category whose objects are endomorphisms in I and an arrow from h ∈ I(i , i) to
k ∈ I( j, j) is a morphism m ∈ I(i , j) such that mh = km. The object h ∈ I(i , i) is sometimes

denoted by (i , h). There is also a canonical functor

2tw(I) → end(I)
which takes a typical object (4.14.1) of 2tw(I) to its composition h1h2 ∈ I( j, j). Notice that it
takes (i , h) to (i , h).

Lemma 4.8 Let I be an EI-category, h ∈ I(i , i), k ∈ I( j, j). Then (i , h) and ( j, k) lie in the
same connected component of 2tw(I) if and only if h ≅ k as objects of end(I). In other words,
the functor defined above induces a bijection

π0(2tw(I)) ←→ end(I)0/≅ .
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Proof. If m ∶ h → k is an isomorphism in end(I) then (m−1 ,m) defines a morphism

in 2tw(I) from (i , h) to ( j, k).
For the converse we notice that 2tw(I) is a groupoid. Indeed, it follows from the

definition of an EI-category that in a typical object (4.14.1) of 2tw(I), both h1 and h2 must be

isomorphisms. From this, and using a similar argument, one deduces that the components

of any morphism in 2tw(I) are invertible.
Given now amorphism (m1 ,m2) from (i , h) to ( j, k) in 2tw(I), wemust havem1 = m−12

and therefore m2 defines an isomorphism from h to k in end(I). ☐

Example 4.9
(1) Let I be a preordered set considered as a category. Clearly this is an EI-category, and

end(I) = I. It follows that we have π0(2tw(I)) = I0/≅, the isomorphism classes of

objects in I, or in other words, the (underlying set of the) poset associated to I. If the
hypotheses of Lemma 3.153.15 are satisfied then the trace of an endomorphism f is just the
family of the traces of the fibers (tr( f i))i , indexed by isomorphism classes of objects in

I.
(2) Let G be a group. We can consider G canonically as a category with one object, the

morphisms being given by G itself, the composition being the multiplication in G.
Again, this is an EI-category. Given h and k in G, an elementm ∈ G defines a morphism

m ∶ h → k if and only if it satisfies mhm−1 = k, so h and k are connected (and therefore

isomorphic) in end(I) if and only if they are conjugate in G. It follows that π0(2tw(I))
can be identified with the set of conjugacy classes of G. If the hypotheses of Lemma 3.153.15

are satisfied then the trace of an endomorphism f with unique fiber e∗ f is just the family

of traces (tr(h∗ ○ e∗ f ))[h], indexed by the conjugacy classes of G.
(3) Generalizing the two previous examples, for an arbitrary EI-category I, end(I)0/≅ can

be identified with the disjoint union of the sets C i of conjugacy classes of the groups

G i = I(i , i) for representatives i of the isomorphism classes in I, i. e.

π0(2tw(I)) ←→ ∐
i∈I0 /≅

C i .

If the hypotheses of Lemma 3.153.15 are satisfied then the trace of an endomorphism f is
just the family of traces (tr(h∗ ○ f i))i ,[h].

Remark 4.10 One can define the category end(I) without the hypothesis that I be an
EI-category but the previous lemma does not remain true without it. However, there is the

following general alternative description of π0(2tw(I)): Let ∼ be the equivalence relation
on the set ∐i∈I0 I(i , i) generated by the relation m1m2 ∼ m2m1, m1 ,m2 ∈ I1 composable.

Then (i , h) and ( j, k) lie in the same connected component of 2tw(I) if and only if h ∼ k. It
follows that for arbitrary I, there is a bijection

π0(2tw(I)) ←→
⎛
⎝∐i∈I0

I(i , i)
⎞
⎠
/∼ .

5. The trace of the homotopy colimit
Given a closed monoidal derivator D, a category I in the domainDia of D and objects A

of D(I) fiberwise dualizable, S and T of D(⋆), we can associate to every f ∶ A⊠ S → A⊠ T
in D(I) its homotopy colimit pI! f ∶ pI!A ⊠ S → pI!A ⊠ T by requiring that the following
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square commutes:

pI!(A⊠ S)
f //

∼(1.41.4)
��

pI!(A⊠ T)

∼ (1.41.4)
��

pI!A⊠ S pI! f
// pI!A⊠ T .

We will now show that, in good cases, the trace of f as defined above contains enough

information to compute the trace of the homotopy colimit of f .

Definition 5.1 Given a morphism g ∶ q2!1⊠ S → q1∗1⊠ T as in Remark 3.133.13 (or, under the

hypotheses in Lemma 3.153.15, the family of its γ-components, γ ∈ π0(2tw(I))), we associate to
it a newmorphism Φ(g) ∶ S → T , provided that the morphism pI!p2∗ → pI○∗p1! is invertible.
(This latter morphism is obtained by adjunction from the composition

p∗I○ pI!p2∗
∼←Ð p1!p∗2 p2∗

adjÐ→ p1! ,
where for the first isomorphism one uses Fact 1.11.1.) In this case Φ(g) is defined by the

requirement that the following rectangle commutes:

S
Φ(g) //

adj

��

T

pI○∗p∗I○S pI!p∗I T

adj

OO

adj∼
��

pI○∗p1!q2!q∗2 p∗1 p∗I○S

∼
��

adj ∼

OO

pI!p2∗q1∗q∗1 p∗2 p∗I T

pI○∗p1!q2!(1 ⊠ S)

∼
��

pI!p2∗q1∗(1 ⊠ T)

∼

OO

pI○∗p1!(q2!1 ⊠ S) g
// pI○∗p1!(q1∗1 ⊠ T) pI!p2∗(q1∗1 ⊠ T).∼

oo

OO

(5.2)

Here, the two (co)units of adjunctions going in the “wrong” direction are invertible by

Lemma B.1B.1.

Remark 5.3 Suppose that the conditions (H1)(H1) and (H2)(H2) of Lemma 3.153.15 are satisfied, thusΦ =
ΦS ,T can be identified with a map∏π0(2tw(I))D(⋆) (S , T) → D(⋆) (S , T). The observation

is that this map is natural in both arguments, in the following sense: Given morphisms

S → S′ and T → T ′, the following diagram commutes:

∏π0(2tw(I))D(⋆) (S
′ , T)

ΦS′ ,T //

��

D(⋆) (S′ , T)

��
∏π0(2tw(I))D(⋆) (S , T)

ΦS ,T //

��

D(⋆) (S , T)

��
∏π0(2tw(I))D(⋆) (S , T

′)
ΦS ,T′ // D(⋆) (S , T ′) .



32 II. TRACES IN MONOIDAL DERIVATORS

This follows immediately from the definition of Φ.

Proposition 5.4 Let I ∈ Dia0, and suppose that the following conditions are satisfied:
(H3) the morphism pI!p2∗ → pI○∗p1! is invertible;
(H4) the morphism pI○∗− ⊗ − → pI○∗(− ⊗ p∗I○−) is invertible.
If A ∈ D(I)0 is fiberwise dualizable, S, T ∈ D(⋆)0, and f ∶ A⊠ S → A⊠ T, then the object
pI!A is dualizable in D(⋆) and the following equality holds:

Φ(Tr( f )) = tr(pI! f ).

Proof. (H4)(H4) implies that pI! preserves fiberwise dualizable objects. Then the proof

proceeds by decomposing (5.25.2) into smaller pieces; since it is rather long and not very

enlightening we defer it to appendix BB. ☐

Remark 5.5 It is worth noting that the particular shape of diagram (5.25.2) is of no importance

to us. All we will use in the sequel is that there exists a map Φ, natural in the sense of

Remark 5.35.3, and which takes the trace of a (twisted) endomorphism to the trace of its

homotopy colimit. The idea is the following: Suppose D is additive, and let I be a category
satisfying (H1)(H1)–(H4)(H4). Then Corollary 4.64.6 tells us that Tr( f ) is completely determined by

the local traces tr(h∗ ○ f i), (i , h) ∈ π0(2tw(I)). If π0(2tw(I)) is finite then, by Remark 5.35.3,

we can think of Φ as a linear map which takes the input (tr(h∗ ○ f i))(i ,h) and outputs

∑(i ,h) λ(i ,h)tr(h∗ ○ f i) = tr(pI! f ). We will obtain a formula for the trace of the homotopy

colimit by determining these coefficients λ(i ,h).

Let I be a finite category. The ζ-function on I is defined as the association

ζI ∶ I0 × I0 → Z

(i , j) ↦ #I(i , j).

Following [4747] we define an R-coweighting on I, R a commutative unitary ring, to be a family

(λ i)i∈I0 of elements of R such that the following equality holds for all j ∈ I0:

1 = ∑
i∈I0

λ i ζI(i , j). (5.6)

Not all finite categories possess an R-coweighting; and if one such exists it might not be

unique. Preordered sets always possess an R-coweighting (and it is unique if and only if the

preorder is a partial order), groups possess one if and only if their order is invertible in R
(and in this case it is unique). One trivial reason why a coweighting may not be unique is

the existence of isomorphic distinct objects in a category. For in this case any modification

of the family (λ i)i which doesn’t change the sum of the coefficients λ i for isomorphic

objects leaves the right hand side of (5.65.6) unchanged. On the other hand, this also means

that any coweighting (λ i)i on I induces a coweighting (ρ j) j on the core of I by setting

ρ j = ∑i∈I0 , i≅ j λ i . (Here, “the” core of I is any equivalent subcategory of I which is skeletal,
i. e. has no distinct isomorphic objects.) Conversely, any coweighting on the core induces

a coweighting on I by choosing all additional coefficients to be 0. We therefore say that I
admits an essentially unique R-coweighting if there is a unique R-coweighting on its core. In

this case we sometimes speak abusively of the R-coweighting, especially if the context makes

it clear which core is to be chosen.

For an EI-category I we continue to denote by G i , i ∈ I0, the group I(i , i), and by C i
the set of conjugacy classes of G i (cf. Example 4.94.9). Given h ∈ G i , we denote by [h] ∈ C i the

conjugacy class of h in G i .



5. THE TRACE OF THE HOMOTOPY COLIMIT 33

Definition 5.7 Let I be a finite EI-category. We define its characteristic, denoted by char(I),
to be the product of distinct prime factors dividing the order of the automorphism group of

some object in the category, i. e.

char(I) = rad
⎛
⎝∏i∈I0

#G i
⎞
⎠
.

Lemma 5.8 (cf. [4747, 1.4]) Let I be a finite EI-category and R a commutative unitary ring. If
char(I) is invertible in R then there is an essentially unique R-coweighting on end(I). It is
given as follows:

Choose a core J ⊂ end(I) of objects {(i , h)}. Then

λ( j ,k) = ∑
(i ,h)∈J0

∑
n≥0
(−1)n∑

#[h0]
#G i0

⋯#[hn]
#G in

,

where the last sum is over all non-degenerate paths

(i , h) = (i0 , h0) → (i1 , h1) → ⋯ → (in , hn) = ( j, k)
from (i , h) to ( j, k) in J (i. e. the (i l , h l) are pairwise distinct, or, equivalently, the i l are
pairwise distinct, or, also equivalently, none of the arrows is the identity).

Proof. The data (ζJ(h, k))h ,k∈J0 can be identified in an obvious way with a square

matrix ζJ with coefficients in Z. For the first claim in the lemma, it suffices to prove that ζJ is
an invertible matrix in R, for then

[⋯ λ(i ,h) ⋯] = [⋯ λ(i ,h) ⋯](ζJζ−1J )
= ([⋯ λ(i ,h) ⋯] ζJ) ζ−1J
= [⋯ 1 ⋯] ζ−1J .

For any (i , h) ∈ J0, the endomorphismmonoid isG(i ,h) = CG i
(h), the centralizer of h, hence

J is also a finite EI-category. This implies that we can find an object (i , h) ∈ J0 which has no

incoming arrows from other objects. Proceeding inductively we can thus choose an ordering

of J0 such that the matrix ζJ is upper triangular. Consequently, det(ζJ) = ∏(i ,h)∈J0 #CG i
(h)

is invertible in R by assumption.

The proof in [4747, 1.4] goes through word for word to establish the formula given in the

lemma (the relation between “Möbius inversion” and coweighting is given in [4747, p. 28]). ☐

Example 5.9
(1) Let I be a finite skeletal category with no non-identity endomorphisms (e.g. a partially

ordered set). Then for any ring R there is a unique R-coweighting on I = end(I) given
by (cf. [4747, 1.5])

λ j = ∑
i∈I0
∑
n≥0
(−1)n#{non-degenerate paths of length n from i to j}

for any j ∈ I0.
(2) Let I = G be a finite group. By Example 4.94.9, the objects of the core of end(G) can be

identified with the conjugacy classes of G. For a Z[1/#G]-algebra R, the R-coweighting
on end(G) is given by

λ[k] =
#[k]
#G

for any conjugacy class [k] of G.
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Example 5.10 Let us go back to the situation considered in the introduction: Let be the

category of (0.80.8). It follows from the first example above that for any ring R, the unique
R-coweighting on = end( ) is given by

−1 1oo

1

OO

and one notices that these are precisely the coefficients in the formula for the trace of the

homotopy colimit (0.90.9). This is an instance of the following theorem.

Theorem 5.11 Let D be a closed monoidal stable derivator of type Dia, let I be a finite EI-
category in Dia and suppose that char(I) is invertible in RD. If S , T ∈ D(⋆)0, f ∶ A ⊠ S →
A⊠T ∈ D(I)1, with A ∈ D(I)0 fiberwise dualizable, then the object pI!A is dualizable inD(⋆),
and we have

tr(pI! f ) = ∑
i∈I0 /≅
[h]∈C i

λ(i ,h)tr(h∗ ○ f i)

where (λ(i ,h))(i ,h) is the RD-coweighting on end(I).

We will prove the theorem under the additional assumption that all of the hypothe-

ses (H1)(H1)–(H4)(H4) are satisfied. In the next section we will show that they in fact automatically

hold (Proposition 6.46.4).

Proof. We view π0(2tw(I)) as the set of pairs (i , h) where i runs through a full set of

representatives for the isomorphism classes of objects of I, and h runs through a full set of

representatives for the conjugacy classes of G i (use Example 4.94.9).

Lemma 3.153.15 tells us that we may consider Φ as a group homomorphism

∏
π0(2tw(I))

D(⋆) (S , T) → D(⋆) (S , T) .

We first assume S = T , set R = D(⋆) (S , S). In this case, Remark 5.35.3 tells us that Φ is both

left and right R-linear hence there exist λ(i ,h) ∈ Z(R), the center of R, such that for every

g = (g(i ,h))(i ,h) in the domain,

Φ(g) = ∑
(i ,h)∈π0(2tw(I))

λ(i ,h)g(i ,h) .

In particular, if g = Tr( f ) we get
tr(pI! f ) = Φ(Tr( f )) by Proposition 5.45.4,

= ∑
(i ,h)

λ(i ,h)tr(h∗ ○ f i) by Corollary 4.64.6. (5.12)

Now, fix ( j, k) ∈ π0(2tw(I)). Below we will define a specific endomorphism f satisfying

tr(pI! f ) = 1S (5.13)

and

tr(h∗ ○ f i) = ζend(I)(h, k) (5.14)

for any (i , h) ∈ π0(2tw(I)). Letting ( j, k) ∈ π0(2tw(I)) vary, (5.125.12) thus says that the

λ(i ,h) define a Z(R)-coweighting on the core of end(I) and by Lemma 5.85.8 this is unique (by

assumption, char(I) is invertible in RD but then it must also be invertible in Z(R)). It must
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therefore be (the image of) the unique RD-coweighting on the core of end(I) and this would
complete the proof of the theorem in the case S = T .

Before we come to the construction of f , let us explain how the general case (i. e. when

not necessarily S = T) can be deduced. SetU = S⊕T and denote by ι ∶ S → U and π ∶ U → T
the canonical inclusion and projection, respectively. By Remark 5.35.3, the following diagram

commutes:

∏π0(2tw(I))D(⋆) (U ,U)
ΦU ,U //

ι∗

��

D(⋆) (U ,U)

ι∗

��
∏π0(2tw(I))D(⋆) (S ,U)

ΦS ,U //

π
∗

��

D(⋆) (S ,U)

π
∗

��
∏π0(2tw(I))D(⋆) (S , T)

ΦS ,T // D(⋆) (S , T) .
Given a family (g(i ,h))(i ,h) in the bottom left, there is a canonical lift (g̃(i ,h))(i ,h) in the top

left, similarly for the right hand side. In particular, given S , T ,A, f as in the statement of the

theorem,

tr(pI! f ) = ΦS ,T(Tr( f )) by the proposition,

= ΦS ,T(π∗ι∗( ̃Tr( f )(i ,h))(i ,h))
= π∗ι∗ΦU ,U(( ̃Tr( f )(i ,h))(i ,h))
= π∗ι∗∑(i ,h)λ(i ,h) ̃tr(h∗ ○ f i) by the previous argument,

= ∑(i ,h)πλ(i ,h) ̃tr(h∗ ○ f i)ι
= ∑(i ,h)λ(i ,h)π ̃tr(h∗ ○ f i)ι
= ∑(i ,h)λ(i ,h)tr(h∗ ○ f i).

This completes the argument in the general case.

Now we come to the construction of the endomorphism f mentioned above. We will

freely use the fact that for any finite group G ∈ Dia0 whose order is invertible in RD (such as

G i for all i ∈ I0 by assumption), the underlying diagram functor

diaG ∶ D(G) → CAT(G○ ,D(⋆))
is fully faithful. We postpone the proof of this to appendix CC.

Fix ( j, k) ∈ π0(2tw(I)). Denote by e j ∶ ⋆ → G j the unique functor; by (Dia2)(Dia2), this is a

functor inDia. Then e j!S is the right regular representation of G○j associated to S (for more

details, see appendix CC); we denote the action by r(−). Left translation by k, lk , defines a
G○j -endomorphism of e j!S. By transitivity of the action,

pG j !
lk ∶ S = pG j !

e j!S = e j!S/G○j → e j!S/G○j = pG j !
e j!S = S

is just the identity.

Let j ∶ G j → I be the fully faithful inclusion pointing j and set f = j
!
lk . To be completely

precise, we should set A = j!1, and f to be the endomorphism of A⊠ S induced by j
!
lk via

the canonical isomorphism

j!1 ⊠ S
(1.41.4)←ÐÐÐ
∼

j!(1 ⊠ S)
∼Ð→ j!S

∼Ð→ j
!
e j!S .

However, for the sake of clarity, we will continue to use this identification implicitly.
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Then we have

tr(pI! j! lk) = tr(pG j !
lk)

= tr(1S) as seen above,

= 1S
i. e. (5.135.13) holds.

For (5.145.14) we must understand h∗ ○ i∗ j
!
lk . Write S(m) for the stabilizer subgroup of

m ∈ I(i , j) in G j and consider the following comma square inDia

∐m S(m)
@Hη

w //

p

��

G j

j
��

⋆
i

// I

where the disjoint union is indexed by a full set of representatives for the G j-orbits of I(i , j),
w is the canonical inclusion on each component, and η is m on the component of m. Under

the identification i∗ j
!
≅ p!w∗ (by (D4)(D4)),

i∗ j
!
e j!S ≅ p!w∗e j!S ≅⊕

m
(e j!S/S(m)) ≅⊕

m
⊕

G j/S(m)
S ,

and i∗ j
!
lk corresponds to the morphism which takes the gS(m)-summand identically to

the k−1gS(m)-summand. It follows that under the identification i∗ j
!
e j!S ≅ i∗ j!S ≅ ⊕I(i , j)S

(again by (D4)(D4)), it corresponds to the morphism which takes the m-summand identically to

the k−1m-summand.

Writing out explicitly the Beck-Chevalley transformation above we obtain the horizontal

arrows in the following diagram:

⊕I(i , j)
adj //

m↦mh

��

⊕I(i , j) j∗ j!
(m∗)m //

m↦mh
��

⊕I(i , j) i∗ j!
∑ // i∗ j!

h∗

��
⊕I(i , j)

adj // ⊕I(i , j) j∗ j!
(m∗)m // ⊕I(i , j) i∗ j!

∑ // i∗ j! .

Obviously, the diagram is commutative. In total we get that h∗ ○ i∗ j
!
lk corresponds to the

morphism which takes the m-summand identically to the k−1mh-summand. It follows that

the trace of this composition is equal to

tr(h∗ ○ i∗ j
!
lk) = #{m ∈ I(i , j) ∣ k−1mh = m}
= #end(I)(h, k)
= ζend(I)(h, k).

☐

6. Q-linearity and stability
Let D be a monoidal stable derivator. In this section we will show that for any finite EI-

category I ∈ Dia0, if char(I) is invertible in RD then all hypotheses (H1)(H1)–(H4)(H4) automatically

hold. The main tool used in the proof is Lemma 6.16.1 below, in essence suggested to me by

Joseph Ayoub, where it is shown how invertibility of char(I) in RD and D being stable imply



6. Q-LINEARITY AND STABILITY 37

the existence of nice generators for D(I). In fact, this is the only place in the chapter where

the triangulated structure plays any role.

Recall that a subcategory of a triangulated category is called thick if it is a triangulated
subcategory and closed under direct factors. If T is a triangulated category and S ⊂ T0 a
family of objects we denote by

⟨S⟩ (resp. ⟨S⟩s)
the triangulated (resp. thick) subcategory generated by S.

Let I be an EI-category. If i ∈ I0 is an object we denote by G i its automorphism group

I(i , i), and by i ∶ G i → I the fully faithful embedding of the “point” i into I. This is to

distinguish it from the inclusion i ∶ ⋆ → I.

Lemma 6.1 LetD be a stable derivator, and let I ∈ Dia0 be a finite EI-category. Then we have
the following equality:

D(I) = ⟨i !A ∣ i ∈ I0 ,A ∈ D(G i)0⟩.
Suppose that for all i ∈ I0, the canonical functor e i ∶ ⋆ → G i induces a faithful functor
e∗i ∶ D(G i) → D(⋆). Then we also have the following equality:

D(I) = ⟨i!A ∣ i ∈ I0 ,A ∈ D(⋆)0⟩s .
All these statements remain true if we replace (−)! by (−)∗ everywhere.

Remark 6.2 Wewill prove in appendix CC that if n is invertible in RD then e ∶ ⋆ → G induces

a faithful functor e∗ ∶ D(G) → D(⋆) for any group G ∈ Dia0 of order n. In particular, if

char(I) is invertible in RD then the second equality in Lemma 6.16.1 holds.

Proof of Lemma 6.16.1. Note that since I ∈ Dia0 so is G i , i ∈ I0, by (Dia2)(Dia2). Therefore,

the statement of the lemma at least makes sense.

The first equality is proved by induction on the number n of objects in I. Clearly, we
may assume I to be skeletal. If n = 1, the claim is obviously true. If n > 1 we find an object

i ∈ I0 which is maximal in the sense that the implication I(i , j) ≠ ∅ ⇒ i = j holds. For any
B ∈ D(I)0, consider the morphism

adj ∶ i ! i
∗B → B

and let C be the cone. One checks easily that i∗adj is an isomorphism hence i∗C = 0

which implies that C is of the form u!B′, some B′ ∈ D(U)0 where u ∶ U ↪ I is the open
embedding of the full subcategory of objects different from i in I (see [1616, 8.11]). By induction,
B′ ∈ ⟨ j

!
A ∣ j ∈ U0 ,A ∈ D(G j)0⟩, hence it suffices to prove

u!⟨ j!A ∣ j ∈ U0 ,A ∈ D(G j)0⟩ ⊂ ⟨ j!A ∣ j ∈ I0 ,A ∈ D(G j)0⟩.

But this follows from the fact that u! is a triangulated functor and u! j! = j
!
.

For the second equality, it will follow from the first as soon as we prove, for each i ∈ I0,
D(G i) = ⟨e i !A ∣ A ∈ D(⋆)0⟩s . (6.3)

So let B ∈ D(G i)0 and consider the counit e i !e∗i B → B. By assumption this is an epimorphism.

But in a triangulated category every epimorphism is complemented, i. e.

e i !e∗i B ≅ B ⊕ B′ ,

some B′ ∈ D(G i)0. This proves (6.36.3) and hence the second equality.

The last claim of the lemma can be established by dualizing the whole proof. ☐
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Proposition 6.4 Let D be a monoidal stable derivator, let I be a finite EI-category in Dia,
and suppose that char(I) is invertible in RD. Then all hypotheses (H1)(H1)–(H4)(H4) are satisfied.

Proof.

(1) For (H1)(H1) we will prove more generally that

q1∗A⊗ T ∣I○×I → q1∗(A⊗ T ∣
tw(I)) (6.5)

is invertible for all T ∈ D(⋆)0, A ∈ D(tw(I))0. Also we will only need that I has finite
hom-sets.

Fix i , j ∈ I0 and consider the following pullback square:

I(i , j)
r i , j //

pI(i , j)

��

tw(I)
q1
��

⋆
(i , j)

// I○ × I.

Since q1 is an opfibration, Fact 1.11.1 tells us that the first vertical morphisms on the left

and on the right in the following diagram are invertible:

(i , j)∗(q1∗A⊗ T ∣I○×I) //

∼
��

(i , j)∗q1∗(A⊗ T ∣
tw(I))

∼
��

pI(i , j)∗r∗i , jA⊗ T

∼
��

// pI(i , j)∗r∗i , j(A⊗ T ∣
tw(I))

∼
��

∏h∈I(i , j) h∗r∗i , jA⊗ T // ∏h∈I(i , j)(h∗r∗i , jA⊗ T).

Here, h ∶ ⋆ → I(i , j) is the functor defined by the object h of the discrete category

I(i , j), and the axiom (D1)(D1) is used for the second vertical morphisms on the left and

on the right. Clearly both squares commute. Moreover, the bottom horizontal arrow is

invertible since I(i , j) is finite and the internal product inD(⋆) is additive (Lemma 1.101.10).

Therefore also the top horizontal arrow is invertible which implies (by (D2)(D2), and letting

i and j vary) that (6.56.5) is.
(2) For (H2)(H2), let γ be a connected component of 2tw(I). Since I is a finite EI-category, γ is

equivalent to a finite group G whose order divides char(I). As explained in Remark 6.26.2,

this implies that e∗G is faithful (eG ∶ ⋆ → G). Since p∗G is a section of e∗G , it follows that
p∗G is fully faithful.

(3) (H3)(H3) states that pI!p2∗ → pI○∗p1! is invertible. Since also I○ × I is a finite EI-category
and since char(I○ × I) = char(I) we may prove this on objects in the image of (1I○ × i)!,
where i ∈ I0, by the previous lemma. Consider the following square:

pI!p2∗(1I○ × i)! // pI○∗p1!(1I○ × i)!
∼
��

pI! i!pI○∗ ∼
//

OO

pI○∗ .

It is easy to see that it commutes hence it suffices to prove invertibility of the left vertical

arrow.
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For this we use (D2)(D2), so fix j ∈ I0 an object. Then

j∗ i!pI○∗ ≅ ⊕I( j , i)pI○∗ ,
j∗p2∗(1I○ × i)! ≅ pI○∗(1I○ × j)∗(1I○ × i)!

≅ pI○∗ ⊕I( j , i) .

The claim follows since pI○∗ is additive. (It is easy to see that this identification is

compatible with the vertical arrow above.)

(4) Since also I○ is a finite EI-category and char(I○) = char(I), we may replace I by I○. (H4)(H4)

then is the statement that

pI∗A⊗ B → pI∗(A⊗ p∗I B)
is invertible, and by Lemma 6.16.1 we may assume A = i∗C, some C ∈ D(⋆)0 and i ∈ I0
(here we use that − ⊗ B and − ⊗ p∗I B both take distinguished triangles to distinguished

triangles, by Lemma 1.101.10).

Clearly, the following square commutes:

pI∗ i∗C ⊗ B

∼
��

// pI∗(i∗C ⊗ p∗I B)

��
C ⊗ B pI∗ i∗(C ⊗ B),∼

oo

hence it suffices to prove invertible the vertical arrow on the right. Again we use (D2)(D2),

so let j ∈ I0 an object. Then:

j∗ i∗C ⊗ j∗p∗I B ≅ ⊕I(i , j)C ⊗ B,
j∗ i∗(C ⊗ B) ≅ ⊕I(i , j)(C ⊗ B).

Again, the claim follows from the additivity of the functor − ⊗ B.
☐

A. Properties of the external hom
In this section we want to give proofs for the properties of the external hom listed in

section 22. We take them up one by one. Throughout the section we fix a closed monoidal

derivator D of typeDia.

Naturality. Given u ∶ I′ → I and v ∶ J′ → J in Dia there is an induced morphism of

diagrams (ΠI′ , J′)(ΠI′ , J′)→(ΠI , J)(ΠI , J) and we distinguish the morphisms in the former from their coun-

terparts in the latter by decorating them with a prime. We deduce a morphism

Ψ
u ,v
A,B ∶ (u○ × v)∗⟨A, B⟩ (u○ × v)∗p∗[q∗A, r∗B]

// p′∗(tw(u) × v)∗[q∗A, r∗B]
// p′∗[(tw(u) × v)∗q∗A, (tw(u) × v)∗r∗B]

⟨u∗A, v∗B⟩.

Clearly, this morphism is natural in A and B, moreover it behaves well with respect to

identities and composition of functors as well as natural transformations inDia○ ×Dia○,○ so
that we have defined a lax natural transformation. The following proposition thus concludes

the proof of the naturality property.
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Proposition A.1 For u,v and A, B as above the morphism Ψ
u ,v
A,B is invertible.

Proof. We proceed in several steps.

(1) Let i ∈ I′0, j ∈ J′0. It suffices to prove that (i , j)∗ applied to the morphism Ψ
u ,v
A,B is

invertible. But this means that it suffices to prove that Ψ
ui ,v j
−,− and Ψ

i , j
−,− are invertible; in

other words we may assume I′ = J′ = ⋆, u = i ∈ I0, v = j ∈ J0.
(2) We factor (i , j) ∶ ⋆ iÐ→ I

1I× jÐÐ→ I × J, and first deal with Ψ
1I , j
−,−. In this case, the square

tw(I)
1tw(I)× j //

p′

��

tw(I) × J
p
��

I○
1I○× j

// I○ × J

is a pullback square, and p an opfibration, therefore the first arrow in the definition

of Ψ is invertible (Fact 1.11.1). For the second arrow in the definition, it suffices to prove

invertible

(1tw(I) × j)∗[(1tw(I) × pJ)∗−,−] → [−, (1tw(I) × j)∗−].
By passing to Dtw(I) we may thus assume I = ⋆ and prove instead invertible

j∗[p∗J −,−] → [−, j∗−].
By adjunction, this corresponds to the morphism

(1⋆ × j)!(− ⊠ −)
(1.41.4)ÐÐÐ→ −⊠ j!−

which we know to be invertible.

(3) Thus from now on we may assume J = ⋆. Factor i ∶ ⋆ 1 iÐ→ i/I tÐ→ I. Exactly the same

argument as in the previous step shows that the first arrow in the definition of Ψt ,1
⋆ is

invertible. Moreover, tw(t) is a fibration hence, by Lemma 1.51.5, also the second arrow in

the definition of Ψt ,1
⋆ is invertible.

(4) From now on, we may assume that I has initial object i and we need to prove Ψ i ,1
⋆

invertible. Consider the following diagram:

i∗p∗[q∗−, p∗tw(I)−] //

∼
))

1∗i [q∗−, p∗tw(I)−] // [1∗i q∗−, 1∗i p∗tw(I)−] [i∗−,−]

ptw(I)∗[q∗−, p∗tw(I)−]

OO

[ptw(I)!q∗−,−]

OO

∼
oo [pI!−,−].

∼

OO

∼
oo

The composition of the top horizontal arrows is nothing but Ψ i ,1
⋆ . The triangle on the

left arises from the Beck-Chevalley transformations associated to the squares

⋆ 1 i // tw(I)

��ptw(I)

��

tw(I)
p
��

⋆ ⋆
i

// I○ .

It follows that the triangle commutes and the slanted morphism is invertible by (D4)(D4).

The first bottom horizontal arrow is invertible by Lemma 1.51.5, the second one arises from

the counit q!q∗ → 1 which is invertible by Lemma B.1B.1. The middle vertical arrow is

induced by the “dual” of the left vertical arrow, 1∗i
adjÐ→ 1∗i p∗tw(I)ptw(I)! = ptw(I)!. The



A. PROPERTIES OF THE EXTERNAL HOM 41

commutativity of the left square is therefore immediate, as is the commutativity of the

right square (the right vertical arrow is induced by the canonical identification i∗ ≅ pI!
as i is an initial object of I).

☐

Internal hom. We now want to show that in case I = J ∈ Dia0, internal hom can be

expressed in terms of external hom. Consider the following category 3I: Objects are two

composable arrows in I and morphisms from the top to the bottom are of the form:

i2

��

// i1 // i0

��
j2 // j1 //

OO

j0 .

Wehave canonical functors tk ∶ 3I → I, k = 0, 2. Moreover, there are functors p′ ∶ 3I → tw(I)○
and q′ ∶ 3I → tw(I) × I, the first one forgetting the 0-component, the second one mapping

the two components 0 and 1 to tw(I) and component 2 to I. It is easy to see that one gets a
pullback square:

3I
p′ //

q′

��

tw(I)○

q2
��

tw(I) × I p
// I○ × I.

Notice that there is a canonical natural transformation t2 → t0 and hence one can define the

following morphism:

ΘI
A,B ∶ [A, B]

adj // [t2! t∗2 A, B]

// [t2! t∗0A, B]
// t2∗[t∗0A, t∗2 B]

p2∗q2∗p′∗[q′∗q∗A, q′∗r∗B]
∼oo

p2∗q2∗p′∗q′∗[q∗A, r∗B]
∼oo

p2∗q2∗q∗2 p∗[q∗A, r∗B].
∼oo

(A.2)

Here the last isomorphism is due to Fact 1.11.1 and q2 being a fibration. Therefore also q′ is a
fibration and Lemma 1.51.5 gives us the second to last isomorphism.

Again, ΘI
A,B is clearly natural in A and B and one checks easily (if tediously) that the

following diagram commutes for any u ∶ I′ → I inDia1:

u∗[A, B] Θ
I
//

��

u∗p2∗q2∗q∗2 ⟨A, B⟩ // p′2∗q′2∗tw(u)○∗q∗2 ⟨A, B⟩

[u∗A, u∗B]
Θ

I′
// p′2∗q′2∗q′∗2 ⟨u∗A, u∗B⟩ p′2∗q′2∗q′∗2 (u○ × u)∗⟨A, B⟩.

Ψ

oo

It follows that if we take the composition of the dotted arrows in the diagram as components

of the 2-cells for the lax natural transformation p2∗q2∗q∗2 ⟨−,−⟩, thenΘ defines amodification

as claimed in section 22. It now remains to prove that it is invertible.
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Proposition A.3 ΘI
A,B is invertible for all I, A and B as above.

Proof. It is easy to see that t2 is a fibration. Hence it follows from Lemma 1.51.5 that the

third arrow in (A.2A.2) is invertible, and it now suffices to prove that

t2! t∗0 → t2! t∗2
adjÐ→ 1 (A.4)

is invertible. Let i ∈ I0 be an arbitrary object. We will show that i∗ applied to (A.4A.4) is

invertible which is enough for the claim by (D2)(D2).

Consider the following two diagrams:

3I i
w //

p3I i
��

3I

t2
��

⋆
i
// I,

3I i
w //

u
��

3I

t0
��

t2
��
+3

i/I
i p i/I

))

v

55�� I.

The first one is a pullback square, in the second one u is defined by u(i → i1 → i0) = i → i0,
while v(i → i0) = i0 and ip i/I → v is the canonical natural transformation. This second

diagram is commutative in the sense that ip i/Iu → vu is equal to t2w → t0w. Consequently
the second inner square on the left of the following diagram commutes:

i∗t2! t∗0 // i∗t2! t∗2
adj // i∗

p3I i !w
∗t0∗ //

∼

OO

∼
��

p3I i !w
∗t∗2

∼

OO

∼
��

p3I i !p
∗
3I i i
∗

adj

OO

∼
ww

p i/I!u!u∗v∗ //

adj

��

p i/I!u!u∗p∗i/I i
∗

adj

��
p i/I!v∗ ∼

// p i/I!p∗i/I i
∗ .

adj
∼

VV

The rest is clearly commutative. Moreover, the top row is the fiber of (A.4A.4) over i. The

isomorphism of functors p i/I! ≅ 1∗i (1i being the initial object of i/I) implies that the bottom

horizontal as well as the bent arrow induced by the counit of the adjunction p i/I! ⊣ p∗i/I are
invertible, hence it suffices to prove u!u∗ → 1 an isomorphism. But this is true since u admits

a fully faithful right adjoint

i/I Ð→ 3I i

(i → j) z→ (i 1 iÐ→ i → j).

☐

External product. Recall that for any closed monoidal category there is a canonical mor-

phism

[A1 ,A2] ⊗ [A3 ,A4] → [A1 ⊗ A3 ,A2 ⊗ A4] (A.5)
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defined by adjunction as follows:

([A1 ,A2] ⊗ [A3 ,A4]) ⊗ (A1 ⊗ A3)
∼ // ([A1 ,A2] ⊗ A1) ⊗ ([A3 ,A4] ⊗ A3)

ev⊗ev // A2 ⊗ A4 .

From this we deduce for A1 ,A3 ∈ D(I)0, A2 ,A4 ∈ D(J)0 (I, J ∈ Dia0):

⟨A1 ,A2⟩ ⊗ ⟨A3 ,A4⟩ p∗[q∗A1 , r∗A2] ⊗ p∗[q∗A3 , r∗A4]
// p∗([q∗A1 , r∗A2] ⊗ [q∗A3 , r∗A4])

(A.5A.5)// p∗([q∗A1 ⊗ q∗A3 , r∗A2 ⊗ r∗A4])
∼ // ⟨A1 ⊗ A3 ,A2 ⊗ A4⟩.

(A.6)

Now, fix categories I(k), k = 1, . . . 4 in Dia and objects Ak ∈ D(I(k))0. Set K = I○(1) × I(2) ×
I○(3) × I(4). We can now finally define the morphism Ξ:

Ξ
I
(1) ,I(2) ,I(3) ,I(4)
A1 ,A2 ,A3 ,A4

∶ ⟨A1 ,A2⟩ ⊠ ⟨A3 ,A4⟩ = ⟨A1 ,A2⟩∣K ⊗ ⟨A3 ,A4⟩∣K
ΨÐ→
∼

τ∗⟨A1∣I
(1)×I(3) ,A2∣I

(2)×I(4)⟩ ⊗ τ∗⟨A3∣I
(1)×I(3)

,A4∣I
(2)×I(4)

⟩

←Ð
∼
τ∗ (⟨A1∣I

(1)×I(3) ,A2∣I
(2)×I(4)⟩ ⊗ ⟨A3∣I

(1)×I(3)
,A4∣I

(2)×I(4)
⟩)

(A.6A.6)ÐÐÐ→ τ∗⟨A1 ⊠ A3 ,A2 ⊠ A4⟩. (A.7)

Clearly, ΞI
(1) ,I(2) ,I(3) ,I(4) is a natural transformation. To conclude the proof of the external

product property it remains to verify the following lemma.

Lemma A.8 Let uk ∶ I′(k) → I(k), k = 1, . . . , 4. Then the following diagram commutes:

(u○1 × u○3 × u2 × u4)∗(⟨A1 ,A2⟩ ⊠ ⟨A3 ,A4⟩)
Ξ //

Ψ ∼
��

(u○1 × u○3 × u2 × u4)∗τ∗⟨A1 ⊠ A3 ,A2 ⊠ A4⟩

Ψ∼
��

⟨u∗1 A1 , u∗2A2⟩ ⊠ ⟨u∗3 A3 , u∗4A4⟩
Ξ

// τ∗⟨u∗1 A1 ⊠ u∗3 A3 , u∗2A2 ⊠ u∗4A4⟩.

Proof. By decomposing the horizontal arrows according to their definition in (A.7A.7)

one immediately reduces to showing that (A.6A.6) behaves well with respect to the functors uk ;

in other words one reduces to showing that for A1 ,A3 ∈ D(I)0, A2 ,A4 ∈ D(J)0 and functors

u ∶ I′ → I, v ∶ J′ → J, the following diagram commutes:

(u○ × v)∗(⟨A1 ,A2⟩ ⊗ ⟨A3 ,A4⟩)
(A.6A.6) //

Ψ ∼
��

(u○ × v)∗⟨A1 ⊗ A3 ,A2 ⊗ A4⟩

Ψ∼
��

⟨u∗A1 , v∗A2⟩ ⊗ ⟨u∗A3 , v∗A4⟩ (A.6A.6)
// ⟨u∗A1 ⊗ u∗A3 , v∗A2 ⊗ v∗A4⟩.

Since the unit and counit of the adjunction p∗ ⊣ p∗ behave well with respect to pulling back

along u○ × v and tw(u) × v one reduces further to showing that (A.5A.5) is functorial in this

sense which is clear. ☐
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Adjunction. Fix three categories I, J, K in Dia, and objects A ∈ D(I)0 , B ∈ D(J)0 ,C ∈
D(K)0. Fix also the following notation:

J I × Joo // I

tw(J) × K

p

��

q

OO

r
��

tw(I × J) × K

p′′

��r′′
ww

q′′
OO

α //βoo tw(I) × J○ × K

q′

OO

p′vv

r′
oo

K I○ × J○ × K

J○ × K .
Then the morphism in the statement of the adjunction property is given by:

Ω
I , J ,K
A,B ,C ∶ p

′
∗[q′∗A, r′∗p∗[q∗B, r∗C]]

∼Ð→ p′∗[q′∗A, α∗β∗[q∗B, r∗C]]
∼Ð→ p′∗α∗[α∗q′∗A, [β∗q∗B, β∗r∗C]]
∼Ð→ p′∗α∗[α∗q′∗A⊗ β∗q∗B, β∗r∗C]
∼Ð→ p′′∗[q′′∗(A∣I×J ⊗ B∣I×J), r

′′∗C].
It is clear that this morphism is natural in the three arguments. Moreover, as above it is

straightforward to check that it behaves well with respect to functors u ∶ I′ → I, v ∶ J′ → J,
w ∶ K′ → K.

Biduality. Fix B ∈ D(⋆)0, I ∈ Dia0 and A ∈ D(I)0. We also fix the following notation:

⋆

tw(I○)

p ((

q
��

r
<<

µ // tw(I)

r
bb

pvv

q
��

I○ I.
Here, µ is the isomorphism of categories taking j → i in I○ to i → j in I. We then define the

morphism mentioned in the statement of the biduality property,

Υ
I
A ∶ A→ ⟨⟨A, B⟩, B⟩, (A.9)

by adjunction as follows:

p∗A⊗ q∗p∗[q∗A, r∗B] p∗A⊗ µ∗p∗p∗[q∗A, r∗B]
adj // p∗A⊗ µ∗[q∗A, r∗B]

// p∗A⊗ [p∗A, r∗B]
ev // r∗B.

This is clearly natural in A. If u ∶ I′ → I is a functor inDia we define a morphism

u∗⟨⟨A, B⟩, B⟩ ΨÐ→
∼
⟨u○∗⟨A, B⟩, B⟩ Ψ←Ð

∼
⟨⟨u∗A, B⟩, B⟩.
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As we know by the naturality property, this morphism is invertible, natural in A, and behaves
well with respect to identity and composition of functors as well as natural transformations

in Dia. Therefore we have defined a pseudonatural transformation ⟨⟨−, B⟩, B⟩. To check

that (A.9A.9) defines a modification of pseudonatural transformations as claimed in section 22 it

suffices to prove the following lemma.

Lemma A.10 With the notation above the following diagram commutes:

u∗A Υ //

Υ

��

u∗⟨⟨A, B⟩, B⟩

Ψ∼
��

⟨⟨u∗A, B⟩, B⟩
Ψ

∼ // ⟨u○∗⟨A, B⟩, B⟩.

Proof. Using adjunction, the square can be equivalently written as the outer rectangle

of the following diagram:

p′∗u∗A⊗ q′∗u○∗p∗[q∗A, r∗B] //

��

tw(u○)∗(p∗A⊗ q∗p∗[q∗A, r∗B])

��

⋯

p′∗u∗A⊗ [p′∗u∗A, r′∗B]

ev

��

tw(u○)∗(p∗A⊗ [p∗A, r∗B])

ev

��
r′∗B tw(u○)∗r∗B ⋯

⋯ // tw(u○)∗(p∗⟨⟨A, B⟩, B⟩ ⊗ q∗⟨A, B⟩)

��

p′∗u∗⟨⟨A, B⟩, B⟩ ⊗ q′∗u○∗⟨A, B⟩∼oo

��
tw(u○)∗([q∗⟨A, B⟩, r∗B] ⊗ q∗⟨A, B⟩)

ev

��

[q′∗u○∗⟨A, B⟩, r′∗B] ⊗ q′∗u○∗⟨A, B⟩

ev

��
⋯ tw(u○)∗r∗B r′∗B.

All three parts are easily seen to commute. ☐

Normalization. Given J ∈ Dia0, A ∈ D(⋆)0 and B ∈ D(J)0, the morphism Λ
J
A,B is the

canonical identification induced by the strict functoriality of D:

[p∗J A, B]
∼Ð→ 1J∗[p∗J A, B] = ⟨A, B⟩.

Clearly, this is natural in A and B, and behaves well with respect to functors v ∶ J′ → J. The

last claim in section 22 about Λ explicitly amounts to the following:

● for A, B ∈ D(⋆)0, Θ is the canonical composition

[A, B] Ð→
∼

1∗[A, B] Ð→∼ 1∗1∗[A, B]
ΛÐ→
∼

1∗1∗⟨A, B⟩

where 1 is the unique endofunctor of the terminal category ⋆;
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● for A,C ∈ D(⋆)0, B ∈ D(I)0, D ∈ D(J)0, Ξ fits into the commutative diagram:

⟨A, B⟩ ⊠ ⟨C ,D⟩ Ξ // ⟨A⊠ C , B ⊠ D⟩

[p∗I A, B]∣I×J ⊗ [p∗J C ,D]∣I×J

Λ ∼

OO

∼
��

[p∗I×J(A⊗ C), B∣I×J ⊗ D∣I×J]

∼
��

Λ∼

OO

[p∗I×JA, B∣I×J] ⊗ [p∗I×JC ,D∣I×J]
(A.5A.5) // [p∗I×JA⊗ p∗I×JC , B∣I×J ⊗ D∣I×J].

● for A, B ∈ D(⋆)0 and C ∈ D(J)0, Ω fits into the commutative diagram:

⟨A, ⟨B,C⟩⟩ ∼
Ω // ⟨A⊗ B,C⟩

[p∗J A, [p∗J B,C]]

Λ ∼

OO

∼
((

[p∗J (A⊗ B),C]

∼
��

Λ∼

OO

[p∗J A⊗ p∗J B,C].

● for A, B ∈ D(⋆)0, Υ is identified with the morphism A → [[A, B], B] which by

adjunction corresponds to ev ∶ A⊗ [A, B] → B.
All these statements follow easily from the constructions in this section.

B. The external trace and homotopy colimits
In this section the proof of Proposition 5.45.4 will be given. Throughout we fix a closed

monoidal derivator D of type Dia. We start with a preliminary result, already needed to

define the association Φ on page 3131.

Lemma B.1 Let I ∈ Dia0. Then the following three morphisms are invertible:
(1) p1!q2!q∗2 p∗1 → 1 (counit of adjunction),
(2) 1→ p2∗q1∗q∗1 p∗2 (unit of adjunction),
(3) Ψ ∶ [pI!A, B] → pI○∗⟨A, B⟩ for A ∈ D(I)0, B ∈ D(⋆)0.

Proof. For the first morphism, fix i ∈ I0 and consider the following pullback square:

tw(I)○i //

p i
��

tw(I)○

p1q2
��

⋆
i

// I0 .

Since q2 and p1 are both fibrations so is their composition and by Fact 1.11.1 the Beck-Chevalley

transformation corresponding to the square above is invertible. It follows that for the counit

p1!q2!q∗2 p∗1 → 1 to be invertible it is necessary and sufficient that p i !p∗i → 1 is (for all i ∈ I0,
by (D2)(D2)). This is equivalent to 1→ p i∗p∗i being invertible, and this is true since tw(I)○i = I/i
and thus p i∗ = 1∗i . The second morphism in the statement of the Lemma is treated in the

same way.
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For the last morphism, we consider the following factorization:

[pI!A, B]
adj //

∼
��

pI○∗p∗I○[pI!A, B]
Ψ○Λ //

∼
��

pI○∗⟨p∗I pI!A, B⟩

adj

��
pI∗[A, p∗I B]

Θ ∼
��

adj // pI○∗p∗I○ pI∗[A, p∗I B]

Θ ∼
��

pI○∗⟨A, B⟩

adj

��

pI∗p2∗q2∗q∗2 ⟨A, p∗I B⟩
adj // pI○∗p∗I○ pI∗p2∗q2∗q∗2 ⟨A, p∗I B⟩

pI○∗p1∗q2∗q∗2 p∗1 ⟨A, B⟩

∼Ψ

OO

pI○∗p∗I○ pI○∗p1∗q2∗q∗2 p∗1 ⟨A, B⟩

∼Ψ

OO

adjoo pI○∗p1∗q2∗q∗2 p∗1 ⟨A, B⟩.
adjoo

Notice that all the vertical arrows on the left are invertible (the first one by Lemma 1.51.5, the

second and third by the results of section 22) as is the vertical arrow on the bottom right

by part 1 of the lemma. And the composition of the horizontal arrows at the bottom is the

identity so we only need to prove commutativity of the diagram.

This is clear for the left half of the diagram while the right half may be decomposed as

follows:

p∗I○[pI!A, B]
Λ

∼
//

adj

��

p∗I○⟨pI!A, B⟩
Ψ

adj

��

⋯

p∗I○ pI∗p∗I [pI!A, B]

��

Λ

∼
// p∗I○ pI∗p∗I ⟨pI!A, B⟩

1

adj

⋯

p∗I○ pI∗[p∗I pI!A, p∗I B]
Θ

∼
//

adj

��

p∗I○ pI∗p2∗q2∗q∗2 ⟨p∗I pI!A, p∗I B⟩

adj

��

∼ ⋯

p∗I○ pI∗[A, p∗I B]
Θ

∼
// p∗I○ pI∗p2∗q2∗q∗2 ⟨A, p∗I B⟩

∼ ⋯

⋯ // ⟨p∗I pI!A, B⟩
adj // ⟨A, B⟩

adj

��
⋯ // p∗I○ pI∗p2∗q2∗q∗2 (p○I × pI)∗⟨pI!A, B⟩

Ψ∼
��

p1∗q2∗q∗2 p∗1 ⟨A, B⟩

Ψ

��

⋯ // p∗I○ pI○∗p1∗q2∗q∗2 ⟨p∗I pI!A, p∗I B⟩

adj

��
⋯ // p∗I○ pI○∗p1∗q2∗q∗2 ⟨A, p∗I B⟩

adj // p1∗q2∗q∗2 ⟨A, p∗I B⟩.
Everything except possibly 1 clearly commutes; and 1 does so by the internal hom property

in section 22. ☐

From now on we take the assumptions of Proposition 5.45.4 to be satisfied. First we prove:



48 II. TRACES IN MONOIDAL DERIVATORS

Lemma B.2 pI!A is dualizable.

Proof. We are given an object B in D(⋆) and we need to show that the top arrow in

the following diagram is invertible:

[pI!A, 1] ⊗ B //

∼Ψ

��

[pI!A, 1⊗ B]

Ψ∼
��

pI○∗⟨A, 1⟩ ⊗ B

∼
��

pI○∗⟨A, 1⊗ B⟩

pI○∗(⟨A, 1⟩ ⊠ B)
∼
Ξ

// pI○∗⟨A, 1 ⊠ B⟩.

The two arrows labeled Ψ are invertible by the previous lemma, as is the vertical arrow

on the bottom left by hypothesis (H4)(H4). Given i ∈ I0, the fiber over i of the morphism

Ξ ∶ ⟨A, 1⟩⊠B → ⟨A, 1⊠B⟩ corresponds to the morphism [i∗A, 1]⊗B → [i∗A, 1⊗B] by the
external product and normalization properties in section 22. The latter morphism is invertible

since A is fiberwise dualizable hence also the bottom horizontal arrow in the diagram is

invertible (by (D2)(D2)). It now suffices to prove its commutativity which we leave as an easy

exercise. ☐

To prove commutativity of the diagram (5.25.2) with g = Tr( f ) and the top horizontal

arrow replaced by Tr(pI! f ) we decompose Tr( f ) into coevaluation, the morphism induced

by f and evaluation, and similarly for Tr(pI! f ). Schematically:

S coev //

��

(pI!A)∗ ⊗ pI!A⊗ S
pI! f

��

⋯

pI○∗p1!(q2!1⊗ S∣I○×I) coev
// pI○∗p1!(A∨ ⊠ A⊗ S∣I○×I) f

⋯

⋯ // (pI!A)∗ ⊗ pI!A⊗ T ev // T

⋯ // pI○∗p1!(A∨ ⊠ A⊗ T ∣I○×I)

OO

∼○ev
// pI!p2∗(q1∗1⊗ T ∣I○×I).

OO (B.3)

The vertical morphisms in the middle will be described below but we can already say here

that they will be easily seen to make the square in the middle commute. Now the fact that

we have isomorphisms

pI○∗(− ⊗ p∗I○−) ≅ pI○∗− ⊗ −, p1!(− ⊗ p∗1 −) ≅ p1!− ⊗ −

allows us to neglect the twisting:

Lemma B.4 We may assume S = T = 1.
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Proof. Consider the following diagram:

1⊗ S coev //

��

(pI!A)∗ ⊗ pI!A⊗ S

��
pI○∗p1!q2!1⊗ S coev //

∼
��

pI○∗p1!(A∨ ⊠ A) ⊗ S

∼
��

pI○∗p1!(q2!1⊗ p∗2 p∗I S)
coev // pI○∗p1!(A∨ ⊠ A⊗ p∗2 p∗I S).

It is easy to check that the composition of the two vertical morphisms on the left equals the

left vertical morphism in (B.3B.3). Moreover the bottom square clearly commutes thus we are

left to prove the commutativity of the top square but this does not depend on S. A similar

argument shows that we may assume T = 1. ☐

Lemma B.5 The left square in (B.3B.3) commutes.

Proof. By the previous lemma wemay assume S = 1. Again, we factor the coevaluation
morphisms on the top and bottom into two parts as in (3.23.2) and (3.93.9) respectively. This

decomposes the left square in (B.3B.3) into two parts which we consider separately.
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By adjunction, the first one may be expanded as follows (the arrows labeled with a small

Greek letter will be defined below):

p∗I○1
adj // p∗I○[pI!A, pI!A]

α ⋯

(p1q2)!(p1q2)∗1

∼
��

adj ∼

OO

adj // (p1q2)!(p1q2)∗p∗I○[pI!A, pI!A]

1

∼ adj

OO

α ⋯

(p1q2)!(p2q2)∗1
adj // (p1q2)!(p2q2)∗p∗I [pI!A, pI!A]

β
⋯

(p1q2)!(p2q2)∗1
Θ○adj

⋯

⋯ // ⟨p∗I pI!A, pI!A⟩
adj // ⟨A, pI!A⟩

⋯ // (p1q2)!(p1q2)∗⟨p∗I pI!A, pI!A⟩

∼ adj

OO

⋯ // (p1q2)!(p2q2)∗(p2q2)∗q∗2 ⟨p∗I pI!A, p∗I pI!A⟩

adj

��

γ

OO

p1!p∗1 ⟨A, pI!A⟩

Ψ∼
��

adj

OO

(p1q2)!(p2q2)∗(p2q2)∗q∗2 ⟨A, p∗I pI!A⟩
adj // p1!⟨A, p∗I pI!A⟩

⋯ // (p1q2)!(p2q2)∗(p2q2)∗q∗2 ⟨A,A⟩

adj

OO

adj

// p1!⟨A,A⟩,

adj

OO

and the second one as follows:

p∗I○[pI!A, pI!A]

2adj○α
��

p∗I○([pI!A, 1] ⊗ pI!A)

δ
��

∼oo

⟨A, pI!A⟩

3

⟨A, 1⟩ ⊗ p∗I○ pI!A
∼
(3.73.7)

oo

p1!⟨A,A⟩

∼Ψ

OO

p1!(p∗1 ⟨A, 1⟩ ⊗ p∗2A).
∼
(3.73.7)

oo

∼

OO

Notice first that these two diagrams indeed “glue” together. Thus it suffices to show commu-

tativity of the rectangles marked with a number (the other ones are easily seen to commute).
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1 may be expanded as follows (set B = pI!A):

q∗2 p∗1 p∗I○[B, B]
Λ

∼
// q∗2 p∗1 p∗I○⟨B, B⟩

Ψ

∼
// q∗2 p∗1 ⟨p∗I B, B⟩

∼ Ψ

��
q∗2 p∗2 p∗I [B, B] ∼

Λ // q∗2 p∗2 p∗I ⟨B, B⟩
Ψ

∼
// q∗2 ⟨p∗I B, p∗I B⟩

q∗2 p∗2 p∗I [B, B] ∼
// q∗2 p∗2 [p∗I B, p∗I B]

Θ

∼
// q∗2 p∗2 p2∗q2∗q∗2 ⟨p∗I B, p∗I B⟩.

adj

OO

The top rectangle commutes by the naturality property, the bottom rectangle by the internal

hom property of section 22.

For 2 consider the following decomposition (by adjunction again):

[pI!A, pI!A]

Λ○adj
��

[pI!A, 1] ⊗ pI!A
∼oo

��

[pI!A, 1] ⊗ pI!A

Λ○adj
��

pI○∗p∗I○⟨pI!A, pI!A⟩

∼Ψ

��

pI○∗p∗I○(⟨pI!A, 1⟩ ⊗ pI!A)
∼
(3.73.7)
oo

∼
**

pI○∗p∗I○⟨pI!A, 1⟩ ⊗ pI!A

∼
��

pI○∗(p∗I○⟨pI!A, 1⟩ ⊗ p∗I○ pI!A)

Ψ∼
��

pI○∗⟨p∗I pI!A, pI!A⟩

adj

��

pI○∗(⟨p∗I pI!A, 1⟩ ⊗ p∗I○ pI!A)

adj

��

∼
(3.73.7)

oo

pI○∗⟨A, pI!A⟩ pI○∗(⟨A, 1⟩ ⊗ p∗I○ pI!A).
∼
(3.73.7)

oo

The top left square commutes by the normalization property, the pentagon in the middle by

the external product and normalization properties of section 22. The rest is clearly commu-

tative. (One also needs here Lemma B.1B.1 to ensure that the morphism corresponding to δ
under adjunction is invertible.)

Next, we may decompose 3 by adjunction as follows:

p∗1 ⟨A, pI!A⟩

∼Ψ

��

p∗1 (⟨A, 1⟩ ⊠ pI!A)∼
(3.73.7)oo

∼
��

⟨A, p∗I pI!A⟩ ⟨A, 1⟩ ⊠ p∗I pI!A∼
(3.73.7)oo

⟨A,A⟩

adj

OO

⟨A, 1⟩ ⊠ A.
(3.73.7)
∼

oo

adj

OO

Both squares commute by the external product property in section 22. ☐

The following lemma completes the proof of Proposition 5.45.4.

Lemma B.6 The right square in (B.3B.3) commutes.
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Proof. Again, we may assume T = 1 by the lemma above. First, (3.33.3) lets us replace

the evaluation morphism on the top by the following composition (the arrows labeled with a

small Greek letter will be defined below):

(pI!A)∗ ⊗ pI!A

4∼Λ

��

∼
// (pI!A)∗ ⊗ (pI!A)∗∗

6

//

∼Ψ○Λ
��

((pI!A)∗ ⊗ pI!A)∗

7

coev // 1

pI○∗A∨ ⊗ pI!A

5

∼
Υ // pI!A∨∨ ⊗ pI○∗A∨ pI!(A∨ ⊠ pI!A)∨

θ ∼

OO

∼Ψ

��
pI○∗p1!(A∨ ⊠ A) ∼

//

ε ∼

OO

pI!p2∗µ∗(A∨∨ ⊠ A∨)

η ∼

OO

Ξ

// pI!p2∗µ∗(A∨ ⊠ A)∨ coev
// pI!p2∗µ∗⟨q2!1, 1⟩.

OO

The commutativity of 4 can be checked on each tensor factor separately; only one of them

is possibly non-obvious:

A
adj //

Υ ∼
��

p∗I pI!A

Υ ∼
��

Υ

∼
// p∗I ⟨⟨pI!A, 1⟩, 1⟩

Ψ∼
��

⟨⟨A, 1⟩, 1⟩

adj

��

adj // ⟨⟨p∗I pI!A, 1⟩, 1⟩ ∼
Ψ // ⟨p∗I○⟨pI!A, 1⟩, 1⟩

⟨p∗I○ pI○∗⟨A, 1⟩, 1⟩

Ψ

22

p∗I ⟨pI○∗⟨A, 1⟩, 1⟩.
∼
Ψ

oo

Ψ

hh

The two squares in the top row commute by the biduality property of section 22 while the rest

is clearly commutative.

5 may be decomposed as follows:

pI○∗A∨ ⊗ pI!A

��

pI○∗A∨ ⊗ pI!A // pI!A⊗ pI○∗A∨
Υ // pI!A∨∨ ⊗ pI○∗A∨

pI○∗(A∨ ⊗ p∗I○ pI!A) pI!(p∗I pI○∗A∨ ⊗ A)

��

OO

// pI!(A⊗ p∗I pI○∗A∨)
Υ //

��

OO

pI!(A∨∨ ⊗ p∗I pI○∗A∨)

��

OO

pI○∗(A∨ ⊗ p1!p∗2A)

OO

pI!(p2∗p∗1 A∨ ⊗ A)

��

// pI!(A⊗ p′1∗p′∗2 A∨)

��

Υ // pI!(A∨∨ ⊗ p′1∗p′∗2 A∨)

��
pI○∗p1!(A∨ ⊠ A)

OO

pI!p2∗(A∨ ⊠ A) //oo pI!p2∗µ∗(A⊠ A∨)
Υ // pI!p2∗µ∗(A∨∨ ⊠ A∨).

Here, p′1 and p′2 are the projections onto the factors of I × I○ and all arrows are invertible.

All rectangles of this diagram are easily seen to commute (for the leftmost one may use [22,

2.1.105]).



C. D(G) FOR A FINITE GROUP G 53

Next we turn to 6 . In the decomposition of it (use the normalization property of

section 22 for the top horizontal arrow),

(pI!A)∨∨ ⊠ (pI!A)∨
Ξ // ((pI!A)∨ ⊠ pI!A)∨

(pI○∗A∨)∨ ⊠ (pI!A)∨
Ψ

OO

Ξ // (pI○∗A∨ ⊠ pI!A)∨
Ψ

OO

pI!(A∨∨) ⊠ (pI!A)∨
Ψ

OO

(pI○∗(A∨ ⊠ pI!A))∨

OO

pI!(A∨∨ ⊠ (pI!A)∨)

OO

Ξ //

��

pI!(A∨ ⊠ pI!A)∨
Ψ

OO

��
pI!(A∨∨ ⊠ pI○∗A∨)

��

pI!(A∨ ⊗ p1!p∗2A)∨

��
pI!(A∨∨ ⊗ p′1∗p′∗2 A∨)

��

pI!(p1!(A∨ ⊠ A))∨

Ψ

��
pI!p2∗µ∗(A∨∨ ⊠ A∨)

Ξ // pI!p2∗µ∗(A∨ ⊠ A)∨ ,

everything commutes by the external product property of section 22 (and adjunction). All

vertical arrows are invertible.

It remains to prove the commutativity of 7 . In the diagram

⟨(pI!A)∗ ⊗ pI!A, 1⟩
coev // ⟨1, 1⟩ // 1

⟨pI○∗p1!(A∨ ⊠ A), 1⟩

OO

Ψ

��

coev // ⟨pI○∗p1!q2!1, 1⟩

OO

Ψ

��

pI!p2∗q1∗q∗1 p∗2 p∗I ⟨1, 1⟩

ii

Ψ∼
��

pI!p2∗µ∗⟨A∨ ⊠ A, 1⟩
coev // pI!p2∗µ∗⟨q2!1, 1⟩

Ψ // pI!p2∗q1∗⟨1, 1⟩,

the top left square is simply ⟨−, 1⟩ applied to the left square in (B.3B.3). It follows that this square

is commutative. Moreover it is easy to see that the composition of the left vertical arrows is

the same as of the ones in 7 . Thus this diagram is a decomposition of 7 . The rest of the

diagram clearly commutes. ☐

C. D(G) for a finite group G
The question, given a category I, whether I-diagrams and morphisms of such in the

homotopy categories can be lifted (and if so whether uniquely) to the homotopy categories

of I-diagrams has always been of interest (see e. g. [2828, chapitre IV] or [3232, p. 2]). The goal of

this last section is to give a proof for the (well-known) answer in the case of I a finite group.
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Proposition C.1 Let D be an additive derivator of type Dia, let G be a finite group in Dia
and assume that #G is invertible in RD. Then the canonical functor

diaG ∶ D(G) → CAT(G○ ,D(⋆))

is fully faithful. If, in addition, D(G) is pseudo-abelian then the functor is an equivalence of
categories.

Remark C.2 Suppose that D is stable and thatDia contains countable discrete categories.
In this case D(G) has countable direct sums, and it follows from [5858, 1.6.8] that D(G) is
pseudo-abelian.

Proof of Proposition C.1C.1. We need to understand the two adjunctions e! ⊣ e∗ and
e∗ ⊣ e∗ where e ∶ ⋆ → G is the unique functor.

Consider the following comma square where η on the component corresponding to

g ∈ G is g:

∐G ⋆
=Eηp

��

p // ⋆

e
��

⋆ e
// G ,

By (D4)(D4), the two compositions

p!p∗
adj // p!p∗e∗e!

η∗ // p!p∗e∗e!
adj // e∗e! ,

p∗p∗ p∗p∗e∗e∗
adj

oo p∗p∗e∗e∗η∗
oo e∗e∗

adj

oo

are invertible, yielding identifications

e∗e! ≅ ∐G , e∗e∗ ≅ ∏G ,

and therefore a canonical morphism e∗e! → e∗e∗ which is invertible if G is finite.

Under these identifications the (contravariant) action ofG on e∗e! (obtained by applying
diaG to e!) is given by right translation, and on e∗e∗ by left translation. Indeed, let A ∈ D(⋆)0
be an arbitrary object and set B = e∗e!A, fix also g ∈ G. Then the following diagram

commutes where rg((xh)h) = (xh)hg :

∐h∈G A
adj //

r g
��

∐h∈G B
∐h h

∗

//

r g
��

∐h∈G B ∑ // B

g∗

��
∐h∈G A

adj

// ∐h∈G B
∐h h

∗

// ∐h∈G B
∑
// B.

Thus the claim in the case of e∗e!; the case of e∗e∗ is proved in a similar way.

Next, we would like to describe the units and counits of the adjunctions. We first deal

with the unit of e! ⊣ e∗. Let i ∶ ⋆ → ∐G ⋆ be the inclusion of the component corresponding
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to 1G .

p!p∗
adj // p!p∗e∗e!

η∗ // p!p∗e∗e!

adj

��

p! i! i∗p∗

∼

��

adj

OO

adj // p! i! i∗p∗e∗e!

adj

OO

∼

&&

adj
88

1
adj

// e∗e! .

The diagram clearly commutes and hence the unit 1→ e∗e! is given by the inclusion of the

unit component into∐G . Similarly, the counit e∗e∗ → 1 is the projection onto the component

corresponding to 1G .

Next, we want to describe the other two (co)units (at least after applying e∗). For this
consider the composition of the unit and the counit of the adjunction,

e∗ →∐G e∗ → e∗ ,

which we know to be the identity. By the description of the first morphism above we see that

the 1G-component of the second morphism has to be the identity. But this second morphism

is also G-equivariant so the description of the G-action above implies that the morphism is

the action of g on the g-component for any g ∈ G. Similarly, the counit e∗ →∏G e∗ is given
by the action of g on the g-component.

We now have enough information to describe the composition

ξ ∶ e!
adjÐ→ e∗e∗e! → e∗e∗e∗

adjÐ→ e∗
after applying e∗. Indeed, it can then be identified with the following one:

∐G
// ∏G∐G

// ∏G∏G
// ∏G

(xh)h � // ((xhg−1)h)g � // ((xhg−1)h)g � // (xg−1)g .

Since this morphism is invertible and e∗ conservative (by (D2)(D2)), also ξ is invertible, and it

thus makes sense to consider the composition

1→ e∗e∗
ξ−1Ð→ e!e∗ → 1. (C.3)

After applying e∗ it can be identified with

e∗ // ∏G e∗ // ∐G e∗ // e∗

x � // (g∗x)g � // ((g−1)∗x)g � // ∑g∈G g∗(g−1)∗x = #G ⋅ x .

If #G is invertible in RD then this morphism and (again, by (D2)(D2)) also (C.3C.3) is invertible,

in particular there is, for every B ∈ D(G)0, a factorization of the identity morphism of B:
B → e∗e∗B → B. For any A ∈ D(G)0, this factorization in turn induces the horizontal arrows
in the following commutative diagram (C = CAT(G○ ,D(⋆)), d = diaG):

D(G)(A, B) //

d
��

D(G)(A, e∗e∗B) //

d
��

D(G)(A, B)

d
��

C(dA, dB) // C(dA, de∗e∗B) // C(dA, dB).
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The first top horizontal arrow is injective hence if the middle vertical arrow is injective then

so is the left vertical one. Similarly, the second bottom horizontal arrow is surjective hence if

the middle vertical arrow is surjective then so is the right vertical one. Consequently, to prove

fully faithfulness of diaG it suffices to prove bijective the middle vertical arrow (for all A and

B). Now, the source of this map can be identified with D(⋆)(e∗A, e∗B) by adjunction, while
the target is the set of G○-morphisms in D(⋆) from e∗A to the left regular representation

associated to e∗B—which is also D(⋆)(e∗A, e∗B).
It remains to show essential surjectivity of diaG . Given an object A ∈ D(⋆)0 with a

G○-action ρ, consider the two morphisms

A α // ∏G A and ∏G A
β // A

x � // (ρ(g)x)g (xg)g � // 1

#G ∑g∈G ρ(g−1)xg .

They give rise to a G○-equivariant decomposition of the identity on A:

1A ∶ A
αÐ→ diaG(e∗A)

βÐ→ A.
By fullness of diaG proved above, there exists p ∈ D(G)(e∗A, e∗A) with diaG(p) = αβ. By
faithfulness also proved above, the equality

diaG(p2) = diaG(p)2 = (αβ)2 = αβ = diaG(p)
implies that p is a projector, and therefore if D(G) is pseudo-abelian then there is a decom-

position

e∗A = ker(p) ⊕ Im(p).
Let α′ ∶ Im(p) → e∗A be the inclusion, and β′ ∶ e∗A→ Im(p) the projection. Then

(diaG(β′)α)(βdiaG(α′)) = diaG(β′)diaG(p)diaG(α′)
= diaG(β′pα′)
= diaG(1Im(p))
= 1diaG(Im(p)) ,

and

(βdiaG(α′))(diaG(β′)α) = βdiaG(α′β′)α
= βdiaG(p)α
= βαβα
= 1A.

We conclude that A ≅ diaG(Im(p)). ☐



III
HOMOTOPY THEORY OF DG SHEAVES

Let (C , τ) be a small Grothendieck site. Our goal in this chapter is to describe in detail one

specific homotopy theoretic model for the unbounded derived category of τ-sheaves on C.
This description will be used in the following chapter in our study of motives. Although the

model is well-known, there were several facts we needed in our application but were not able

to find in the literature, which is why we decided to include the present chapter. To be useful

in other contexts as well, we place ourselves in a general setting, in particular we try to make

as few assumptions as possible regarding the site (C , τ).
Let us quickly give the definition of the model. Start with the category of presheaves

of unbounded complexes on C and declare weak equivalences and fibrations to be object-

wise quasi-isomorphisms and epimorphisms, respectively. This yields the projective model
structure. The τ-local model structure arises from it by a left Bousfield localization with re-

spect to τ-local weak equivalences, i. e. morphisms inducing isomorphisms on all homology

τ-sheaves. The resulting model category is our model for the derived category of τ-sheaves.
In §22 we recall the basic properties of the model category and describe the cofibrations.

As an application we construct in §33 an explicit cofibrant replacement functor which resolves

any presheaf of complexes by representables. The main theorem of §44 states that the τ-
fibrant objects are precisely those presheaves satisfying descent with respect to τ-hypercovers.
The analogous statement for simplicial presheaves is well-known, and our strategy is to

reduce to this case via the Dold-Kan correspondence. We use the same strategy to prove

a generalization of the Verdier hypercover theorem, expressing the hypercohomology of a

complex of sheaves in terms of hypercovers only. We also describe some modifications to our

model and deduce some useful consequences from the main theorem. In the final section 55

we prove that the Godement resolution defines a fibrant replacement functor for our model.

We would like to remark that the model described in this chapter is not quite arbitrary

but has a very satisfying universal property. To describe it, recall the easy fact from category

theory that for a small category C, the category of presheaves on C is its universal (or free)
cocompletion. This means that any functor from C into a cocomplete category factors via a

cocontinuous functor through the Yoneda embedding C → PSh(C) in an essentially unique

way. This basic idea finds repercussions in the following two results:

● For a small dg categoryD, the category of dg modules [Dop ,Cpl] is its universal
dg cocompletion.

57
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● In [1919], Dugger proves that any functor from C into a model category factors via a

left Quillen functor through the category of simplicial presheaves on C with the

projective model structure, in an essentially unique way. In other words, this is the

universal model category associated to C.
Combining these two examples we naturally arrive at the following guess: [Cop ,Cpl]with the
projective model structure is the universal model dg category associated to the small category

C. We couldn’t resist prepending a section (§11) in order to explain this result (in fact, a more

general version where chain complexes are replaced by quite arbitrary enriching categories).

Such a statement invites us to conceive of C as generating the dg category [Cop ,Cpl],
while the Bousfield localization yielding the local model structure plays the role of imposing

relations. Namely, the localization stipulates that any object in C may be homotopically

decomposed into the pieces of any cover. In a very precise sense then (cf. Corollary 4.154.15)

our model for the derived category of τ-sheaves is the universal τ-local model dg category

associated to C.
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1. Universal enriched model categories
This section is very much inspired by Dugger’s [1919] where he proves the existence of a

universal model category associated to a small category. Our goal is to establish an analogue

of this result in the enriched setting.

“Monoidal” is an abbreviation for “unital monoidal”; the monoidal structure is always

denoted by ⊗, the unit by 1. Fix a bicomplete closed symmetric monoidal category V . We

are first going to recall some basics in V-enriched category theory, and for this we follow the

terminology in [4646].

1.1. Free enriched cocompletion. Let C andM be V-categories and assume that C
is small. Recall ([4646, §2]) that there is a V-functor category [C ,M] whose underlying
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category is just the category of V-functors C →M together with V-natural transformations.

Given such a V-functor γ ∶ C → M consider the V-functor γ∗ ∶ M → [Cop ,V] which
takes m toM(γ(●),m). In particular, if C = M and γ the identity then γ∗ is the Yoneda
embedding y ∶ C → [Cop ,V]. As in the classical case, the Yoneda embedding provides the

free cocompletion as we are now going to explain (see [4646, Thm. 4.51]).

Recall that a V-categoryM is cocomplete if it has all small indexed colimits (some-

times also called weighted colimits). In practice, the functorsM(●,m)0 ∶ Mop
0 → V0 often

preserve limits (for example, ifM is cotensored or if V is conservative). In this case cocom-

pleteness is equivalent toM being tensored and the underlying category being cocomplete

in the ordinary sense. The first condition means that there exists a V-bifunctor (called the

tensor)

● ⊙ ● ∶ V ⊗M→M
together with, for each v ∈ V and each m ∈ M, V-natural isomorphisms

M(v ⊙m, ●) ≅ V(v ,M(m, ●)).
Accordingly, a V-functor is cocontinuous if and only if it commutes with tensors and the un-

derlying functor is cocontinuous. Dually one defines complete V-categories and continuous

V-functors.
An example of a cocomplete V-category is [Cop ,V] for a small V-category C. From now

on, we denote it by UVC. The tensor of v ∈ V and f ∈ UVC is given by

v ⊙ f = vcst ⊗ f ,
where vcst denotes the constant presheaf with value v, and ⊗ denotes the objectwise tensor

product in V .

Fact 1.1 Let γ ∶ C →M be a V-functor and assume that C is small andM is cocomplete.
(1) There is a V-adjunction

(γ∗ , γ∗) ∶ UVC →M,

where γ∗( f ) is given by the tensor product of f and γ, f ⊙C γ.
(2) The association γ ↦ γ∗ induces an equivalence of V-categories

[C ,M] ≃ [UVC ,M]coc
where (●)coc picks out the cocontinuous V-functors.

(3) There is a canonical isomorphism γ∗y ≅ γ.
The V-functor γ∗ is called the left V-Kan extension of γ along the Yoneda embedding.

Here, the tensor product of the two V-functors f and γ is the coend ∫ c∈C f (c) ⊙ γ(c).
Notice that part of the statement is the existence of [UVC ,M]coc as a V-category (this is not
clear since UVC is not necessarily small).

If β ∶ D → C is a V-functor between small V-categories, we denote (yβ)∗ by β∗ if no
confusion is likely to arise. With this abuse of notation, there is a canonical isomorphism

(γβ)∗ ≅ γ∗β∗. Similarly, if δ ∶ M → N is a cocontinous functor into another cocomplete

V-categoryN , then (δγ)∗ ≅ δγ∗.
Assume now that C is a (symmetric) monoidal V-category (this is the canonical transla-

tion of a (symmetric) monoidal structure to the enriched context; or see [1717, p. 2f]). UVC
inherits a (symmetric)monoidal structure called the (Day) convolution product ([1717,Thm. 3.3

and 4.1]). Explicitly, the monoidal product of two presheaves f and g is given by

f ⊗ g = ∫ c ,c′

f (c) ⊗ g(c′) ⊗ C(●, c ⊗ c′),
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and the unit by y(1) = C(●, 1). It is clear that the Yoneda embedding y ∶ C → UVC is
(symmetric) monoidal.

Lemma 1.2 In the setting of Fact 1.11.1, assume in addition that γ is (lax) (symmetric) monoidal,
and that the monoidal product inM commutes with indexed colimits. Then:
(1) γ∗ is (lax) (symmetric) monoidal.
(2) The canonical isomorphism γ∗y ≅ γ is monoidal.
(3) The association γ ↦ γ∗ induces an equivalence of ordinary categories

V−Fun⊗(C ,M) ≃ V−Funcoc,⊗(UVC ,M)
of (lax) (symmetric) monoidal V-functors.

Proof. Let f , g ∈ UVC. The (lax) monoidal structure on γ∗ is defined as follows:

( ∫ f ⊙ γ) ⊗ ( ∫ g ⊙ γ) ≅ ∫ c ,d
( f (c) ⊗ g(d)) ⊙ (γ(c) ⊗ γ(d))

→ ∫ c ,d
( f (c) ⊗ g(d)) ⊙ (γ(c ⊗ d))

≅ ∫ e
( ∫ c ,d

f (c) ⊗ g(d) ⊗ C(e , c ⊗ d)) ⊙ γ(e)

≅ ∫ ( f ⊗ g) ⊙ γ

and

1→ γ(1) ≅ γ∗(1).
We leave the details to the reader. ☐

In this sense, if C is (symmetric) monoidal thenUVC is the free (symmetric) monoidal V-
cocompletion. Notice also that the “pseudo-functoriality” mentioned above, to wit (γβ)∗ ≅
γ∗β∗ and (δγ)∗ ≅ δγ∗, is compatible with monoidal structures.

1.2. Enriched model categories. We now discuss the interplay between basic enriched

category theory as above and Quillen model structures. From now on we assume that

the underlying category V0 is a symmetric monoidal model category in the sense of [3636,

Def. 4.2.6]. We also assume that this model structure is cofibrantly generated.

Fix a small ordinary category C and set C[V] to be the associated free V-category. It has
the same objects as C and the V-structure is given by

C[V](c, c′) = ∐
C(c ,c′)

1

with an obvious composition. By definition, giving a V-functor C[V] →M into a V-model

categoryM is the same as giving an (ordinary) functor C →M0. In the sequel, we will often

write abusively C →M, sometimes thinking of the datum as a V-functor, sometimes as an

ordinary functor. We are positive that this will not lead to any confusion.

Thus the general small V-category C in §1.11.1 will now always be of this special form. We

impose this restriction because it simplifies most of the statements and proofs drastically,

and because it is all we will need later on.

Since the underlying category of UVC ∶= UVC[V] is just the category of presheaves on
C with values in V , the following result is well-known.

Fact 1.3 (1) (UVC)0 admits a cofibrantly generated model structure with weak equivalences
and fibrations defined objectwise.
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(2) If V0 is left (resp. right) proper then so is (UVC)0.
(3) If V0 is combinatorial (resp. tractable, cellular) then so is (UVC)0.
(4) If V0 is stable then so is (UVC)0.

This is called the projective model structure. If not mentioned otherwise, we will consider

UVC as endowed with the projective model structure from now on.

Proof. See [3535, Thm. 11.6.1] for the first statement, [3535, Thm. 13.1.14] for the second, [3535,

Pro. 12.1.5] and [99, Thm. 2.14] for the third. The last statement is obvious. ☐

Definition 1.4 LetM andN be V-categories with model structures on their underlying

categories. AV-adjunction (δ, ε) ∶ M → N is called aQuillenV-adjunction if the underlying
adjunction (δ0 , ε0) ∶ M0 → N0 is a Quillen adjunction. In that case δ is called a left, ε a
right Quillen V-functor.

We now come back to the situation of Fact 1.11.1. The question we should like to answer is:

When is (γ∗ , γ∗) a Quillen V-adjunction?

Lemma 1.5 Assume thatM0 is endowed with a model structure. The following conditions
are equivalent:
(1) (γ∗ , γ∗) is a Quillen V-adjunction.
(2) For each c ∈ C,M0(γ(c), ●) is a right Quillen functor.
(3) For each c ∈ C, ● ⊙ γ(c) is a left Quillen functor.

Proof. The equivalence between the last two conditions is clear. The equivalence

between the first two conditions follows from the description of γ∗ given above and the fact

that we imposed the projective model structure on (UVC)0. ☐

In particular, these equivalent conditions are satisfied if the image of γ consists of

cofibrant objects, and the tensor onM is a “Quillen V-adjunction of two variables”, i. e. a

V-adjunction of two variables such that the underlying data form a Quillen adjunction of

two variables in the sense of [3636, Def. 4.2.1].

Definition 1.6 Amodel V-category is a bicomplete V-categoryM together with a model

structure onM0 such that

● the tensor is a Quillen V-adjunction of two variables;

● for any cofibrant object m ∈ M, 1c ⊙ m → 1 ⊙ m is a weak equivalence, for a

cofibrant replacement 1c → 1.

A (symmetric) monoidal model V-category is a model V-categoryM together with a

Quillen V-adjunction of two variables ⊗ ∶M⊗M→M with a unit, and associativity (and

symmetry) constraints satisfying the usual axioms.

These are equivalent to the definitions in [3636, Def. 4.2.18, 4.2.20]. Also, it is a straight-

forward generalization of the notion of a simplicial model category.

Example 1.7
(1) If V is the category of simplicial sets with the standard model structure then we recover

the notion of a simplicial model category.

(2) Our main example will be obtained by taking V to be the category of (unbounded) chain

complexes of Λ-modules, Λ a (commutative unital) ring, with the projective model

structure and the usual tensor product. A model V-category will be called a model dg

category. See §§22.
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Fact 1.8 UVC is a model V-category. Moreover, if C is (symmetric) monoidal and the unit in
V cofibrant, then UVC is a (symmetric) monoidal model V-category for the Day convolution
product.

Proof. The first statement is straightforward to check. The second is [4040, Pro. 2.2.15].

☐

Notice that if C is cartesian monoidal then the Day convolution product coincides with

the objectwise monoidal product on UVC.

1.3. Statement and proof. Our goal is to establish y ∶ C → UVC (really, C[V] → UVC)
as the universal functor into a model V-category. But first, we need to make precise what we

mean by the universality in the statement. For this fix a model V-categoryM and a functor

γ ∶ C →M. Define a factorization of γ through y to be a pair (L, η) where L ∶ UVC →M is

a left Quillen V-functor, and η ∶ Ly → γ a natural transformation which is objectwise a weak

equivalence. Amorphism of such factorizations (L, η) → (L′ , η′) is a natural transformation

L → L′ compatible with η and η′. This clearly defines a category Fact(γ, y).

Proposition 1.9 Assume that the unit in V is cofibrant. For any γ, the category Fact(γ, y) is
contractible.

Notice that in a homotopical context it is unreasonable to expect the category of choices

to be a groupoid (“uniqueness up to unique isomorphism”) and contractibility is usually the

right thing to ask of this category.

Let CofRep(γ) be the category of cofibrant replacements of γ. Its objects are functors
γ′ ∶ C → M together with a natural transformation γ′ → γ which is objectwise a weak

equivalence and such that the image of γ′ is cofibrant. The morphisms are the obvious ones.

Lemma 1.10 Assume that the unit in V is cofibrant. There is a canonical equivalence of
categories Fact(γ, y) ≃ CofRep(γ).

Proof. We give functors in both directions. That these are quasi-inverses to each other

will then be seen to follow from the V-equivalence of categories in Fact 1.11.1.

● Given γ′ → γ on the right hand side, define L = (γ′)∗ and choose the natural

transformation (γ′)∗y ≅ γ′ → γ. Functoriality follows from the functoriality

statement in Fact 1.11.1.

● Given (L, Ly → γ) on the left hand side, Ly → γ defines a cofibrant replacement

since L is a left Quillen V-functor and the image of y is cofibrant. Functoriality is
obvious. ☐

Proof of Proposition 1.91.9. By the previous lemma, we need to show contractibility

of CofRep(γ). Fix a cofibrant replacement functor F for the model structure onM0. Com-

posing with γ we obtain an object (Fγ, Fγ → γ) of CofRep(γ). Given any other object

(γ′ , γ′ → γ), functoriality of F yields a commutative square

Fγ′ //

��

Fγ

��
γ′ // γ

and thus a zig-zag γ′ ← Fγ′ → Fγ in CofRep(γ). Moreover, this zig-zag is natural in γ′
hence this construction provides a zig-zag of homotopies between the identity functor on

CofRep(γ) and the constant functor (Fγ, Fγ → γ). ☐
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For the reader’s convenience we reformulate our main result.

Corollary 1.11 Let C be a small category, and V a cofibrantly generated symmetric monoidal
model category whose unit is cofibrant. There exists a functor y ∶ C → UVC into a model
V-category, universal in the sense that for any solid diagram

C

γ !!

y // UVC

L
��
M

withM a model V-category, there exists a left Quillen V-functor L as indicated by the dotted
arrow, unique up to a contractible choice, making the diagram commutative up to a weak
equivalence Ly → γ.

Remark 1.12 One can dualize the discussion of this section in order to obtain universal

model V-categories for right Quillen V-functors, as in [1919, §4]. Unsurprisingly, one finds

that this universal model V-category associated to C is given by [C ,V]op with the opposite of
the projective model structure. This can also be deduced from Corollary 1.111.11 applied to Cop.

2. Universal model dg categories
We now specialize to the case of dg categories. Fix a commutative unital ring Λ, denote

byMod(Λ) the category of Λ-modules, and by Cpl(Λ) the category of unbounded chain
complexes of Λ-modules. Our conventions for chain complexes are homological, i. e. the

differentials decrease the indices, and the shift operator satisfies (A[p])n = Ap+n . The

subobject of n-cycles (resp. n-boundaries) of A is denoted by ZnA (resp. BnA). As usual, the
nth homology is denoted by HnA = ZnA/BnA.

Cpl(Λ) has a tensor product, defined by

(A⊗ B)n = ⊕p+q=nAp ⊗ Bq

with the Koszul sign convention for the differential. It also admits the “projective model

structure” for which the weak equivalences are the quasi-isomorphisms, and the fibrations the

epimorphisms (i. e. the degreewise surjections). In that way, Cpl(Λ) becomes a symmetric

monoidal model category. In this section we always take V to be Cpl(Λ). The universal

model category underlying a model dg category (UdgC)0 will now be denoted by UC. The

complex of morphisms from K to K′ in UdgC is denoted by homdg(K ,K′) ∈ Cpl(Λ). Recall
that it is given explicitly by Tot∏(homPSh(C ,Λ)(Kp ,K′q))p ,q .

Our main goal in this section is to better understand the model structure onUC (defined
in Fact 1.31.3). In the last part we will also discuss a specific instance of a left dg Kan extension

used in the following chapter.

2.1. Basic properties of the model category UC. By Fact 1.81.8 we know that UdgC is
a model dg category, and a (symmetric) monoidal model dg category if C is (symmetric)

monoidal. It follows from Fact 1.31.3 that the model category UC is about as nice as it can get.

Corollary 2.1 UC is a
(1) proper,
(2) stable,
(3) tractable (in particular combinatorial),
(4) cellular,
model category.
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We will now describe explicitly sets of generating (trivial) cofibrations.

Definition 2.2 Let, for any presheaf F, SnF be the complex of presheaves which has F
in degree n and is 0 otherwise, and let DnF be the complex of presheaves which has F in

degree n and n − 1, is 0 otherwise, and whose nontrivial differential is given by the identity

on F. There exists a canonical morphism Sn−1F → DnF. Let I be the set of morphisms

Sn−1Λ(c) → DnΛ(c) for all c ∈ C and let J be the set of maps 0→ DnΛ(c).
Notice that there are adjunctions

(Sn , Zn) and (Dn
, (●)n) ∶ PSh(C , Λ) → UC .

The same arguments as in [3636, Pro. 2.3.4, 2.3.5] then establish the following result.

Fact 2.3 A morphism in UC is a fibration (resp. trivial fibration) if and only if it has the right
lifting property with respect to J (resp. I).

We will use another set of generating cofibrations later on.

Definition 2.4 Given a presheaf F of Λ-modules, let ∆nF be the complex which has F in

degree n and F ⊕ F in degree n − 1, and zero otherwise, and whose only non-zero differential
is given by id × (−id) ∶ F → F ⊕ F. Define also ∂∆nF to be the complex which has F ⊕ F in

degree n − 1 and 0 otherwise. Let I′ be the set of morphisms ∂∆nΛ(c) → ∆nΛ(c) which is

the identity in degree n, for all n ∈ Z and c ∈ C .
Lemma 2.5 A morphism in UC is a trivial fibration if and only if it has the right lifting
property with respect to I′.

Proof. Morphisms in I′ are cofibrations by Fact 2.112.11. Conversely we will exhibit any

morphism in I as a retract of some morphism in I′. Thus fix c ∈ C and n ∈ Z, and consider

the following diagram:

SnΛ(c)
id×(−id)//

��

∂∆n+1Λ(c)
(id,0) //

��

SnΛ(c)

��
Dn+1Λ(c) r // ∆n+1Λ(c) s // Dn+1Λ(c)

Here, r in degree n is id × (−id) and in degree n + 1 is id, while s in degree n is the first

projection and in degree n + 1 the identity. It is easy to see that the diagram commutes and

the compositions of each row are the identity morphism. ☐

2.2. Projective cofibrations. Since the fibrations and weak equivalences are given ex-

plicitly in UC our goal is to better understand the cofibrations. They are called projective

cofibrations. The discussion runs parallel to the description of projective cofibrations for the

category of chain complexes (i. e. the case of C the terminal category), in [3636, §2.3].

Lemma 2.6 If f ∶ K → K′ ∈ UC is a trivial fibration then f induces a surjective morphism
f ∶ ZnK → ZnK′ for all n ∈ Z.

Proof. Since f is degreewise surjective, it induces a surjective morphism on the bound-

aries BnK → BnK′. Now consider the morphism of exact sequences:

BnK //

��

ZnK //

��

HnK

��
BnK′ // ZnK′ // HnK′
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The first and last vertical arrows are surjective, hence the middle one is too. ☐

Definition 2.7 A presheaf of Λ-modules F ∈ PSh(C , Λ) is called projective if
homPSh(C ,Λ)(F , ●) ∶ PSh(C , Λ) →Mod(Λ)

is exact.

Example 2.8 For any c ∈ C the representable presheaf Λ(c) is projective. Direct sums of

projectives are projective.

Lemma 2.9 For any projective presheaf F ∈ PSh(C , Λ), the complex S0F is projective cofi-
brant.

Proof. We have to prove that for any trivial fibration f ∶ K → K′ ∈ UC, the induced
morphism

homUC(S0F ,K) → homUC(S0F ,K′)
is surjective. But for any complex L ∈ UC, we have

homUC(S0F , L) = homMod(Λ)(F , Z0L).
Now the result follows from Lem. 2.62.6. ☐

Fact 2.10 Let K ∈ UC. If K is projective cofibrant then each Kn is a projective presheaf. As a
partial converse, if K is bounded below and each K i is projective then K is projective cofibrant.

Proof. The proof of [3636, Lemma 2.3.6] applies. ☐

Fact 2.11 A map f ∶ K → K′ ∈ UC is a projective cofibration if and only if f is a degreewise
split injection and the cokernel of f is projective cofibrant.

Proof. The proof of [3636, Pro. 2.3.9] applies. ☐

Corollary 2.12 Let K = limÐ→n∈N
K(n) ∈ UC, such that K(n) is projective cofibrant and

bounded below for each n, and such that the transition morphisms K(n) → K(n+1) are de-
greewise split injective. Then K is projective cofibrant.

Proof. We use the fact that K is a sequential colimit of projective cofibrant objects

with transition morphisms which are split injective in each degree hence the cokernel has

projective objects in each degree. This implies together with boundedness and the previous

lemma that the transition morphisms are projective cofibrations. Hence K is projective

cofibrant. ☐

Independently of monoidal structures on C, we can always define an objectwise tensor

product on presheaves. The following lemma gives a necessary and sufficient condition for

this product to be a Quillen bifunctor.

Lemma 2.13 UC is a symmetric monoidal model category for the objectwise tensor product if
and only if for any pair of objects c, d ∈ C, the presheaf of Λ-modules Λ(c)⊗Λ(d) is projective.

Proof. Since representables are cofibrant (Fact 2.102.10) the condition is clearly necessary.

For the converse, it suffices to prove the pushout-product i ◻ j a (trivial) cofibration if i and
j are generating cofibrations (and one of them a generating trivial cofibration). By Fact 2.32.3, i
and j are of the form i′ ⊙Λ(c) and j′ ⊙Λ(d) for cofibrations i′, j′ of Cpl(Λ) (one of which
is acylic), c, d ∈ C. i ◻ j can then be identified with (i′ ◻ j′) ⊙ (Λ(c) ⊗ Λ(d)). i′ ◻ j′ is a
(trivial) cofibration since Cpl(Λ) is a symmetric monoidal model category. If Λ(c) ⊗ Λ(d)
is projective then Lemma 2.92.9 together with Fact 1.81.8 yields what we want. ☐
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2.3. Dold-Kan correspondence. Fix an abelian categoryA. We start by recalling some

basic constructions relating simplicial objects and connective chain complexes inA.
Given a simplicial object a● in A, one can associate to it a connective chain complex

(called the Moore complex, and usually still denoted by a●) which is an in degree n and

whose differentials are given by

n
∑
i=0
(−1)id i ∶ an → an−1 .

This clearly defines a functor ∆opA → Cpl≥0(A). Since every object in ∆opA is canonically

split, we get a second functor N ∶ ∆opA → Cpl≥0(A), which associates to a● the normalized

chain complex:

N(a●)n =
n−1
⋂
i=0

ker(d i ∶ an → an−1), (−1)ndn ∶ N(a●)n → N(a●)n−1 .

Clearly, there is a canonical embedding N(a●) ⊂ a● but more is true:

Fact 2.14 (1) The inclusion N(a●) → a● is a natural chain homotopy equivalence.
(2) There is a functorial splitting a● = N(a●) ⊕ N ′(a●) and N ′ is an acyclic functor.
(3) N is an equivalence of categories with quasi-inverse Γ.
(4) For any n ∈ N, there is a natural isomorphism πnΓ ≅ Hn .

In particular, we obtain a sequence of adjunctions

∆opSet
Λ //

∆opMod(Λ)
N //

oo Cpl≥0(Λ)
//

Γ

oo Cpl(Λ)
τ
≥0

oo , (2.15)

where the first is the “free-forgetful” adjunction, and the last is the obvious adjunction

between connective and unbounded chain complexes involving the good truncation functor

τ≥0. Endow the category of simplicial sets with the Bousfield-Kan model structure for which

cofibrations are levelwise injections and weak equivalences are weak homotopy equivalences,

i. e. isomorphisms on the homotopy groups. By transfer along the forgetful functor this

induces a model structure on simplicial Λ-modules, for which the Dold-Kan correspondence

becomes a Quillen equivalence with the projective model structure on Cpl≥0(Λ) (i. e. weak
equivalences are quasi-isomorphisms, fibrations are surjections in positive degrees). It is

clear that the last adjunction in (2.152.15) is Quillen as well.

Proposition 2.16 The sequence in (2.152.15) induces a Quillen adjunction

(NΛ, Γτ≥0) ∶ ∆op PSh(C) → UC .

Here both categories are equipped with the projective model structure.

Proof. Consider presheaves on C with values in the different categories appearing

in (2.152.15). There is an induced sequence of adjunctions between these presheaf categories,

similar to (2.152.15). If we endow each of them with the projective model structure, then each of

the right adjoint preserves (trivial) fibrations by our discussion above. ☐

Lemma 2.17 Let K ∈ UC be cofibrant, K′ ∈ UC arbitrary. Then

Γτ≥0 homdg(K ,K′)

is a (left) homotopy function complex from K to K′ (in the sense of [3535, Def. 17.1.1]).
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Proof. Since K is cofibrant, the functor ●⊙K ∶ Cpl(Λ) → UC is left Quillen, with right

adjoint homdg(K , ●). We know that ∆● is a (the “standard”) cosimplicial resolution of the

terminal object in simplicial sets. By [3535, Pro. 17.4.16], the left homotopy function complex

from K to K′ is then given by

homdg(NΛ(∆●) ⊙ K ,K′) ≅ ∆op
Set(∆● , Γτ≥0 homdg(K ,K′)) ≅ Γτ≥0 homdg(K ,K′).

☐

Corollary 2.18 Let K ,K′ ∈ UC and assume that K is cofibrant. For any n ∈ Z, there is a
natural isomorphism

homHo(UC)(K ,K′[n]) ≅ Hn homdg(K ,K′). (2.19)

Proof. By [3535, Pro. 17.7.1], π0Γτ≥0 homdg(K ,K′[n]) is naturally isomorphic to the set

of homotopy classes from K to K′[n] which is equal to the left hand side of (2.192.19), by general

properties of model categories. But

π0Γτ≥0 homdg(K ,K′[n]) ≅ H0 homdg(K ,K′[n])
≅ Hn homdg(K ,K′). ☐

Lemma 2.20 Let K ∈ ∆opUC be a simplicial object in UC. Then the homotopy colimit
L colim∆op K is given by

Tot
⊕(K) ≃ Tot⊕(NK).

Proof. The categoryUC together with the class of quasi-isomorphisms and the functor

Tot
⊕ ∶ ∆opUC → UC defines a “simplicial descent category” in the sense of [6363, 6262], see [6262,

§5.2]. The result for the first object now follows from [6363, Thm. 5.1.i]. Since the Moore

complex and the normalized complexes are homotopy equivalent (see Fact 2.142.14), the result

for the second object follows from this (or see [6262, Rem. 5.2.3]). ☐

TheMoore and normalized complexes also induce functors from cosimplicial objects to

coconnective chain complexes.

Lemma 2.21 Let K ∈ ∆UC be a cosimplicial object inUC. Then the homotopy limit R lim∆ K
is given by

Tot∏(K) ≃ Tot∏(NK).
Proof. This can be deduced from the proof of the previous lemma by passing to the

opposite categories. ☐

Finally, we will often use the following result in chapter IVIV.

Lemma 2.22 The derived category Ho(UC) is compactly generated by the representable
objects.

Proof. If homHo(UC)(Λ(c),K[n]) = 0 for every c ∈ C and n ∈ Z then this means by

Lemma 2.182.18 that K is objectwise acyclic and hence the zero object in the derived category.

Moreover, given a set (K(i))i∈I of objects in UC and c ∈ C, the canonical morphism

⊕
i
homHo(UC)(Λ(c),K(i)) → homHo(UC)(Λ(c),⊕

i
K(i))

is identified, again by Lemma 2.182.18, with

⊕
i
H0K(i)(c) → H0⊕

i
K(i)(c),

which is invertible, thus the representable objects are also compact. ☐
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2.4. An example of a left dg Kan extension. Wewould now like to give a more explicit

description of the left dg Kan extension in a specific situation arising in chapter IVIV. The

setup is as follows: Let C be a small ordinary category, and B a cocomplete Λ-linear category

which is tensored overMod(Λ). Finally, we are given a functor γ ∶ C → Cpl(B).
First, notice that Cpl(B) is canonically a dg category, and the tensors on B induce a

tensor operation of Cpl(Λ) on Cpl(B), by
(K ⊙ B)n = ⊕p+q=nKp ⊙ Bq

with the usual differentials.

Notice that by considering a presheaf of Λ-modules as concentrated in degree 0, we can

consider the restriction of γ∗ to PSh(C , Λ), still denoted by γ∗. The following lemma gives

an alternative characterization of (the underlying functor of) such a left dg Kan extension.

Lemma 2.23
(1) γ∗ is the composition

UC Cpl(γ∗)ÐÐÐÐ→ Cpl(Cpl(B)) Tot
⊕

ÐÐ→ Cpl(B). (2.24)

(2) Conversely, γ∗ is characterized (up to natural isomorphism) by:
(a) γ∗ admits a factorization as in (2.242.24).
(b) γ∗ is cocontinuous.
(c) γ∗ ○ Λ(●) ≅ γ naturally.

Proof.

(1) This follows easily from our definition of the tensor operation on Cpl(B) together with
the fact that colimits in Cpl(B) are computed degreewise.

(2) We know that γ∗ satisfies the three properties in the statement. Conversely, let us prove

that they characterize a functor G completely (in terms of γ). By the first property we
reduce to prove it for a presheaf K concentrated in degree 0. Then:

G(K) ≅ G( ∫ c
K(c)cst ⊗ Λ(c)) by the Yoneda lemma

≅ ∫ c
G(K(c)cst ⊗ Λ(c)) by cocontinuity.

We are thus reduced to show

G(Kcst ⊗ Λ(c)) ≅ K ⊙ γ(c),
naturally inmodulesK and objects c ∈ C. For this we can take a functorial exact sequence

⊕I2Λ
αÐ→ ⊕I1Λ → K → 0

of Λ-modules, by which we easily reduce to K free using the cocontinuity of G. Again
by cocontinuity we further reduce to K = Λ and then our contention follows from the

third property. ☐

3. Cofibrant replacement
Our goal in this section is to resolve functorially any presheaf of complexes by a cofibrant

object made up of representables. It is clear how to resolve a single presheaf of Λ-modules,

and it is also not difficult to extend this to bounded below complexes of presheaves (essentially

due to Fact 2.102.10). As the example in [3636, 2.3.7] shows, not every complex of representables is

cofibrant hence naively extending the procedure to the unbounded case might apriori run

into problems. However, we will show that such problems do not occur.
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3.1. Preliminaries from homological algebra. Recall the following basic facts in ho-

mological algebra.

Lemma 3.1 LetA be a Grothendieck abelian category, and let D,D′ ∶ N→ Cpl(A) be two
diagrams of complexes in A (N considered as an ordered set). If g ∶ D → D′ is a morphism
of diagrams of complexes which is objectwise a quasi-isomorphism, then also limÐ→ g is a quasi-
isomorphism.

Proof. The sequence

0→ ⊕n≥0Dn → ⊕n≥0Dn → limÐ→D → 0

is exact, where the second arrow on Dn is defined to be id − Dn→n+1. Indeed, the only
non-trivial part is exactness on the left, and for this one notices that the analogous map

⊕m
n=0An → ⊕m+1

n=0An

is a mono and hence stays so after taking the limit over m becauseA satisfies (AB5).

g then induces amorphism of short exact sequences of complexes and hence amorphism

of distinguished triangles in the derived category (which exists becauseA is a Grothendieck

category). It is then clear that the two vertical arrows ⊕n gn are isomorphisms in the derived

category hence so is the third vertical arrow, limÐ→ g. ☐

Lemma 3.2 LetA be an abelian Grothendieck category and let C ,C′ be two bounded below
bicomplexes (i.e. C●,q = 0 for all q ≪ 0) in A, and let f ∶ C → C′ be a morphism of
bicomplexes. If f●,q ∶ C●,q → C′●,q is a quasi-isomorphism of complexes for all q, then Tot

⊕( f )
is a quasi-isomorphism.

Proof. Without loss of generality, C●,q = 0 for all negative q. Let C(n) = C●,≤n , n ≥ 0,
be the stupid truncation. In other words, C(n) is the subbicomplex of C satisfying

C(n)p ,q ∶=
⎧⎪⎪⎨⎪⎪⎩

Cp ,q ∶ q ≤ n
0 ∶ q > n;

similarly for C′ and f . We claim that Tot
⊕( f (n)) is a quasi-isomorphism for all n. This

is proved by induction on n. For n = 0 it is true because of our assumption on f . For the
induction step we use the short exact sequence

0→ Tot
⊕(C(n − 1)) → Tot

⊕(C(n)) → C●,n[−n] → 0

of complexes inA. f gives rise to a morphism of short exact sequences, where the induction

hypothesis for n − 1 together with our assumption on f show that the outer two arrows

are quasi-isomorphisms. By the 5-lemma also the middle one, i. e. Tot
⊕( f (n)), is a quasi-

isomorphism.

Now apply the previous lemma to Dn = Tot
⊕(C(n)), D′n = Tot

⊕(C′(n)), and gn =
Tot
⊕( f (n)) to get the result. (One uses here that Tot⊕ preserves colimits.) ☐

3.2. Construction and proof. Consider the functor category PSh(C , Λ). It is a Grothen-
dieck abelian category. We call an object of PSh(C , Λ) semi-representable if it is a small

coproduct of representables. An SR-resolution of an object K ∈ PSh(C , Λ) is a complex

K● of semi-representables in PSh(C , Λ) together with a quasi-isomorphism of complexes

K● → S0K. Similarly one defines SR-resolutions for complexes in PSh(C , Λ). Note that a
bounded below SR-resolution is a cofibrant replacement by Fact 2.102.10.
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Lemma 3.3 Objects in PSh(C , Λ) possess a functorial SR-resolution; more precisely there
exists a functor

P ∶ PSh(C , Λ) → UC
together with a natural transformation P → S0 satisfying:

● the components of P → S0 are all bounded below SR-resolutions;
● P maps the zero morphism to the zero morphism;
● P takes injective morphisms to degreewise split injective morphisms.

Proof. Let K be an arbitrary object of PSh(C , Λ). There is a canonical epimorphism

K0 ∶= ⊕
K(c)/0

Λ(c) → colim
K(c)

Λ(c) ∼ÐÐ→ K .

Taking the kernel and repeating this construction we get a complex K● together with a

quasi-isomorphism K● → S0K.
Given f ∶ K → K′ and x ∈ K(c)/0 such that f (x) = 0, the component Λ(c) correspond-

ing to x is mapped to 0, otherwise it maps identically to Λ(c) corresponding to f (x). It is
easily checked that this induces a morphism ker(K0 → K) → ker(K′0 → K′) hence repeating
we obtain P( f ) ∶ P(K) → P(K′). Functoriality is clear.

If f is injective then by this description f0 ∶ K0 → K′0 is split injective, and the induced

morphism ker(K0 → K) → ker(K′0 → K′) is injective. Repeating this argument, we see that

the induced morphism P( f ) is degreewise split injective. ☐

Proposition 3.4 There exists an endofunctor Q ∶ UC → UC together with a natural transfor-
mation Q → id satisfying:

● the components of Q → id are trivial fibrations;
● the image of Q consists of projective cofibrant complexes of semi-representables.

In particular, Q is a cofibrant replacement functor.

Proof. Apply the functor P of the previous lemma in each degree, obtaining an SR-

resolution P(Kn) of Kn for each n ∈ Z. We get maps P(Kn) → P(Kn−1) of complexes which

in total define a bicomplex P(K) ∶= P●(K●) (since P takes 0 to 0) together with a map of

bicomplexes P(K) → K, the latter concentrated in horizontal degree 0. Taking the total

complexes yields a morphism

Q(K) ∶= Tot⊕(P●(K●)) → Tot
⊕(K●) = K . (3.5)

Functoriality follows from functoriality in the previous lemma as well as functoriality of

Tot
⊕
. It remains to prove that (3.53.5) is a quasi-isomorphism with projective cofibrant domain.

For this let τ≥nK (n ∈ Z) be the subcomplex of K satisfying

(τ≥nK)q =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Kq ∶ q > n
ZnK ∶ q = n
0 ∶ q < n.

Note that there are canonical morphisms τ≥nK → τ≥n−1K and the canonical morphism

limÐ→n∈N
τ≥−nK → K is an isomorphism. But also limÐ→n∈N

P(τ≥−nK) → P(K) is an isomor-

phism of bicomplexes. Since the total complex functor commutes with colimits we conclude

that limÐ→n∈N
Q(τ≥−nK) → Q(K) is an isomorphism.

By the previous lemma, P(τ≥−nK) → P(τ≥−(n+1)K) is a bidegreewise split injection
hence Q(τ≥−nK) → Q(τ≥−(n+1)K) is a degreewise split injection. It follows from Corol-

lary 2.122.12 that Q(K) is projective cofibrant. Also by the previous lemma, P(τ≥−nK) → τ≥−nK
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is a quasi-isomorphism in each row. It follows from Lemma 3.23.2 that Q(τ≥−nK) → τ≥−nK is

a quasi-isomorphism. (3.53.5) being the sequential colimit of these morphisms, Lemma 3.13.1 tells

us that also (3.53.5) is a quasi-isomorphism. ☐

Remark 3.6 Even if this result is not very useful from a practical point of view, it does

provide a conceptually satisfying method to compute the derived functor of a left dg Kan

extension in the context of §2.42.4. Indeed, fix a functor γ ∶ C → Cpl(B) for a Mod(Λ)-
cocomplete Λ-linear category B, and assume that γ∗ is a left Quillen functor. The image of

any K ∈ UC under Lγ∗ can be computed as follows:

(1) Resolve K by a cofibrant complex QK of semi-representables.

(2) Apply γ to each representable in QK obtaining a bicomplex γ(QK) in B.
(3) Take the total complex Tot

⊕(γ(QK)).

4. Local model structures
Having dealt with “generators” for universal enriched homotopy theories in §11 and for

universal dg homotopy theories in more detail in the subsequent sections, we now turn to

“relations”. The only sort of relations wewill be interested in here are “topological”, i. e. induced

by a Grothendieck topology on C. Unfortunately we are not able to prove any substantial
facts in the general enriched setting which is why we again restrict to the case of dg categories.

Here, our main result is completely analogous to the main result of [2020] where it is shown

that a simplicial presheaf in the Jardine local model structure is fibrant if and only if it is

injective fibrant and satisfies descent with respect to hypercovers.

Throughout this section we assume that C is endowed with a Grothendieck topology

τ. Let Shτ(C) (resp. Shτ(C , Λ)) denote the category of τ-sheaves (resp. of sheaves of Λ-
modules) on C. The embedding Shτ(C) → PSh(C) (resp. Shτ(C , Λ) → PSh(C , Λ)) is right
adjoint to the sheafification functor aτ .

4.1. Hypercovers and descent. Recall ([2020, §3]) that a morphism f of presheaves is a
generalized cover if its sheafification aτ( f ) is an epimorphism.

Definition 4.1 For any object c ∈ C a τ-hypercover of c is a simplicial presheaf of sets c● on
C with an augmentation map c● → c =∶ c−1 such that

● cn is a coproduct of representables for all n ∈ N, and
● cn → (coskn−1skn−1c●)n is a generalized cover for all n ∈ N.

(To avoid any confusion, the cases n = 0, 1 of the second bullet point require c0 → c and
d0 × d1 ∶ c1 → c0 ×c c0 to be generalized covers, respectively.) A refinement of a hypercover
c● → c is a hypercover c′● → c together with a morphism of simplicial presheaves c′● → c●
compatible with the augmentation by c. The class of all τ-hypercovers of c is denoted by

Hτ ,c . Also set Hτ ∶= ∐c∈CHτ ,c . A subclass H of Hτ (resp. Hτ ,c) is called dense if every
τ-hypercover (resp. of c) admits a refinement by a hypercover inH.

We refer to [2020] for details about hypercovers. In particular, we recall without proof the

following important fact.

Fact 4.2 ([2020, Pro. 6.7]) For every c ∈ C, there exists a dense subset ofHτ ,c . Therefore also
Hτ admits a dense subset.

In the case of simplicial presheaves the τ-hypercovers provide the “topological” relations
in that the hypercover c● and the representable c are “identified”, and we want to translate

these relations to the setting of presheaves of complexes. For this notice that given any
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hypercover c● → c we can use the Moore complex (cf. §2.32.3) to obtain an object Λ(c●) ∈ UC
together with a morphism Λ(c●) → Λ(c). Explicitly, Λ(c●) is the complex

⋯ → Λ(c1) → Λ(c0) → 0

with differentials given by the alternating sum of the face maps, and each Λ(c i) is semi-

representable. It follows from Lemma 2.102.10 that Λ(c●) is projective cofibrant.

Definition 4.3
(1) Let S be a class of τ-hypercovers. A presheaf K ∈ UC satisfies S-descent if for any

τ-hypercover c● → c in S ,
K(c) = homdg(Λ(c),K) → homdg(Λ(c●),K) =∶ K(c●)

is a quasi-isomorphism of chain complexes.

(2) K ∈ UC satisfies τ-descent if it satisfiesHτ-descent.

Explicitly, K(c●) is given by the product total complex of the bicomplex

K(c0) → K(c1) → ⋯,
where K(∐i∈I d i) for d i ∈ C is defined as∏i∈I K(d i).

Remark 4.4 The notion of satisfying descent is homotopy invariant, i. e. given two quasi-

isomorphic presheaves of complexes, one satisfies S-descent if and only if the other does.

Indeed, as we know from Fact 1.81.8, homdg ∶ (UC)op × UC → Cpl(Λ) is part of a Quillen

adjunction of two variables. And since every object in UC is fibrant, and since both Λ(c●)
and Λ(c) are cofibrant (by Fact 2.102.10), the condition on K to satisfy descent is that

R homdg(Λ(c),K) → Rhomdg(Λ(c●),K)
be an isomorphism in the derived category of Λ. This is different from the situation of

simplicial presheaves of sets where c● is not necessarily projective cofibrant. Thus the interest

in split hypercovers, cf. [1919, Cor. 9.4].

We end this section by the following important result. In terminology to be introduced

shortly it tells us that the augmentation morphism Λ(c●) → Λ(c) associated to any τ-
hypercover is a τ-local equivalence.

Fact 4.5 ([11, Thm. V, 7.3.2]) Any τ-hypercover c● → c induces identifications

aτHnΛ(c●) ≅
⎧⎪⎪⎨⎪⎪⎩

aτΛ(c) ∶ n = 0
0 ∶ n ≠ 0

in Sh(C , Λ).

4.2. Localization.

Definition 4.6 Amorphism f inUC is called a τ-local equivalence if the inducedmorphism

of homology sheaves aτHn( f ) is an isomorphism for all n ∈ Z.

The goal of this section is to prove the following theorem.

Theorem 4.7 The left Bousfield localization UC/τ of UC with respect to τ-local equivalences
exists and satisfies:
(1) The underlying category of UC/τ is the one of UC. The cofibrations are also the same. The

weak equivalences are the τ-local equivalences.
(2) UC/τ is a proper, tractable, cellular, stable model category.
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(3) The fibrations ofUC/τ are the fibrations ofUC whose kernel satisfies τ-descent. In particular,
the fibrant objects of UC/τ are the objects satisfying τ-descent.

The model structure on UC/τ is called the τ-local model structure.

Remark 4.8 This result was originally one of our main motivations to write the present

chapter. The existence of this localization was known before, see [22, Def. 4.4.34], and we use

this result in our proof. The main point of the theorem for us was part (3)(3). The analogous

description of the fibrant objects for simplicial sets instead of chain complexes is of course

the main result of [2020], and we deduce our result from theirs.

After having completed this chapter, we learned that also part (3)(3) had appeared in the

literature before, see [3333]. His proof is different from ours in that he does not reduce to the

case of simplicial sets nor uses the theory of Bousfield localizations but proves the axioms of

a model structure “by hand”.

Let S ⊂ Hτ be some class of τ-hypercovers. We denote by Λ(S)[Z] the class
{Λ(c●)[n] → Λ(c)[n] ∣ c● → c ∈ S , n ∈ Z}

of morphisms in UC.

Definition 4.9
(1) Recall ([3535, Def. 3.1.4]) that an object K in UC is called local with respect to a class of

morphisms F in UC if for each f ∈ F , the induced morphism of homotopy function

complexes Rmap( f ,K) is a weak homotopy equivalence of simplicial sets.

(2) Let S be a class of τ-hypercovers. We say that K ∈ UC is S-local if it is local with respect

to Λ(S)[Z].
(3) We say that K ∈ UC is τ-local if it isHτ-local.

Lemma 4.10 For a presheaf of complexes K ∈ UC and a class S of τ-hypercovers the following
two conditions are equivalent:
(1) K is S-local.
(2) K satisfies S-descent.
In particular, the following two conditions are equivalent:
(1) K is τ-local.
(2) K satisfies τ-descent.

Proof. K is S-local if and only if for any c● → c ∈ S , n ∈ Z, the morphism of homotopy

function complexes

Rmap(Λ(c)[n],K) → Rmap(Λ(c●)[n],K) (4.11)

is a weak equivalence of simplicial sets. But Rmap(A, B) ≅ Γτ≥0UC(A, B) by Lemma 2.172.17.

So (4.114.11) is identified with

Γτ≥−nK(c) → Γτ≥−nK(c●),
whose m-th homotopy group is thus

Hm−nK(c) → Hm−nK(c●). ☐

We will deduce Theorem 4.74.7 from the following (cf. [2020, Thm. 6.2]).

Theorem 4.12 Let S be a class of τ-hypercovers which contains a dense subset. Then the left
Bousfield localization UC/S of UC with respect to Λ(S)[Z] exists and coincides with UC/τ.
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Proof of Theorem 4.74.7. Let S be the class of all τ-hypercovers. By Fact 4.24.2, S satisfies

the assumption of Theorem 4.124.12. We know fromCorollary 2.12.1 thatUC is left-proper, tractable,
cellular. These are preserved by left Bousfield localizations by [3535, Thm. 4.1.1] and [3838, Pro. 4.3].

Since S-local objects are closed under shifts by Lemma 4.104.10, UC/S and therefore UC/τ are
stable model categories (see [88, Pro. 3.6]). Since UC is a right proper model category so is

UC/τ by [88, Pro. 3.7]. Since all objects are fibrant in UC, the fibrant objects of UC/S are the

τ-local objects. We deduce from Lemma 4.104.10 and Theorem 4.124.12 that the fibrant objects of

UC/τ are precisely the presheaves satisfying τ-descent. The description of the fibrations in

UC/τ then follows from this and [88, Lem. 3.9]. Finally, that the weak equivalences of UC/τ
are the τ-local equivalences is proven in [22, Pro. 4.4.32]. ☐

Assume for the moment that S in Theorem 4.124.12 is a set. In this case we know that the left

Bousfield localization UC/S (resp. ∆op PSh(C)/S) with respect to Λ(S)[Z] (resp. S) exists.
Temporarily, we call these model structures the S-local model structures, their fibrations are

called S-fibrations, their weak equivalences are called S-equivalences.
Lemma 4.13 The Dold-Kan correspondence (Proposition 2.162.16) induces a Quillen adjunction

(NΛ, Γτ≥0) ∶ ∆op PSh(C)/S Ð→ UC/S .
Moreover, Γτ≥0 preserves τ-local equivalences.

Proof. Given f ∶ c● → c ∈ S , the morphism NΛ( f ) factors as

NΛ(c●) → Λ(c●)
Λ( f )ÐÐ→ Λ(c),

where the first arrow is a quasi-isomorphism by Fact 2.142.14, and the second arrow lies in

Λ(S)[Z]. Thus the first claim follows from the universal property of localizations. The

second claim is also evident since the homotopy groups of Γτ≥0K are the homology groups

of K in non-negative degrees, by Fact 2.142.14. ☐

Lemma 4.14 Let K ,K′ ∈ UC be S-fibrant objects and let f ∶ K → K′ be an S-fibration which
is also a τ-local weak equivalence. Then f is a sectionwise trivial fibration, i. e. it is a trivial
fibration in the projective model structure on UC.

Proof. A morphism f ∶ K → K′ ∈ UC is a trivial fibration if and only if for all c ∈ C and
all n ∈ Z, f has the right lifting property with respect to ∂∆nΛ(c) → ∆nΛ(c) (see Lemma

2.52.5).

Let i ∶ (∂∆1) ⊗ c → ∆1 ⊗ c be the canonical cofibration of simplicial presheaves. Then

NΛ(i) is also a cofibration and NΛ((∂∆1) ⊗ c) = ∂∆1Λ(c) and NΛ(∆1 ⊗ c) = ∆1Λ(c).
Also note that ∂∆nΛ(c) = ∂∆1Λ(c)[−n+ 1], and similarly for ∆nΛ(c). We want to show the

existence of a lifting for every diagram of the following form

∂∆nΛ(c) //

��

K

��
∆nΛ(c) // K′

Now using shifts this is the same as showing that

∂∆1Λ(c) //

��

K[n − 1]

��
∆1Λ(c) // K′[n − 1]
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has a lift. Notice that the right vertical arrow is still an S-fibration.
But using the adjunction of Lemma 4.134.13 this is the same as showing that

∂∆1 ⊗ c //

��

Γτ≥0(K[n − 1])

��
∆1 ⊗ c // Γτ≥0(K′[n − 1])

has a lift, where we know that the right vertical arrow is anS-fibration and τ-local equivalence
between S-fibrant objects. Hence by [2020, Lem. 6.5] it is a trivial fibration sectionwise. Now

i ∶ (∂∆1) ⊗ c → ∆1 ⊗ c is a projective cofibration, hence there is a lift in the last diagram

above. This finishes the proof. ☐

Proof of Theorem 4.124.12. Let S be as in the theorem, and pick a dense subset S ′ of S .
We claim that the S ′-local equivalences in UC are precisely the τ-local equivalences.

Indeed, by Fact 4.54.5, every S ′-local equivalence is a τ-local equivalence. For the converse,
we may apply [2020, Lem 6.4] together with Lemma 4.144.14 (we also use the existence of the

τ-local model structure, see Remark 4.84.8). This proves the claim which in turn implies that

UC/S ′ = UC/τ.
We deduce that every hypercover in S is an S ′-equivalence hence the localization of

UC with respect to Λ(S)[Z] exists and coincides with UC/S ′. ☐

Let us agree to call a model categoryM equipped with a functor γ ∶ C →M τ-local if
for every τ-hypercover c● → c in C, L colim∆op γ(c●) → γ(c) is an isomorphism inHo(M).
In line with the viewpoint taken in §11 let us record the following corollary of Theorem 4.74.7. It

asserts that UdgC/τ is the universal τ-local model dg category associated to C.

Corollary 4.15 Let (C , τ) be a small site. Then there exists a functor Λ ∶ C → UdgC/τ into a
τ-local model dg category, universal in the sense that for any solid diagram

C

γ
""

Λ // UdgC/τ

L
��
M

withM a τ-local model dg category, there exists a left Quillen dg functor L as indicated by the
dotted arrow, unique up to a contractible choice, making the diagram commutative up to a
weak equivalence LΛ → γ.

Proof. UdgC/τ as a dg category is justUdgC and the cofibrations are the same hence to

prove that UdgC/τ is a model dg category, it suffices to see that the pushout-product i ◻ f
is a τ-weak equivalence for every cofibration i in Cpl(Λ) and every τ-acyclic cofibration
f ∈ UC. This can be established exactly as in the proof of [99, Thm. 4.46]. (For this step

it is not necessary to assume as is done in loc. cit. that the localization is with respect to

a set but only that it exists.) The essential point is that UC is a tractable model category

(by Proposition 2.12.1).

Next we claim that L colim∆op Λ(c●) → Λ(c) is an isomorphism in Ho(UdgC/τ). But
by Lemma 2.202.20, this morphism can be identified with Λ(c●) → Λ(c) hence the claim follows

from Lemma 4.54.5.

Given a solid diagram as in the statement of the corollary we know by Corollary 1.111.11

the existence of a left Quillen dg functor L ∶ UdgC →M, unique up to contractible choice,

making the triangle commutative up to a weak equivalence Ly → γ. By the universal property
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of the localization of model categories together with Theorem 4.124.12, it now suffices to prove

that the left derived functor LL takes Λ(Hτ)[Z] to isomorphisms in Ho(M). Thus let

c● → c ∈ Hτ and n ∈ Z. First notice that L “commutes with shifts” in the sense that

L(●[n]) ≅ L(Sn ⊙ ●) ≅ Sn ⊙ L(●),

and sinceM is a model dg category, Sn ⊙ ● preserves weak equivalences. We thus reduce to

the case n = 0.
Now, again by Lemma 2.202.20, Λ(c●) can be identified with the homotopy colimit of Λ(c●).

Since L is a left Quillen dg functor it will commute with homotopy colimits in the homotopy

category. Thus we want the upper row in the following commutative square to be invertible

inHo(M).
L colim∆op LΛ(c●) //

��

LΛ(c)

��
L colim∆op γ(c●) // γ(c)

Our assumptions tell us that the vertical arrows as well as the bottom arrow are isomorphisms

so we conclude. ☐

4.3. Smaller models. Having described explicitly generators and relations for the model

dg category UC/τ associated to a small site (C , τ), we give in this section two methods to

modify the model UC/τ up to Quillen equivalence which are useful in practice. The first

consists in replacing presheaves by sheaves, the second allows to reduce the “number” of

generators. In both cases therefore we obtain “smaller” models with the same homotopy

category. Both modifications are straightforward and have been employed before in the

literature.

The category of τ-sheaves of complexes on C, Shτ(C ,Cpl(Λ)), admits the τ-local model

structure, obtained by transfer along the right adjoint Shτ(C ,Cpl(Λ)) → PSh(C ,Cpl(Λ))
(cf. [22, Cor. 4.4.43]). Since the morphism K → aτK is a τ-local equivalence for every K ∈ UC,
the following statement is immediate.

Fact 4.16

UC/τ
aτ // Shτ(C ,Cpl(Λ))/τoo

defines a Quillen equivalence. Their homotopy categories are the derived category of τ-sheaves
on C.

It happens frequently that every object c ∈ C can be covered by objects belonging to

a distinguished strict subcategory C′. Certainly one then expects the model dg categories

generated by C and C′ with the topological relations to be “the same”. The following result

makes this precise.

Corollary 4.17 Let C′ be a full subcategory of C, and endow it with the topology τ′ induced
from τ. Assume that every object c ∈ C can be covered by objects belonging to C′. Then the
(functor underlying the) canonical dg functor

UC′/τ′ Ð→ UC/τ

defines a Quillen equivalence.
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Proof. The composition C′ uÐ→ C → UC/τ induces the left Quillen dg functor u! in the

statement by the universal property of UC′/τ′ (Corollary 4.154.15), left-adjoint to the restriction

functor u∗. Consider the square of Quillen right functors:

Shτ(C ,Cpl(Λ))/τ
u∗ //

��

Shτ′(C′ ,Cpl(Λ))/τ′

��
UC/τ

u∗
// UC′/τ′

Clearly, it commutes. By the previous fact, the vertical arrows are part of aQuillen equivalence,

and the homotopy categories in the top row are the derived categories of τ-sheaves (resp. τ′-
sheaves) on C (resp. C′). By [11, Thm. III.4.1], the top arrow is an equivalence of the underlying

categories hence so is the induced functor on their derived categories. ☐

4.4. Hypercohomology. One might hope that the results obtained so far in this section

allow to describe a τ-fibrant replacement directly in terms of hypercovers. In particular,

this would lead to an expression for the hypercohomology of complexes of sheaves using

hypercovers alone. We have not been able to provide such a fibrant replacement but, as we

will now show, the hypercohomology does indeed admit such an expected description. This

result should be compared to Verdier’s hypercover theorem in [11, Thm. V, 7.4.1]. Our proof

once again proceeds by reducing to the case of simplicial (pre)sheaves of sets in [2020]. (In the

following, we write Hn for H−n .)

Proposition 4.18 Assume that every τ-hypercover can be refined by a split one. Let K ∈ UC
be a presheaf of complexes on C, c ∈ C, and n ∈ Z. Then there is a canonical isomorphism of
Λ-modules

Hn
τ (c, aτK) ≅ colimc

●
→c

H
nK(c●),

where the left hand side denotes hypercohomology of the complex of τ-sheaves aτK on C/c,
and the colimit on the right hand side is over the opposite category of τ-hypercovers of c up to
simplicial homotopy (cf. [11, §V.7.3]).

Proof. This follows from the following sequence of isomorphisms:

Hn
τ (c, aτK) ≅ homHo(UC/τ)(Λ(c), aτK[−n]) Corollary 2.182.18

≅ homHo(UC/τ)(Λ(c),K[−n]) K → aτK τ-local equivalence
≅ homHo(∆op PSh(C)/τ)(c, Γτ≥−nK) Lemma 4.134.13

≅ colim
c
●
→c

π(c● , Γτ≥−nK) [2020, Thm. 7.6(b)]

≅ colim
c
●
→c split

π(c● , Γτ≥−nK) assumption

≅ colim
c
●
→c split

homHo(∆op PSh(C))(c● , Γτ≥−nK) split hypercovers cofibrant

≅ colim
c
●
→c split

homHo(UC)(NΛ(c●),K[−n]) Lemma 2.162.16

≅ colim
c
●
→c split

homHo(UC)(Λ(c●),K[−n]) Lemma 2.142.14

≅ colim
c
●
→c split

H
nK(c●) Corollary 2.182.18

≅ colim
c
●
→c

H
nK(c●) assumption

☐
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Remark 4.19 The hypothesis of the Proposition, i. e. that every hypercover admits a split

refinement, is satisfied in many cases, e. g. when (C , τ) is a Verdier site, see [2020, Thm. 8.6].

Moreover, in these cases the proposition represents another approach to Theorem 4.74.7.

Indeed, the essential point, as we mentioned in Remark 4.84.8, is the description of the τ-fibrant
objects in UC/τ. Since Λ(c●) → Λ(c) is a τ-local equivalence for each τ-hypercover c● → c
(Fact 4.54.5) it is clear that τ-fibrant objects satisfy τ-descent. Conversely, suppose K ∈ UC
satisfies τ-descent and choose a τ-fibrant replacement f ∶ K → K′. Using the previous

proposition we will prove that f is a quasi-isomorphism.

Fix c ∈ C and n ∈ Z. Consider the following commutative diagram:

colimc
●
→c H

nK(c●)
∼ // homHo(UC/τ)(Λ(c),K[−n])

f
��

HnK(c)

OO

f
// HnK′(c)

The left vertical arrow is an isomorphism since K satisfies τ-descent. The right vertical arrow

is an isomorphism since K′ is τ-fibrant. Thus the claim.

4.5. Complements. In this last paragraph we discuss two further aspects of the local

dg homotopy theory: monoidal structures, and closure of fibrant objects under certain

operations.

Proposition 4.20 Assume that either of the following conditions is satisfied:
(1) C is cartesian monoidal.
(2) For any objects c, d ∈ C, Λ(c) ⊗ Λ(d) is projective, and (C , τ) has enough points.
Then UC/τ is a symmetric monoidal model category for the objectwise tensor product.

Proof.

(1) If C is cartesian monoidal, we may adapt the proof of [99, Thm. 4.58]. By [99, Pro. 4.47], it

suffices to prove that for each d ∈ C, and each τ-local K ∈ UC, the internal hom object

[Λ(d),K] is τ-local. Thus let c● → c be a τ-hypercover. Using the commutative diagram

homdg(Λ(c), [Λ(d),K]) //

∼
��

homdg(Λ(c●), [Λ(d),K)]

∼
��

homdg(Λ(c) ⊗ Λ(d),K)

∼
��

// homdg(Λ(c●) ⊗ Λ(d),K)

∼
��

homdg(Λ(c × d),K) // homdg(Λ(c● × d),K)

we reduce to showing that c●×d → c×d is a τ-local equivalence of simplicial presheaves.

This follows from the fact that homotopy groups and sheafification commute with finite

products.

(2) By Lemma 2.132.13, UC is a symmetric monoidal model category. The result then follows

from the proof of [22, Pro. 4.4.63] (whereas the statement in loc. cit. misses the first

hypothesis above). ☐

Our description of τ-fibrant objects in Theorem 4.74.7 allows one to prove easily that these

are closed under various operations. In the following lemmas we discuss two examples.
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Lemma 4.21 Let K● be a bounded complex of τ-fibrant objects in UC. Then Tot
⊕K● ∈ UC is

τ-fibrant.

Proof. Let c● → c be a τ-hypercover. We know that for any l ∈ Z, K l(c) → K l(c●) is a
quasi-isomorphism. Since K● is bounded below, it follows from Lemma 3.23.2 that also

Tot
⊕(K●(c)) → Tot

⊕(K●(c●))

is a quasi-isomorphism. Since K● is bounded (hence Tot⊕ and Tot∏ agree), one easily checks

that this morphism can be identified with

(Tot⊕K●)(c) → (Tot⊕K●)(c●). ☐

Let κ be a regular cardinal. We say that the site (C , τ) is κ-noetherian if every cover

{c i → c}i∈I has a subcover {c i → c}i∈J⊂I with ∣J∣ < κ. An ℵ0-noetherian site is called simply

noetherian, as in [5656, §III.3]. Also, recall the notion of Verdier sites from [2020, Def. 8.1].

Lemma 4.22 Let (C , τ) be a κ-noetherian Verdier site, κ > ℵ0. Then τ-fibrant objects in UC
are closed under κ-filtered colimits.

Proof. By [2020, Rem. 8.7], there is a dense set of τ-hypercovers S such that for each

c● → c ∈ S and each n ∈ N, cn is a coproduct cn ≅ ∐i∈In cn , i with cn , i representable and
∣In ∣ < κ. By Theorem 4.124.12 and Lemma 4.104.10, being τ-fibrant is equivalent to satisfying S-
descent. Now let K ∶ J → UC be a κ-filtered diagram of τ-fibrant objects, and c● → c ∈ S .
The claim then follows from the isomorphism

(colim
j

K( j))(c●) ≅ Tot∏(colimj K( j)p(cq))p ,q

≅ Tot∏(∏
i∈Iq

colim
j

K( j)p(cq , i))p ,q

≅ colim
j

Tot∏(∏
i∈Iq

K( j)p(cq , i))p ,q

≅ colim
j
(K j(c●)),

as κ-filtered colimits commute with products indexed by cardinals smaller than κ. ☐

Lemma 4.23 Let (C , τ) be a noetherian Verdier site. Any filtered colimit of bounded above
τ-fibrant objects in UC is τ-fibrant.

Proof. The proof is essentially the same as in the previous lemma. We must assume

bounded above objects so that the product totalization involves only finitely many factors in

each degree hence commutes with filtered colimits. ☐

5. Fibrant replacement
In this section we would like to give an “explicit” fibrant replacement functor in UC/τ

using the Godement resolution. It is a direct translation of the analogous construction

for simplicial (pre)sheaves in [5757, p. 66ff], with, again, the only problem created by the

unboundedness of our complexes. We first establish the tools to overcome this difficulty.
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5.1. Local model structure and truncation. Let n ∈ Z and consider the functor Γτ≥n ∶
UC → ∆op PSh(C). Applying it objectwise, this generalizes to a functor defined on diagrams

with values in UC which we still denote by Γτ≥n .

Lemma 5.1 The canonical arrow
R lim

∆
Γτ≥nK → Γτ≥nR lim

∆
K

is a weak homotopy equivalence for every K ∈ (UC)∆ .

Proof. Oneway to see this is as follows. Γτ≥n is a rightQuillen functor for the projective
model structures onM ∶= UC and N ∶= PSh(C , ∆opSet). It follows that the induced

morphism of derivators DM → DN is continuous (see [1414, Pro. 6.12]), in particular it

commutes with homotopy limits. The claim now follows from the fact that Γτ≥n takes

quasi-isomorphisms to weak homotopy equivalences hence doesn’t need to be derived. ☐

Proposition 5.2
(1) For a morphism f ∶ K → K′ in UC the following are equivalent:

(a) f is a τ-local equivalence.
(b) Γτ≥n f is a τ-local equivalence for all n ∈ Z.
(c) Γτ≥n f is a τ-local equivalence for n ≪ 0.

(2) For K ∈ UC the following are equivalent:
(a) K is τ-fibrant.
(b) Γτ≥nK is τ-fibrant for all n ∈ Z.
(c) Γτ≥nK is τ-fibrant for n ≪ 0.

Proof.

(1) This is obvious since τ-local equivalences are defined via (the sheafification of) the

homology groups which coincide with the homotopy groups after applying Γ.

(2) The implication “(a)(a)⇒(b)(b)” follows from Lemma 4.134.13. The implication “(b)(b)⇒(c)(c)” is

trivial. For the implication “(c)(c)⇒(a)(a)” let f ∶ K → K′ be a τ-fibrant replacement. Again

by Lemma 4.134.13, Γτ≥n( f ) is a τ-local equivalence between τ-fibrant objects hence it is a
sectionwise weak equivalence. It follows that τ≥n( f ) is a sectionwise weak equivalence.
As f is the filtered colimit of τ≥n( f ), f is a sectionwise weak equivalence. ☐

5.2. Godement resolution. Now suppose that (C , τ) has enough points. This means that

there is a set P of morphisms of sites p ∶ Set → (C , τ) such that a morphism f of sheaves
of sets on C is an isomorphism if and only if p∗ f is an isomorphism for all p ∈ P . There is

an induced morphism of sites Set
P → (C , τ), and we denote by (a∗ , a∗) ∶ UC → Cpl(Λ)P

the induced adjunction. The associated comonad induces functorially for each K ∈ UC a
coaugmented cosimplicial object K → G●(K), where Gn(K) = (a∗a∗)n+1(K) ∈ UC. The

Godement resolution of K is defined to be

G(K) ∶= Tot∏(G●(K))
which according to Lemma 2.212.21 is a model for R lim∆ G●(K).

Recall [5757, Def. 1.31] that the site (C , τ) is said to be of finite type if “Postnikov towers

converge”.

Theorem5.3 There is a functorG ∶ UC → UC and a natural transformation id→ G satisfying:
(1) G is an exact functor of abelian categories.
(2) G takes each presheaf of complexes to a τ-fibrant sheaf of complexes.
(3) G takes fibrations (i. e. degreewise surjections) to τ-fibrations.
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(4) If (C , τ) is a finite type site, then K → G(K) is a τ-local equivalence for any K.
Proof.

(1) G is the composition of exact functors thus exact.

(2) We use Proposition 5.25.2 to check that G(K) is τ-fibrant. Thus let n ∈ Z, and c● → c a
τ-hypercover. We need to check that

Γτ≥nG(K)(c) → R lim
∆

Γτ≥nG(K)(c●)

is a weak homotopy equivalence. This will follow from [5757, Pro. 1.59] if we can prove

that the canonical arrow

G(Γτ≥nK) → Γτ≥nG(K)
is an objectwise weak homotopy equivalence, where the left hand side denotes the

Godement resolution for simplicial (pre)sheaves as defined in [5757, p. 66], analogous to

our construction above. By Lemma 5.15.1, we see that Γτ≥n commutes with R lim∆ up to

objectwise weak equivalence, so we reduce to show that it also commutes with a∗a∗ up
to objectwise weak equivalence.

a∗a∗ is applied degreewise and is a composition of left-exact functors hence clearly

commutes with τ≥n . It is also clear that a∗a∗ commutes with theMoore complex functor

therefore the same holds for the quasi-inverse Γ. Finally, a∗a∗ commutes with the

forgetful functorMod(Λ) → Set.

(3) Let f be an epimorphism with kernel K inUC. By part (1)(1), G( f ) is an epimorphism with

kernel G(K), which is τ-fibrant by part (2)(2). G( f ) is thus a τ-fibration by Theorem 4.74.7.

(4) Again, by Proposition 5.25.2, we need to check that

Γτ≥nK → Γτ≥nG(K)
is a τ-local equivalence for all n ∈ Z. But by the same reasoning as in part (2)(2), the target

of this morphism is identified (up to sectionwise weak homotopy equivalence) with

G(Γτ≥nK) hence the claim follows from [5757, Pro. 1.65].

☐





IV
AN ISOMORPHI SM OF MOTIV IC GALOI S GROUPS

Motives and motivic Galois groups. Let k be a field of characteristic 0. Following Gro-

thendieck, there should be an abelian categoryMM(k) of (mixed) motives over k together
with a functorM ∶ (Var/k)op →MM(k), associating to each variety X/k its motiveM(X),
the universal cohomological invariant of X. Every cohomology theory h ∶ (Var/k)op → A
for varieties over k should factor through a realization functor Rh ∶ MM(k) → A, i. e.
h(X) = Rh(M(X)). For some cohomology theories h one would expect this realization

functor to presentMM(k) as a neutral Tannakian category with Tannakian dual G(k, h),
a pro-algebraic group called the motivic Galois group (of k associated to h). One of the
main practical advantages of the Tannakian formalism for motives is that it would allow

the translation of arithmetic and geometric questions about k-varieties into questions about
(pro-)algebraic groups and their representations. Moreover, the maximal pro-reductive

quotient of this group is supposed to coincide with what was classically known as the motivic

Galois group, namely the group associated to the Tannakian subcategory of puremotives

over k (i. e. the universal cohomology theory for smooth projective varieties; see [6767] for the
philosophy underlying this smaller group).

Although this picture is still conjectural, there are candidates for these objects and

related constructions. Assume there is an embedding σ ∶ k ↪ C. In this situation there are

essentially two existing approaches to motives, one due to Nori and another due to several

mathematicians, including Voevodsky. Nori constructed a diagram of pairs of varieties

together with the Betti representation into finite dimensional Q-vector spaces, and applied to

it his theory of Tannaka duality for diagrams. It yields a universal factorization for the Betti

representation through a Q-linear abelian category with a faithful exact Q-linear functor

oBti to finite dimensional Q-vector spaces. After inverting the Tate twist, one obtains the

category of Nori motives (over k). This is a Tannakian category with fiber functor oBti, whose
Tannakian dual Gn(k) is defined to be Nori’s motivic Galois group.

On the other hand, there is the better known construction ofDM(k), the triangulated
category of Voevodsky motives (this is a candidate not for the category of motives but its

derived category). Ayoub constructed a Betti realization functor Bti
∗ ∶ DM(k) → D(Q) to

the category of graded Q-vector spaces. He also proved that this functor together with its

right adjoint Bti∗ satisfies the assumptions of his weak Tannakian formalism which in the

case at hand endows Bti
∗
Bti∗Q with the structure of a Hopf algebra. Ayoub’s motivic Galois

group Ga(k) is the spectrum of the zeroth homology of this Hopf algebra.

83
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Main result. Our main goal in the present chapter is to prove that the two motivic Galois

groups just described are isomorphic, thus answering a question of Ayoub in [55].

Theorem (instance of 8.18.1) There is an isomorphism of affine pro-algebraic groups over

Spec(Q):
Ga(k) ≅ Gn(k).

Let us try to put this result into perspective. In contrast to the approach by Nori which re-

lies essentially on transcendental data,DM(k) is defined purely in terms of algebro-geometric

data and therefore provides a means to understand algebro-geometric invariants of varieties.

As explained in [44], the difference between the two approaches is extreme, and one of the

ultimate goals in the theory of motives is to create a bridge connecting the two. This goal is

considered at the moment to be far out of reach, but the result above can be seen as providing

a weak link while sidestepping the more difficult and deep issues. This is possible because

Ayoub’s construction of the motivic Galois group incorporates transcendental data through

the Betti realization. Viewed from a different angle, the result breaks up the ultimate goal

into two subgoals which consist in understanding the relation between (compact) Voevodsky

motives and comodules over Bti
∗
Bti∗Q on the one hand, and proving that this Hopf algebra

is homologically concentrated in degree 0 on the other hand; see [44] and [55, §2.4] for further

discussion.

Even if the link we provide here is a weak one, it can still be seen as an argument for

the “correctness” of the two approaches to motives. Moreover, although both constructions

of the motivic Galois group are based on some form of Tannaka duality, the precise form

is quite different in the two cases (cf. [55, Introduction]); therefore the isomorphism in the

theorem can be seen as a surprising phenomenon. Finally, the identification of the two

groups allows for transfer of techniques and results, not easily available on both sides without

the identification. We plan to use this fact in the future to give a more elementary description

of the Kontsevich-Zagier period algebra with fewer generators and relations. More precisely,

we intend to show that the algebra considered in [77, §2.2] is canonically isomorphic to the

Kontsevich-Zagier period algebra, as was claimed in loc. cit.
We would like to remark that a conditional proof of our main result has been given

independently by Jon Pridham. In [6161, Exa. 3.20] he sketches how the existence of a motivic

t-structure (which renders the Betti realization t-exact) would imply the isomorphism of

motivic Galois groups. The argument uses the theory of Tannaka duality for dg categories

developed in loc. cit.

About the proof. As one would expect from the relation between motives and their

associated Galois groups, proving our main result involves “comparing” Nori motives with

Voevodsky motives. As we remarked above, this is a non-trivial task and we can only hope

to relate these two categories indirectly:

● We construct a realization of Nori motives in the category of linear representations

of Ayoub’s Galois group:

Rep(Gn(k)) → Rep(Ga(k)).
The main ingredients used in this construction are the six functors formalism for

motives without transfers developed by Ayoub, and its compatibility with the Betti

realization, also proved by Ayoub.

● We construct a realization of motives without transfers in the category of graded

O(Gn(k))-comodules:

DA(k) → coModZ(O(Gn(k))).
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In this construction the main tool used is the Basic Lemma due to Nori and, inde-

pendently, to Beilinson.

In fact, we work throughout with arbitrary principal ideal domains as coefficients, not onlyQ.

Since we also use extensively the six functors formalism, we are forced to work withDA(k),
motives without transfers, instead ofDM(k). In any case, the motivic Galois group of Ayoub

does not see the difference between these two categories.

The two realizations will induce morphisms between the two Galois groups, and the

hard part is to prove that these are inverses to each other. In one direction, we rely heavily

on one of the main results of Ayoub’s approach to motivic Galois groups, namely a specific

model he has given for the object inDA(k) representing Betti cohomology. Analysing this

model closely we can show that the coordinate ring of Ga(k) as a Ga(k)-representation
is generated by Gn(k)-representations Hi

Betti(X , Z;Q( j)). This will allow us to prove the

morphism Ga(k) → Gn(k) a closed immersion. For the other direction we will prove that

Gn(k) → Ga(k) is a section to Ga(k) → Gn(k), and here the idea is to reduce all verifications
to a class of pairs of varieties whose relative motive inDA(k) (and its effective version) are

easier to handle. We have found that the pairs (X , Z) where X is smooth and Z a simple

normal crossings divisor work well for our purposes, and we study their motives without

transfers in detail.

Outline. We now give a more detailed account of the chapter. In §11 we recall the con-

struction and basic properties of Nori motives and the associated Galois group. We also

state a monoidal version of the universal property of his category of motives the proof of

which is given in appendix AA. In §22 we recall the construction and basic properties of Morel-

Voevodsky motives (or motives without transfer) and the Betti realization. We also explain in

detail in which sense the functor Bti
∗ is a Betti realization. We briefly recall the construction

of Ayoub’s Galois group for Morel-Voevodsky motives in §33.

In §44 we construct motives Ra(X , Z , n) in DA(k) for X a variety, Z ⊂ X a closed

subvariety and n a non-negative integer. These motives are defined in terms of the six

functors, and have the property that H0(Bti∗Ra(X , Z , n)) ≅ Hn(X(C), Z(C)) naturally.
Here is where our decision to use the six functors formalism pays off as its compatibility with

the Betti realization immediately reduces us to prove the existence of a natural isomorphism

between sheaf cohomology and singular cohomology of pairs of (locally compact) topological

spaces. We were not able to find the required proofs for this last comparison in the literature,

and we therefore decided to provide them in a separate appendix (to wit, appendix BB). We

end this section by showing how this construction yields a morphism of Hopf algebras

φa ∶ O(Gn(k)) → O(Ga(k)).
The following two sections 55 and 66 are devoted to defining a morphism in the other

direction, at least on the “effective” bialgebras (the Hopf algebras are obtained from these

effective bialgebras by inverting a certain element). For this, in §55, we recall Nori’s version

of the Basic Lemma, and explain how it leads to algebraic cellular decompositions of the

singular homology of affine varieties. As an application we obtain a functor from smooth

affine schemes to the derived category of effective Nori motives. In §6.16.1 we show that it can

be extended to a functor LC∗ defined on the category of effective Morel-Voevodsky motives.

This construction relies on our discussion of Kan extensions in the context of dg categories

in the previous chapter. This functor is then shown to give rise to the sought after morphism

of bialgebras (§6.26.2).

We also collect additional results on realizing (Morel-)Voevodsky motives in Nori

motives which are not strictly necessary for ourmain theorem but, we believe, of independent

interest. In §6.36.3, we extend our constructions to take into account correspondences thus
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obtaining a variant of LC∗ for effective Voevodsky motives (i. e. effective motives with

transfers). Then, in §6.46.4, we also prove that these realizations pass to the stable categories of

motives (with and without transfers). From this we finally deduce mixed Hodge realizations

on motives with and without transfers.

The next section is all about explicit computations involving Morel-Voevodsky motives

associated to pairs of schemes. The recurrent theme is that these computations are feasible

if one restricts to the pairs (X , Z) where X is smooth and Z is a simple normal crossings

divisor. We call these almost smooth pairs, and resolution of singularities implies that there

are enough of them. This allows us to reduce computations for general pairs to these more

manageable ones. In §7.17.1 we give models for the latter on the effective level, and determine

their image under the functor LC∗ explicitly. This allows us to compare their comodule

structure (with respect to Nori’s effective bialgebra mentioned above) to the one of the Betti

homology of the pair. As a corollary, we see that the morphism of bialgebras passes to the

Hopf algebras φn ∶ O(Ga(k)) → O(Gn(k)). In §7.27.2 we give good models forRa(X , Z , n)
and their duals on the stable level, when (X , Z) is almost smooth, and we describe their

Betti realization.

§88 is the heart of the chapter. Ayoub has given a “singular”model for the object inDA(k)
representing Betti cohomology. Using our description of Ra(X , Z , n) and performing a

close analysis of Ayoub’s model we establish that the Hopf algebraO(Ga(k)) as a comodule

over itself is a filtered colimit of Nori motives Hi(X(C), Z(C);Q( j)), where (X , Z) is almost

smooth and i , j ∈ Z. This will be seen to imply surjectivity of φa, while on the other hand we

also prove that φnφa is the identity by proving that it is so on motives of almost smooth pairs.
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Notation and conventions. Wefix a field k of characteristic 0 togetherwith an embedding

σ ∶ k ↪ C. By a scheme we mean a quasi-projective scheme over k. A variety is a reduced

scheme. Rings are always assumed commutative and unital. Monoidal categories (resp.

functors, transformations) are assumed symmetric and unitary if not stated otherwise.

Algebras and coalgebras (also known as monoids and comonoids, respectively) are assumed

unitary resp. counitary.

Λ throughout denotes a fixed ring, assumed noetherian if not stated otherwise. The

symbol Cpl(Λ) denotes the category of (unbounded) complexes of Λ-modules. As in the

previous chapter, our conventions are homological, i. e. the differentials decrease the indices,

and the shift operator satisfies (A[p])n = Ap+n . For an abelian categoryA,D(A) denotes
its derived category, andD(Λ) ∶= D(Cpl(Λ)). Also,A⊕ denotes the category of ind objects

inA.

1. Nori’s Galois group
We begin by recalling the construction of Nori motives and the associatedmotivic Galois

group (cf [5959], [3939]). We also describe the universal property of the category of Nori motives

in a monoidal setting (Proposition 1.11.1).

One starts with a diagram (or directed graph) Dn whose vertices are triples (X , Z , n)
where X is a variety, Z is a closed subvariety of X, and n is an integer. There are two types

of edges: a single edge from (X , Z , n) to (Z ,W , n − 1) for any triple X ⊃ Z ⊃W , and edges

(X , Z , n) → (X′ , Z′ , n) indexed by morphisms f ∶ X → X′ which restrict to morphisms

f ∶ Z → Z′.
A representation of such a diagram is simply a morphism of directed graphs T ∶ Dn → C

into a category C. Nori’s Tannakian theory asserts that associated to any such representation

T ∶ Dn → Modf(Λ) into the category of finitely generated Λ-modules, there is a Λ-linear

abelian category C(T) together with a factorization

Dn

T̃Ð→ C(T) oÐ→Modf(Λ)

where o is a faithful exact Λ-linear functor. Moreover, this category is universal for such a

factorization. Its construction is easy to describe. A finite (full) subdiagram F ⊂ Dn gives

rise to a Λ-algebra End(T ∣F ) ⊂ ∏v EndΛ(T(v)) of families of compatible (with respect to

the edges) endomorphisms indexed over the vertices of F . We then set

C(T) = limÐ→
F⊂Dn

Modf(End(T ∣F )),

this (2-)colimit being over the finite subdiagrams. This is applied to the homology rep-

resentation H● ∶ Dn → Modf(Λ) which takes a vertex (X , Z , n) to the relative singular

homology Λ-module Hn(Xan , Zan; Λ) of the associated topological spaces on the C-points

(this uses σ ∶ k ↪ C). To the single edge (X , Z , n) → (Z ,W , n − 1) it associates the bound-
ary map of the long exact sequence of a triple Hn(Xan , Zan) → Hn−1(Zan ,W an), and to

an edge (X , Z , n) → (X′ , Z′ , n) corresponding to f ∶ X → X′ it associates the morphism

in homology induced by f an ∶ Xan → X′an. (Here, and in the following we refrain from

writing the coefficients in the homology when these can be guessed from the context. Also,

we sometimes write H●(X , Z) instead of H●(Xan , Zan).) The resulting category C(H●) is
denoted byHMeff

, the category of effective homological Nori motives.
In case Λ is a principal ideal domain and T takes values in finitely generated free

Λ-modules, the dual A(T ∣F ) = End(T ∣F )∨ carries a canonical coalgebra structure for
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any finite subdiagram F ⊂ Dn. Moreover, C(T) can then be described as the category

coModf(A(T)) ofA(T)-comodules inModf(Λ),11 where
A(T) = limÐ→

F⊂Dn

A(T ∣F ).

We will need monoidal versions of these constructions. For this let us restrict to the full

subdiagram D g
n of Dn consisting of good pairs, i. e. vertices (X , Z , n) with X/Z smooth and

H●(X , Z;Z) a free abelian group concentrated in degree n. It follows essentially from the

Basic Lemma (recalled in §55) that C(H●∣Dg
n
) is canonically equivalent to HMeff

(see [5959,

Pro. 3.2] or [3939, Cor. 1.7] for a proof). Moreover, on D g
n there is a “commutative product

structure with unit” in the sense of [3939] induced by the cartesian product of varieties, and

H●∣Dg
n
is canonically a u. g.m. representation (see appendix AA for a recollection on these

notions). This endows HMeff
with a monoidal structure such that the functor o mapping

to Modf(Λ) is monoidal ([5959, Thm. 4.1], [3939, Pro. B.16]). As in the non-monoidal case it

has a universal property which we state in the following instance of Nori’s Tannaka duality

theorem in the monoidal setting A.1A.1 (cf. also [1212]).

Corollary 1.1 Let Λ be a principal ideal domain. Suppose we are given a right exact monoidal
abelian Λ-linear categoryA22 together with a monoidal faithful exact Λ-linear functor o ∶ A →
Modf(Λ) and a u. g. m. representation T ∶ D g

n → A such that the following diagram of solid
arrows commutes.

D g
n

H̃
●

��

T // A

o
��

HMeff

o
//

::

Modf(Λ)

Then there exists a monoidal functorHMeff → A (unique up to unique monoidal isomorphism),
represented by the dotted arrow in the diagram rendering the two triangles commutative (up to
monoidal isomorphism).

Moreover, this functor is faithful exact Λ-linear.

This monoidal structure endows the coalgebra Heff
n ∶= Heff

n,Λ ∶= A(H●∣Dg
n
) with the

structure of a commutative algebra turning it into a (commutative) bialgebra ([5959, §4.2], [3939,

Pro. B.16]). The coordinate ringHn (orHn,Λ) of Nori’s motivic Galois group (denoted by Gn,
or Gn,Λ) is the commutative Hopf algebra obtained fromHeff

n by localizing (as an algebra)

with respect to an element sn ∈ Heff
n which can be described as follows (cf. [5959, p. 13]). Choose

an isomorphism

H1(Gm , {1})
∼Ð→ Λ. (1.2)

Then sn ∈ Heff
n is the image of 1 ∈ Λ under the composition

Λ
(1.21.2)←ÐÐ
∼

H1(Gm , {1})
caÐ→ Heff

n ⊗H1(Gm , {1})
(1.21.2)ÐÐ→
∼

Heff

n ⊗ Λ ≅ Heff

n ,

where ca denotes the coaction ofHeff
n on H1(Gm , {1}). Clearly, sn does not depend on the

choice of (1.21.2).

The category HM ∶= HMΛ ∶= coModf(Hn,Λ) is the category of (homological) Nori
motives.

1For our conventions regarding comodules see appendix CC.
2Hence (A,⊗) is a monoidal abelian Λ-linear category such that ⊗ is right exact Λ-linear in each variable.
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2. Betti realization for Morel-Voevodsky motives
As explained in the introduction, we will work with motives without transfers in or-

der to use the six functors formalism. Based on Voevodsky’s original construction of the

triangulated category of motives with transfersDM(k), and following an insight by Morel,

this formalism has been worked out by Ayoub in [22]. In this section we briefly recall the

construction of this category of motives, and the associated Betti realization from [33] and [55].

We also prove a few results not stated there explicitly. In particular we give a dg model for

the Betti realization.

2.1. Effective motives. The category of effective motives without transfers may profitably

be viewed from the perspective of universal dg homotopy theories as introduced in the

previous chapter. Here, we start with a small category C with finite products, endowed with

a Grothendieck topology τ and I ∈ C an “object parametrizing homotopies”; also fix any

ring Λ. The category UC = PSh(C ,Cpl(Λ)) of presheaves on C with values in complexes of

Λ-modules can be endowed with three model structures (among others):

● the projective model structure whose fibrations (resp. weak equivalences) are object-
wise epimorphisms (resp. quasi-isomorphisms); its homotopy category is just the

derived categoryD(UC);
● the projective τ-local model structure arises from the projective model structure

by Bousfield localization with respect to τ-hypercovers; its homotopy category is

equivalent to the derived category of τ-sheaves on C.
● the projective (I, τ)-local model structure arises as a further Bousfield localization

with respect to arrows Λ(I × Y)[i] → Λ(Y)[i], where Λ ∶ C → UC denotes the
“Yoneda embedding”, and Y ∈ C and i ∈ Z are arbitrary; its homotopy category

is a Λ-linear unstable (or “effective”) I-homotopy theory of (C , τ). (The reader

will have no difficulties formulating the universal property of this model structure

analogous to IIIIII.4.154.15.)

In each case, the model category is stable and monoidal (for the objectwise tensor product)

hence the homotopy categories are triangulated monoidal. The following examples will be of

interest to us (notation is explained subsequently):

C τ I Λ-linear unstable I-homotopy theory

SmX Nis or ét A1
X DAeff(X) = DAeff

Λ (X)
SmAff X Nis or ét A1

X DAeff

aff(X) = DAeff

aff,Λ(X)
AnSmX usu D1

X AnDAeff(X) = AnDAeff

Λ (X)
OpenX usu X D(X , Λ)

Here, in the first two examples, X is a scheme, and SmX (resp. SmAff X) denotes the category

of smooth schemes over X (resp. which are affine) endowed with the Nisnevich or the étale

topology. In case X = Spec(k), we denote this category by Sm (resp. SmAff). DAeff(X)
is called the category of effective Morel-Voevodsky X-motives. In the few cases where the

topology chosen plays any role, we will make this explicit. Also, if X = Spec(k) then we

simply writeDAeff
. The canonical inclusion SmAff X → SmX induces a triangulatedmonoidal

equivalenceDAeff

aff(X)
∼Ð→ DAeff(X), by IIIIII.4.174.17.

In the third example above, X is a complex analytic space, i. e. a “complex space” in

the sense of [2424] which is supposed to be denumerable at infinity, and AnSmX denotes the

category of complex analytic spaces smooth over X with the topology usu given by open

covers. If X is the terminal object ⋆, then AnSmX is denoted simply byManC. D
1 denotes the
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open unit disk considered as a complex analytic space. As above, the D1-homotopy theory is

denoted by AnDAeff
in case X = ⋆.

Finally, in the fourth example X denotes a topological space, OpenX the category associ-

ated to the preorder of open subsets of X. It is endowed with the topology usu given by open

covers. The (X , usu)-local and the usu-local model structures evidently agree, and their

homotopy categoryD(X) = D(X , Λ) is (canonically identified with) the derived category of
sheaves on X.

The Betti realization will now link these examples, as follows. For a complex analytic

space X there is an obvious inclusion ιX ∶ OpenX → AnSmX which defines a morphism of

sites and induces a Quillen equivalence ([33, Thm. 1.8])

(ι∗X , ιX∗) ∶ U(OpenX)/usu→ U(AnSmX)/(D1
X , usu).

If X = Spec(k), the left adjoint takes a complex to the associated constant presheaf and is de-

noted by (●)cst, while the right adjoint is the global sections functor and accordingly denoted
by Γ (it shouldn’t be confused with the functor appearing in the Dold-Kan correspondence

of the last chapter which won’t make any appearance in the present chapter anymore).

Any scheme Y gives rise to a complex analytic space Y an, namely the topological space

(Y ×k ,σ C)(C) with the natural complex analytic structure. We obtain an analytification

functor AnX ∶ SmX → AnSmXan which induces Quillen adjunctions

(An∗X , AnX∗) ∶U(SmX) → U(AnSmXan)
for the corresponding model structures considered above. The left adjoint An

∗
X in fact

preserves (I, τ)-local weak equivalences (see [55, Rem. 2.57]).

Finally, Ayoub defines the effective Betti realization as the composition

Bti
eff,∗ ∶ DAeff(X)

An
∗

XÐÐ→ AnDAeff(X) RιX∗ÐÐ→
∼

D(X).

By construction, this is a triangulated monoidal functor.

2.2. Motives. Motives will be obtained from effective motives by a stabilization process

which we again describe in the abstract setting first. LetM be a cellular left-proper monoidal

model category and T ∈ M a cofibrant object. The category SptΣTM of symmetric T-spectra
inM admits the following two model structures (among others):

● the projective unstable model structure whose fibrations (resp. weak equivalences)
are levelwise fibrations (resp. weak equivalences);

● the projective stable model structure arises from the unstable one by Bousfield

localization with respect to morphisms Sus
n+1
T (T ⊗ K) → Sus

n
T(K) for cofibrant

objects K ∈ M.

Here, (SusiT , Evi) ∶ UC → SptΣTUC denotes the canonical adjunction, Evi being evaluation at

level i. For the details (also concerning the existence of the model structures) we refer to [3737].

Again, the model categories are both monoidal, and ifM was stable then so is SptΣTM. If

not mentioned explicitly otherwise, when we refer to the model structure on SptΣTM we

mean the stable one. In SptΣTM, tensoring with T becomes a Quillen equivalence, and it

should be thought of as the universal such model category although this is not quite true in

the obvious sense (cf. [3737, §9]). Still, we call it the T-stabilization ofM.

In the algebraic geometric examples above we choose TX to be a cofibrant replacement

of Λ(A1
X)/Λ(Gm ,X). The resulting TX-stable A

1-homotopy theory of (SmX , τ), DA(X) =
DAΛ(X), is the category ofMorel-Voevodsky X-motives. As before the affine versionDAaff(X)
is canonically equivalent. Again, we leave the topology implicit most of the time, and in case
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X = k we also write DA. There is the notion of a compact motive, namely a motive in DA
which is compact in the sense of additive categories, and the full subcategory of compact

motives forms a thick triangulated subcategory.

In the analytic setting, stabilization is performed with respect to a cofibrant replacement

TX of the quotient presheaf Λ(A1,an

X )/Λ(Gan
m ,X). The resulting homotopy category is denoted

byAnDA(X) = AnDAΛ(X) (and again simplyAnDA in case X = ⋆). [33, Lem. 1.10] together

with [3737, Thm. 9.1] show that the adjunction

(Sus0TX
, Ev0) ∶ U(AnSmX)/(D1

X , usu) → SptΣTX
U(AnSmX)/(D1

X , usu)
defines a Quillen equivalence. Moreover, the analytification functor passes to the level of

symmetric spectra and preserves stable (I, τ)-local equivalences. Ayoub then defines the

Betti realization to be the composition

Bti
∗ ∶ DA(X)

An
∗

XÐÐ→ AnDA(X) RιX∗REv0ÐÐÐÐÐ→
∼

D(X).

Again, it is a triangulated monoidal functor.

We recall that the six functors constitute a formalism on the categories DA(X) for
schemes X which associates to any morphism of schemes f ∶ X → Y adjunctions

(L f ∗ , R f∗) ∶ DA(Y) → DA(X), (L f! , f !) ∶ DA(X) → DA(Y), (2.1)

and which endowsDA(X) with a closed monoidal structure

(⊗L
, RHom).33

All these functors are triangulated. The formalism governs the relation between them, e. g.

under what conditions two of these functors can be identified or when they commute. Some

of these relations are given explicitly in [22, Sch. 1.4.2]. We will also heavily use the part

concerning duality. Recall that on compact motives there is a contravariant autoequivalence

(●)∨ which exchanges the two adjunctions in (2.12.1) so that for example (R f∗M)∨ ≅ L f!M∨
for any compact motive M (see [22, Thm. 2.3.75]).

The same formalism is available in the analytic (see [33]) and in the topological setting

(at least if the topological space is locally compact, see e. g. [4343]). The main result of Ayoub

in [33] is that the Betti realization is compatible with these, at least if one restricts to compact

motives.

2.3. dg enhancement. In the remainder of the section we will exhibit the (effective) Betti

realization as the derived functor of a left Quillen dg functor (Proposition 2.22.2). This will be

used in section 66 to construct a motivic realizationDAeff → D(HMeff

⊕ ).
Let X be a complex analytic space. Denote by Sg(X) the complex of singular chains in

X (with Λ-coefficients). This extends to a lax monoidal functor Sg on topological spaces in

virtue of the Eilenberg-Zilber map (cf. [1818, VI, 12]). Its “left dg Kan extension” (rather, the

functor underlying the left dg Kan extension of Fact IIIIII.1.11.1) is denoted by

Sg
∗ ∶ U(ManC) → Cpl(Λ).

It possesses an induced lax-monoidal structure, by Lemma IIIIII.1.21.2. Moreover, for each complex

manifold X, Sg(X) is projective cofibrant hence ●⊗Sg(X) is a left Quillen functor. It follows

from Lemma IIIIII.1.51.5 that Sg
∗
is also a left Quillen functor with respect to the projective model

structures.

3In the literature the symbols L and R indicating that some left or right derivation takes place are often dropped

from the notation. For us however, the distinction between the derived and underived functors will be important

which is why we stick to the clumsier notation.
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Proposition 2.2 LSg
∗ takes (D1 , usu)-local equivalences to quasi-isomorphisms and the

induced functor

DAeff An
∗

ÐÐ→ AnDAeff
LSg

∗

ÐÐ→ D(Λ)
is isomorphic to Btieff,∗ as monoidal triangulated functor. In particular, the following triangle
commutes up to a monoidal isomorphism:

Sm
Λ(●) //

Sg○An ""

DAeff

Bti
eff,∗

��
D(Λ)

Proof. In fact, we will deduce the first statement from the second.

For this let us recall the “singular analytic complexes” constructed in [55, §2.2.1]. We

denote by D1(r) the open disk of radius r centered at the origin (thus D1 = D1(1)) and
by Dn(r) the n-fold cartesian product (n ≥ 0). Letting r > 1 vary we obtain pro-complex

manifolds D
n = (Dn(r))r>1. There is an obvious way to endow the family (Dn)n≥0 with the

structure of a cocubical object in the category of pro-complex manifolds (see [55, Déf. 2.19]).

For any complex manifold X one then deduces a cubical Λ-module hom(D● , X), where
the latter in degree n is given by limÐ→r>1

ΛManC(Dn(r), X). The associated simple complex

(see [55, Déf. A.4]) is called the singular analytic complex associated to X, and is denoted by

Sg
D(X). It clearly extends to a functor

Sg
D ∶ManC → Cpl(Λ),

and admits a natural lax monoidal structure induced by the association

(a ∶ Dm(r) → X , b ∶ Dn(r) → Y) z→ (a × b ∶ Dm+n(r) → X × Y).
We would now like to prove that Sg

D
and Sg are monoidally quasi-isomorphic, and for this

we need a third, intermediate singular complex.

For any real number r > 1, denote by I1(r) the open interval (−r, r). Set I1 = I1(1). There

is an obvious analytic embedding I1(r) → D1(r) of real analytic manifolds. Denote by In(r)
the n-fold cartesian product of I1(r). Letting r > 1 vary we obtain a pro-real analytic manifold

I
n
. There is an obvious embedding of pro-real analytic manifolds I

n → D
n
for each n, and by

restriction this induces the structure of a cocubical object in pro-real analytic manifolds on

I
●
.

Denoting by i the inclusionManC ↪Man
ω
R weobtain amonoidal natural transformation

Sg
D → Sg

I ○ i , (2.3)

and it suffices to prove that this is sectionwise a quasi-isomorphism. Indeed, a similar

argument as in [5454, App. A, §2, Thm. 2.1] shows that the right hand side is monoidally quasi-

isomorphic to the analogous functor of cubical complexes of continuous functions. And the

latter is in turn monoidally quasi-isomorphic to Sg, by [3030, Thm. 5.1].

Following [55], we denote the “left dg Kan extension” of Sg
D
again by the same symbol

Sg
D ∶ UManC → Cpl(Λ). (That this indeed coincides with the functor in [55] follows from

Lemma IIIIII.2.232.23. Cocontinuity is a consequence of [55, Lem. A.3].) [55, Thm. 2.23] together

with [55, Cor. 2.26, 2.27] show that Sg
D
takes (D1 , usu)-local equivalences to quasi-isomor-

phisms. The same argument also shows that Sg
I
takes (I, usu)-local equivalences to quasi-

isomorphisms. Now, let’s start with a complex manifold X. We want to prove that (2.32.3)

applied to X is a quasi-isomorphism. For this, choose a usu-hypercover X● → X of complex
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manifolds such that each representable in each degree is contractible. This can also be

considered as a usu-hypercover of real analytic manifolds, and by what we just discussed,

the two horizontal arrows in the following commutative square are quasi-isomorphisms:

Sg
D(X●) //

��

Sg
D(X)

��
Sg
I(i(X●)) // SgI(i(X))

ByLemma IIIIII.3.23.2, we reduce to show that for any contractible complexmanifoldY , SgD(Y) →
Sg
I(i(Y)) is a quasi-isomorphism, which is easy.

By [55, Cor. 2.26, Pro. 2.83], Bti
eff,∗

is isomorphic to Sg
D ○An∗ as triangulated monoidal

functor hence the discussion above implies the second statement of the proposition. The first

statement can now be deduced as follows. From the monoidal quasi-isomorphism Sg
D ∼ Sg

we obtain triangulated monoidal isomorphisms (cf. Lemma IIIIII.1.21.2)

Sg
D ≅ LSgD ≅ L(Sg)∗ ∶ D(UManC) → D(Λ).

Indeed, the second isomorphism can be checked on representables (these are compact

generators ofD(UManC) by Lemma IIIIII.2.222.22) and these objects are cofibrant. ☐

Remark 2.4 Using the topological singular complex we can construct an explicit fibrant

model for the unit spectrum in AnDA as follows. Denote by Sg
∨
the presheaf of complexes

on ManC which takes a complex manifold X to Sg(X)∨. Let U = (P1 ×P1)/∆(P1), and let u
be a rational point of U over P1 × {∞}. As in [55, §2.3.1], we can use Tan = Λ(U an)/Λ(uan)
to form symmetric spectra (hence Tan is a cofibrant replacement of Λ(A1,an)/Λ(Gan

m )). Fix
β̂ ∈ Sg∨−2(U an , uan; Λ)whose class in H2(U an , uan; Λ) ≅ Λ is a generator. Define a symmetric

Tan-spectrum Sg∨ which in level n is Sg∨[−2n]with the trivial Σn-action, andwhose bonding

maps are given by the adjoints of the quasi-isomorphism

β̂ × ● ∶ Sg∨(X)[−2n] → Sg
∨((U , u) × X)[−2(n + 1)]

for any complex manifold X.
The canonical morphism Λcst → Sg

∨
induces by adjunction a morphism of symmetric

spectra Sus
0
TanΛcst → Sg∨ which in level n is given by the composition

(Tan)⊗n ⊗ Λcst → (Tan)⊗n ⊗ Sg
∨

id⊗(β̂×●)nÐÐÐÐÐ→ (Tan)⊗n ⊗ hom((Tan)⊗n , Sg∨[−2n])
evÐ→ Sg

∨[−2n].

The first arrow is a usu-local equivalence, the second arrow is a quasi-isomorphism, and the

third is a (D1 , usu)-local equivalence since Tan is invertible in AnDAeff
, by [33, Lem. 1.10]. It

follows that Sus
0
TanΛcst → Sg∨ is a levelwise (D1 , usu)-local equivalence. Since the source is

an Ω-spectrum so is Sg∨. Also, since Λcst is D
1-local so is Sg∨ levelwise. Finally, for any usu-

hypercover X● → X of a complex manifold X, Sg∨(X) → Sg
∨(X●) is a quasi-isomorphism

which proves that Sg∨ is levelwise usu-fibrant.
Summing up, we have proved that Sg∨ is a projective stable (D1 , usu)-fibrant replacement

of Sus
0
TanΛcst.
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3. Ayoub’s Galois group
We recall here the construction of Ayoub’s bialgebra in [55]. In section 1 of that paper he

develops a weak Tannaka duality theory which allows to factor certain monoidal functors

f ∶ M → E between monoidal categories universally as

M f̃Ð→ coMod(H) oÐ→ E (3.1)

for a commutative bialgebra H ∈ E , where o is the forgetful functor, and where both functors

in the factorization are monoidal. This was applied in [55] to the monoidal (effective) Betti

realization functor

Bti
∗ ∶ DA→ D(Λ) (resp. Btieff,∗ ∶ DAeff → D(Λ))

yielding the stable (resp. effective) motivic bialgebra

Ha ∈ D(Λ) (resp. Heff

a ∈ D(Λ)).

It is shown in [55], that Ha is a Hopf algebra. Also, the bialgebras do not depend (up to

canonical isomorphism) on the topology chosen. Explicitly, the bialgebras as objects in

D(Λ) are given byHa = Bti∗Bti∗Λ andHeff
a = Btieff,∗Btieff∗ Λ.

We said above that these bialgebras enjoy a universal property; let us recall the precise

statement for the effective case (an analogous statement holds in the stable situation but we

will not use this).

Fact 3.2 ([55, Pro. 1.55]) Suppose we are given a commutative bialgebra K in D(Λ) and a
commutative diagram in the category of monoidal categories

DAeff

Bti
eff,∗ %%

f // coMod(K)

o
��

D(Λ)

where o is the forgetful functor, such that f (Acst) is the trivial K-comodule associated to A,
for any A ∈ D(Λ). Then there exists a unique morphism of bialgebrasHeff

a → K making the
following diagram commutative:

DAeff

B̃ti
eff,∗

��

f // coMod(K)

o
��

coMod(Heff
a ) o

//

77

D(Λ)

Now, consider the functor H0 ∶ D(Λ) →Mod(Λ) which associates to a complex its 0th

homology. By abuse of notation, we setHeff
a ∈Mod(Λ) to be H0Heff

a , andHa ∈Mod(Λ) to
be H0Ha. By [55, Cor. 2.105], the homology ofHeff

a andHa is concentrated in non-negative

degrees and it follows that the bialgebra structures descend toHeff
a andHa, andHa is still a

Hopf algebra. It is the coordinate ring of themotivic Galois group of Ayoub, denoted by Ga
(or Ga,Λ if the coefficient ring is not clear from the context).

By [55, Thm. 2.14], Ha (resp. Ha) is obtained by localization from Heff
a (resp. Heff

a ), as

follows. Choose an isomorphism

Bti
eff,∗(T[2]) ∼Ð→ Λ. (3.3)
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We then let sa ∈ Heff
a be the image of 1 ∈ Λ under the composition

Λ
(3.33.3)←ÐÐ
∼

Bti
eff,∗(T[2]) caÐ→Heff

a ⊗ Bti
eff,∗(T[2]) (3.33.3)ÐÐ→

∼
Heff

a ⊗ Λ ≅ Heff

a ,

where ca denotes the coaction ofHeff
a on Bti

eff,∗(T[2]). Clearly, sa does not depend on the

choice of the isomorphism (3.33.3). By [55, Thm. 2.14],Ha is the sequential homotopy colimit of

the diagram

Heff

a

sa×●ÐÐ→Heff

a

sa×●ÐÐ→ ⋯.
Applying H0 we see thatHa = Heff

a [s−1a ] as an algebra.

In order to apply the results on the category ofH(eff )
a -comodules in appendix CC we need

the following result.

Lemma 3.4 Let Λ be a principal ideal domain. ThenHeff
a andHa are flat Λ-modules.

Proof. The proof is the same in both cases; we do it forHeff
a . By [66, Cor. 1.27],Heff

a sits

in a distinguished triangle

C′ →Heff

a → C → C′[−1],
where C is a complex in D(Λ ⊗Z Q). (Explicitly, C′ = C0(Gal(k, k), Λ), the Λ-module of

locally constant functions on the absolute Galois group of k with values in Λ, which maps

canonically toHeff
a . Essentially due to the Rigidity Theorem of Suslin-Voevodsky, this map is

a quasi-isomorphism for torsion coefficients.) Looking at the associated long exact sequence

in homology one sees that all homologies ofHa must be torsion-free thus flat. ☐

Remark 3.5 The Betti realization can be constructed in a similar way also for Voevodsky

motives (see [66, §1.1.2]), and the same weak Tannakian formalism applies to give two bial-

gebras in D(Λ). It is proved in [66, Thm. 1.13] that they are canonically isomorphic toHeff
a

and Ha, respectively. In the case of the Hopf algebras (and this is the case we are chiefly

interested in), this follows from the fact that the canonical functor

DAét(k) → DMét(k)
is an equivalence.

4. Motivic representation
The goal of this section is to factor the homology representation H● ∶ Dn →Modf(Λ)

through the Betti realization H0 ○ Bti∗ ∶ DA → Mod(Λ) (Propositions 4.34.3, 4.74.7) in order

to obtain a morphism of bialgebras φa ∶ Hn → Ha. Let us see how to derive a solution

Ra ∶ Dn → DA to this task.

We saw in the previous section that for smooth schemes X, Btieff,∗Λ(X) computes the

Betti homology of X. A first guess might be that for any scheme X, Btieff,∗Λhom(●, X) also
does. This is not true however even in simple non-smooth cases. Instead we notice that, for

X with smooth structure morphism π ∶ X → k, there are canonical isomorphisms

LSus
0
TΛ(X) ≅ Lπ#π∗Λ ≅ Lπ!π!

Λ

in DA. The last expression makes sense for any scheme X, and we will prove below that

the Betti realization of this object indeed computes the Betti homology of X. We should

remark that there is nothing original about this idea. The object Lπ!π!Λ (and not the presheaf

Λ hom(●, X)) is commonly considered to be the “correct” representation of X inDA, and is

therefore also called the (homological) motive of X. The six functors formalism also allows

to naturally define a relative motive associated to a pair of schemes, and this will yield the

representationRa we were looking for.
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4.1. Construction. Let (X , Z , n) be a vertex in Nori’s diagram of pairs. Fix the following

notation:

Z iÐ→ X
j←Ð U , π ∶ X → k,

where U = X/Z is the open complement. Set

Ra(X , Z , n) = Lπ!R j∗ j∗π!
Λ[n] ∈ DA.

This extends to a representationRa ∶ Dn → DA as follows:

● The first type of edge in Dn is (X , Z , n) → (Z ,W , n − 1). We have the following

distinguished (“localization”) triangle (of endofunctors) inDA(X) (and similarly

for the pair (Z ,W)):

i! i !
adjÐ→ id

adjÐ→ R j∗ j∗
∂Ð→ i! i ![−1]. (4.1)

(Here, as in the sequel, adj denotes the unit or counit of an adjunction.) Applying

Lπ! and evaluating at π!Λ[n], we therefore obtain a morphism

Ra(∂) ∶ Ra(X , Z , n)
∂Ð→Ra(Z ,∅, n − 1)
adjÐ→Ra(Z ,W , n − 1).

● The second type of edge (X , Z , n) → (X′ , Z′ , n) is induced from a morphism of

varieties f ∶ X → X′ with f (Z) ⊂ Z′. We have the following commutative diagram

of solid arrows in (endofunctors of)DA(X′):

L f! i! i ! f ! //

adj

��

L f! f ! //

adj

��

L f!R j∗ j∗ f ! //

��

L f! i! i ! f ![−1]

adj

��
i′! i′! // id // R j′∗ j

′∗ // i′! i′![−1]

where the rows are distinguished (“localization”) triangles, and where the dotted

arrow is the unique morphism making the vertical arrows into a morphism of

triangles. (Uniqueness follows from the isomorphism L f! i! ≅ i′!L( f ∣Z)! and the

fact that there are no non-zero morphisms from i′! to R j′∗.) After applying Lπ′! ,
shifting by n, and evaluating at π′!Λ this dotted arrow gives the morphismRa( f ) ∶
Ra(X , Z , n) → Ra(X′ , Z′ , n) associated to f .

We will prove in a moment that this representation has the expected properties. Before doing

so we would like to recall the following classical result.

Fact 4.2 ([3434]) Let (X , Z) be a pair of varieties. Then its analytification (Xan , Zan) is a
locally finite CW-pair. In particular, Xan and Zan are paracompact, locally contractible, and
locally compact.

Proposition 4.3 Suppose that Λ is a principal ideal domain. Then there is an isomorphism
of representations

Dn
H0 B̃ti

∗Ra //

H
● ''

coModf(Ha)

o
��

Modf(Λ)
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Proof. By Fact 4.24.2 and B.3B.3 the complex of relative singular cochains Sg(Xan , Zan; Λ)∨
provides a model for Rπan

∗ jan! Λ inD(Λ). We claim that the complex Sg(Xan , Zan) defines a
strongly dualizable object inD(Λ). Indeed, using the distinguished triangle

Sg(Zan) → Sg(Xan) → Sg(Xan
, Zan) → Sg(Zan)[−1],

we reduce to prove it for Sg(Xan). Aswewill see in section 55, this complex is quasi-isomorphic

to a bounded complex of finitely generated free Λ-modules, thus it is a strongly dualizable

object.44

Therefore the canonicalmap fromSg(Xan , Zan) to its double dual is a quasi-isomorphism,

and we obtain the following sequence of isomorphisms inMod(Λ), for every n ∈ Z:
Hn(Xan

, Zan) = HnSg(Xan
, Zan)

≅ Hn(Sg(Xan
, Zan)∨∨)

≅ Hn((Rπan
∗ R jan! Λ)∨) see appendix BB

≅ HnBti
∗((Rπ∗ j!Λ)∨) by the main results of [33]

≅ HnBti
∗
Lπ!R j∗ j∗π!

Λ by duality

≅ H0Bti
∗Ra(X , Z , n) since Bti

∗
is triangulated.

This defines the isomorphism in the proposition. We have to check that it is compatible with

the two types of edges in Dn.

Let f ∶ (X , Z , n) → (X′ , Z′ , n) be an edge in Dn. Compatibility with respect to f will
follow from the commutativity of the outer rectangle in the following diagram (namely, after

applying Hn and noticing that Bti
∗
commutes with shifts):

Sg(Xan , Zan)
Sg( f ) //

∼

Sg(X′an , Z′an)

∼

Sg(Xan , Zan)∨∨
Sg( f )∨∨ //

∼

Sg(X′an , Z′an)∨∨

∼

(Rπan
∗ jan! Λ)∨

Ran,∨
a ( f )∨ //

∼

(Rπ′an∗ j′an! Λ)∨

∼

Bti
∗(Rπ∗ j!Λ)∨

R∨a ( f )∨ //

∼

Bti
∗(Rπ′∗ j′!Λ)∨

∼

Bti
∗
Lπ!R j∗ j∗π!Λ

Ra( f ) // Bti∗Lπ′!R j′∗ j′∗π′!Λ

We will describe the arrows as we go along proving each square commutative. Starting at the

bottom,R∨a( f ) ∶ j′!Λ → R f∗ j!Λ is defined dually toRa( f ). It is then clear that the bottom

square commutes. The same definition (using the six functors formalism, that is) in the

analytic setting gives rise to the arrowRan,∨
a ( f ) in the third row. Again, by the main results

of [33], the third square commutes as well. Commutativity of the first square is clear, while

commutativity of the second square follows from Lemma B.4B.4.

4In the notation of section 7.17.1, this quasi-isomorphic complex is CY(X ,∅) for a finite affine open cover Y of

X.
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Let (X , Z , n) be a vertex in Dn and W ⊂ Z a closed subvariety, giving rise to the

edge (X , Z , n) → (Z ,W , n − 1). Compatibility with respect to this edge will follow from

commutativity of the diagram

Hn(X , Z)

∼

∂ // Hn−1(Z)

∼

// Hn−1(Z ,W)

∼

H0Bti
∗Ra(X , Z , n) ∂

// H0Bti
∗Ra(Z ,∅, n − 1)

adj

// H0Bti
∗Ra(Z ,W , n − 1)

where the vertical arrows are the isomorphisms constructed above, and where the horizontal

arrows on the right are induced by (Z ,∅, n − 1) → (Z ,W , n − 1). In particular, the right

square commutes by what we have shown above, and we reduce to prove commutativity of

the left square. It can be decomposed as follows (before applying Hn , using again that Bti
∗

commutes with shifts; the horizontal arrows will be made explicit below):

Sg(Xan , Zan) ∂ //

∼

Sg(Zan)[−1]

∼

Sg(Xan , Zan)∨∨ δ∨ //

∼

(Sg(Zan)[−1])∨∨

∼

(Rπan
∗ jan! Λ)∨ δ∨ //

∼

(Rπan
∗ ian∗ Λ[1])∨

∼

Bti
∗(Rπ∗ j!Λ)∨

δ∨ //

∼

Bti
∗(Rπ∗ i∗Λ[1])∨

∼

Bti
∗
Lπ!R j∗ j∗π!Λ

Ra(∂) // Bti∗Lπ! i! i !π!Λ[−1]

(4.4)

Starting at the bottom, the morphism δ arises from the distinguished triangle of motives

over X:
i∗Λ[1]

δÐ→ j!Λ → Λ → i∗Λ. (4.5)

Taking the dual we obtain the other localization triangle (4.14.1). Thus commutativity of the

bottom square follows.

We can consider the exact same distinguished triangle as (4.54.5) in the analytic setting.

This gives rise to the arrow δ∨ in the third row of (4.44.4). Thus commutativity of the third

square in (4.44.4) follows from the fact that the compatibility of the Betti realization with the

six functors formalism is also compatible with the triangulations.

By Lemma B.6B.6 in the appendix, the second square in (4.44.4) commutes if we take δ∨ in
the second row to be induced by the short exact sequence of singular cochain complexes.

We leave it as an exercise to prove that this renders the top square in (4.44.4) commutative after

applying Hn . ☐

4.2. Monoidality. Our next goal is to prove that the isomorphism of the proposition

preserves the u. g.m. structures of the two representations (restricted to D g
n ; cf. appendix AA).

But first we must define this structure on the representation H0B̃ti
∗Ra.
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Let (X1 , Z1) and (X2 , Z2) be two pairs of varieties, and set X = X1 × X2, Z 1 = Z1 × X2,

Z2 = X1 × Z2, Z = Z 1 ∪ Z2. There is a canonical morphism (a motivic “cup product”)

Rπ∗ j1!Λ ⊗
L
Rπ∗ j2!Λ → Rπ∗( j1!Λ ⊗

L j
2!
Λ) ≅ Rπ∗ j!Λ (4.6)

and we obtain (for n = n1 + n2)

τ̃ ∶ Ra(X , Z , n)
(4.64.6)

∨

ÐÐÐ→ (Ra(X , Z 1 , 0) ⊗L Ra(X , Z2 , 0))[n]
γÐ→
∼

Ra(X , Z 1 , n1) ⊗L Ra(X , Z2 , n2)
Ra(p1)⊗LRa(p2)ÐÐÐÐÐÐÐÐÐ→Ra(X1 , Z1 , n1) ⊗L Ra(X2 , Z2 , n2)

where p i ∶ X → X i denotes the projection onto the ith factor. One word about the isomor-

phism γ: In the category of complexes there are two natural choices for γ, by following one
of the two paths in the following square:

(●1 ⊗ ●2)[n] //

��

(●1 ⊗ ●2[n2])[n1]

��
(●1[n1] ⊗ ●2)[n2] // ●1[n1] ⊗ ●2[n2]

This square commutes up to the sign (−1)n1 ⋅n2 . We choose the γ which is the identity in

degree 0. (Which of the two paths we choose thus depends on the sign conventions for the

tensor product and shift in the category of chain complexes.)

We can now define the u. g.m. structure on H0B̃ti
∗Ra as the following composition

(for any v1 , v2 ∈ Dn):

τ(v1 ,v2) ∶ H0B̃ti
∗Ra(v1 × v2)

τ̃Ð→ H0B̃ti
∗(Ra(v1) ⊗L Ra(v2))

∼Ð→ H0(B̃ti
∗Ra(v1) ⊗L

B̃ti
∗Ra(v2)) → H0B̃ti

∗Ra(v1) ⊗H0B̃ti
∗Ra(v2).

Proposition 4.7 Assume that Λ is a principal ideal domain. Then:

(1) The morphisms τ(v1 ,v2) define a u. g. m. structure on the representation H0B̃ti
∗Ra ∶ D g

n →
coModf(Ha).

(2) The isomorphism of the previous proposition is compatible with the u. g. m. structures, i. e.
it induces an isomorphism of u. g. m. representations

D g
n

H0 B̃ti
∗Ra //

H
● ''

coModf(Ha)

o
��

Modf(Λ)

Proof. For the first part we need to check that in coModf(Ha), some morphisms

are invertible and some diagrams commute. Both these properties can be checked after

applying o ∶ coModf(Ha) → Modf(Λ). Since the corresponding properties are true for
the representation H●, we see that to prove the proposition, it suffices to show that the

isomorphism of the previous proposition takes o ○ τ to the Künneth isomorphism.
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Write v1 , v2 , v for the motives Ra(X1 , Z1 , 0),Ra(X2 , Z2 , 0) and Ra(X , Z , 0), respec-
tively. Consider then the following diagram:55

HnBti
∗v

γ−1○τ̃
//

∼

Hn(Bti∗v1 ⊗L Bti
∗v2)

∼

γ
∼ // Hn1

Bti
∗v1 ⊗Hn2

Bti
∗v2

∼

Hn(X , Z)
∼

"AW"

// Hn(Sg(X1 , Z1) ⊗ Sg(X2 , Z2)) γ
∼ // Hn1

(X1 , Z1) ⊗Hn2
(X2 , Z2)

where we have written n for the sum n1 + n2. The right square clearly commutes. The bottom

horizontal arrow on the left is induced by the Alexander-Whitney map (it is really a zig-zag

on the level of complexes) and γ in the bottom right induces the canonical isomorphism of

the (algebraic) Künneth formula, hence it follows that the composition of the arrows in the

bottom row is nothing but the (topological) Künneth isomorphism. On the other hand, the

composition of the arrows in the top row is τ. Hence we are reduced to prove commutativity

of the left square in the diagram above, and it suffices to do so before applying Hn .

We now write v i for the motiveRa(X , Z i , 0). Decompose τ̃ according to its definition,
and use the fact that the Alexander-Whitney map admits a similar decomposition inD(Λ):

Bti
∗v (4.64.6)

∨

//

∼

Bti
∗(v1 ⊗L v2)

Ra(p1)⊗LRa(p2) //

∼

Bti
∗(v1 ⊗L v2)

∼

Bti
∗v1 ⊗L Bti

∗v2
Ra(p1)⊗LRa(p2) //

∼

Bti
∗v1 ⊗L Bti

∗v2

∼

Sg(X , Z)
"AW-diag" // Sg(X , Z 1) ⊗ Sg(X , Z2)

Sg(p1)⊗Sg(p2)// Sg(X1 , Z1) ⊗ Sg(X2 , Z2)

We wrote “AW-diag” for the Alexander-Whitney diagonal approximation which is a zig-zag

of morphisms of complexes (see below). It is clear that the upper right square commutes,

as does the lower right square by the proof of the previous proposition. For the square on

the left, notice that (4.64.6) equally defines a morphism in the category AnDA. Thus we now

denote by v, v i the same expressions in terms of the four functors in AnDA instead ofDA.
Then the proof of the proposition will be complete if we can prove commutative the following

diagram (in which all vertical arrows are the canonical invertible ones):

v (4.64.6)
∨

// v1 ⊗L v2

(π∗ j!Λ)∨
(4.64.6)

∨

// (π∗ j1!Λ ⊗L π∗ j2!Λ)∨

Sg(X , Z)∨∨ Sg(X , Z 1 + Z2)∨∨
∼oo ⌣∨ // (Sg(X , Z 1)∨ ⊗ Sg(X , Z2)∨)∨

Sg(X , Z) Sg(X , Z 1 + Z2)
∼oo AW-diag // Sg(X , Z 1) ⊗ Sg(X , Z2)

5Here, as in the sequel, we often write Sg(X , Z) for Sg(Xan , Zan).
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Here, Sg(X , Z 1 + Z2) denotes the free Λ-module on simplices in X which are neither con-

tained in Z 1 nor in Z2. The first rectangle clearly commutes, the second does so by LemmaB.8B.8

(which may be applied because of Fact 4.24.2), the bottom right square is well-known to com-

mute (see e. g. [1818, VII, 8]), and the bottom left one obviously commutes as well. ☐

Using the proposition we obtain the following commutative (up to a u. g.m. isomor-

phism) rectangle of u. g.m. representations:

D g
n

H0 B̃ti
∗Ra //

H̃
●

��

coModf(Ha)

o
��

coModf(Heff
n ) o

//

55

Modf(Λ)

(4.8)

Still assuming that Λ is a principal ideal domain we know, by Lemma 3.43.4 together with

Fact C.1C.1, that coModf(Ha) is an abelian category. Hence Corollary 1.11.1 yields a monoidal

functor φa represented by the dotted arrow in the diagram (4.84.8), rendering it commutative

(up to monoidal isomorphism). It then follows from [6464, II, 3.3.1] that φa necessarily arises

from a map of bialgebras φa ∶ Heff
n → Ha.

Using the commutativity of (4.84.8) one easily checks that φa(sn) = sa ∈ Ha hence φa

factors throughHn:

Heff
n

φa //

ι
��

Ha

Hn

φa

== (4.9)

5. Basic Lemma, and applications
Now we would like to construct a morphism φn in the other direction. The construction

relies on Nori’s functor which associates to an affine variety a complex inHMeff
computing

its homology, and which in turn relies on the “Basic Lemma”. We recall them both in this

section (basically following [2323]), while we prove the existence of φn in the next section.

We first recall the Basic Lemma in the form Nori formulated it [5959, Thm. 2.1]; it was

independently proven by Beilinson in a more general context [1010, Lem. 3.3].

Fact 5.1 (Basic Lemma) Let X be an affine variety of dimension n, and W ⊂ X a closed
subvariety of dimension ≤ n − 1. Then there exists a closed subvariety W ⊂ Z ⊂ X of dimension
≤ n − 1 such thatH●(Xan , Zan;Z) is a free abelian group concentrated in degree n.

We call a pair (X , Z , n) very good (cf. [3939, Def. D.1]) if either X is affine of dimension

n, Z is of dimension ≤ n − 1, X/Z is smooth, and H●(Xan , Zan;Z) is a free abelian group

concentrated in degree n, or if X = Z is affine of dimension less than n. Thus the Basic

Lemma implies that any pair (X ,W , n) with dim(X) = n > dim(W) can be embedded into

a very good pair (X , Z , n).
Nori applied this result to construct “cellular decompositions” of affine varieties as

follows. Let X be an affine variety. A filtration of X is an increasing sequence F● = (FiX)i∈Z
of closed subvarieties of X such that

● dim(FiX) ≤ i for all i (in particular, F−1X = ∅),
● FnX = X for some n ∈ Z.
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Theminimal n ∈ Z such that FnX = X is called the length of F● (by convention, for X = ∅
this length is defined to be −∞). Clearly the filtrations of X form a directed set. A filtration

F● is called very good if (FiX , Fi−1X , i) is a very good pair for each i. The following result

says that very good filtrations form a cofinal set.

Corollary 5.2 Let X be an affine variety, and F● a filtration of X. Then there exists a very
good filtration G● ⊃ F● of X. In particular, every affine variety of dimension n admits a very
good filtration of length n.

Proof. We do induction on the length n of F●. Every filtration of length n = −∞ or n =
0 is very good. Assume now n > 0. Set G iX = X for all i ≥ n. If dim(X) < n, let Gn−1X = X.
If dim(X) = n then, applying the Basic Lemma to the pair (X , Fn−1X), we obtain a closed

subvariety Fn−1X ⊂ Z ⊂ X such that (X , Z , n) is very good, and we setGn−1X = Z in this case.

Now apply the induction hypothesis to the filtration ∅ ⊂ F0X ⊂ ⋯ ⊂ Fn−2X ⊂ Gn−1X. ☐

To any filtration F● of X we associate the complex H●(X , F●) = H●(X , F●; Λ),
Hn(Xan

, Fn−1Xan) → Hn−1(Fn−1Xan
, Fn−2Xan) → ⋯ → H0(F0Xan

,∅),
concentrated in the range of degrees [0, n], where the differentials are the boundary maps

from the homology sequence of a triple. It follows that H●(X , F●) can be considered as

an object of Cpl(HMeff). For a very good filtration, this complex computes the singular

homology of Xan for the same reason that cellular homology and singular homology agree.

(For a more precise statement see Fact 5.35.3 below.) It then follows from the corollary that also

C(X) ∶= limÐ→
F
●

H●(X , F●) ∈ Cpl(HMeff

⊕ )

computes singular homology of Xan.

Given a morphism of affine varieties f ∶ X → Y , and a filtration F● on X, we obtain a

filtration

f (X) ⊃ f (Fn−1X) ⊃ ⋯ ⊃ f (F0X) ⊃ ∅
of f (X). Let m = dim(Y), and define a filtration G● on Y by

G iY =
⎧⎪⎪⎨⎪⎪⎩

f (FiX) ∶ i < m
Y ∶ i ≥ m.

This induces a morphism H●(X , F●) → H●(Y ,G●) in Cpl(HMeff). It follows that C defines

a functor AffVar→ Cpl(HMeff

⊕ ) on affine varieties.

Now given filtrations F● and G● on affine varieties X and Y , respectively, we form the

filtration (F × G)● on X × Y , setting (F × G)i(X × Y) to be ∪p+q=iFpX × GqY . There is

a canonical morphism H●(X , F●) ⊗ H●(Y ,G●) → H●(X × Y , (F × G)●) which induces

a morphism C(X) ⊗ C(Y) → C(X × Y). One can check that this endows C with a lax

monoidal structure.

To go further we have to make precise the relation between the functors C and Sg ○An.
For this, following [2323], we consider the subcomplex P(X) of Sg(Xan) which in degree

p consists of singular p-chains in Xan whose image is contained in Zan for some closed

subvariety Z ⊂ X of dimension ≤ p, and whose boundary lies in W an for some closed

subvarietyW ⊂ X of dimension ≤ p − 1. Such a singular chain defines a homology class in

Hp(Zan ,W an; Λ) hence there is a canonical map P(X) ↠ oC(X) (here, as usual, o forgets
the comodule structure). The following result follows from the Basic Lemma and some linear

algebra.
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Fact 5.3 ([2323, Lem. 4.14]) Let X be an affine variety. Both maps of chain complexes of
Λ-modules

oC(X) ← P(X) → Sg(Xan)
are quasi-isomorphisms.

It is clear that P defines a functor AffVar → Cpl(Λ) and that the two maps above are

natural in X. Moreover P comes with a canonical lax monoidal structure induced from the

one on Sg (the Eilenberg-Zilber transformation), and which is compatible with the one on C
defined before.

Corollary 5.4 The maps of the previous lemma define monoidal transformations between
lax monoidal functors

oC ← P → Sg ○An
fromAffVar toCpl(Λ). IfΛ is a principal ideal domain then after composing with the canonical
(lax monoidal) functor Cpl(Λ) → D(Λ) these become monoidal transformations of monoidal
functors.

Proof. Given affine varieties X and Y , we have a commutative diagram:

oC(X) ⊗ oC(Y)

��

P(X) ⊗ P(Y)oo

��

// Sg(Xan) ⊗ Sg(Y an)

��
oC(X × Y) P(X × Y) //oo Sg(Xan × Y an)

Sg takes values in (complexes of) free Λ-modules, and oC(X) is a direct limit of (complexes

of) finitely generated free Λ-modules (by Corollary 5.25.2) hence is itself a complex of flat

Λ-modules. If Λ is a principal ideal domain then P necessarily takes values in (complexes

of) free Λ-modules as well. In conclusion, under the assumptions of the corollary, all tensor

factors in the diagram above are flat.

It follows that all horizontal arrows in the diagram above are quasi-isomorphisms, and

that in the upper row, all tensor products are equal to their derived versions. The corollary

now follows from the fact that the right-most vertical arrow is a quasi-isomorphism. ☐

Remark 5.5 There are several ways to extend the functor C to all varieties, as explained

in [5959, p. 9]. However, for our purposes this will not be necessary as in the end we are inter-

ested only in the induced functorDAeff → D(HMeff

⊕ ), and here we can use the equivalence

betweenDAeff
andDAeff

aff.

6. Motivic realization
We would now like to explain how the lax monoidal functor C constructed in the

previous section induces a functor on categories of motives. The case of effective motives is

treated in §6.16.1 and as an application we deduce a morphism of bialgebras φn ∶ Heff
a → Heff

n

in §6.26.2. In §6.36.3 and §6.46.4 we treat the case of effective motives with transfers and non-effective

motives, respectively.

6.1. Construction. First we define the functor

C∗ ∶ USmAff → Cpl(HMeff

⊕ )
by the coend formula for a “left dg Kan extension” (cf. §IIIIII.1.11.1)

K z→ ∫ X∈SmAff

K(X) ⊗ C(X),
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where the comodule structure is induced from the one on the right tensor factor. Recall that

the coend appearing in the definition is nothing but the coequalizer of the diagram

⊕
X→Y

K(Y) ⊗ C(X) ⇉⊕
X
K(X) ⊗ C(X),

where the two arrows are induced by the functoriality of K and C, respectively. We will prove

below that C∗ is left Quillen for the projective model structure on the domain (even induced

from the injective model structure on Cpl(Λ)) and the injective model structure on the

codomain (cf. Fact C.2C.2).

Proposition 6.1 Let Λ be a principal ideal domain. LC∗ inherits a monoidal structure, and
takes (A1 , τ)-local equivalences to quasi-isomorphisms. Moreover, it makes the following square
commutative up to monoidal triangulated isomorphism.

DAeff

aff

LC∗
��

oo ∼ // DAeff

Bti
eff,∗

��
D(HMeff

⊕ ) D(o)
// D(Λ)

Remark 6.2 In [5959, p. 9], Nori remarks that for an arbitrary variety X and an affine open

cover U = (U1 , . . . ,Uq) of X, the complex

Tot(⋯ → ⊕1≤i1<⋯<ip≤qC(U i1 ∩⋯ ∩U ip) → ⋯) (6.3)

“computes the homology of X”. This can also be explained using the proposition, at least if X
is smooth. Namely, in that case, the complex

⋯ → ⊕1≤i1<⋯<ip≤qΛ(U i1 ∩⋯ ∩U ip) → ⋯

defines a cofibrant replacement of Λ(X) (as we will see in Lemma 7.17.1), and C∗ applied to it is
just (6.36.3), as follows from Lemma IIIIII.2.232.23. Hence the proposition tells us that the underlying

complex of Λ-modules in (6.36.3) is nothing but Bti
eff,∗

Λ(X) ≅ Sg(Xan) (by Proposition 2.22.2).

We will come back to this explicit description of LC∗ in section 7.17.1 where (6.36.3) is denoted
by CU(X).

Proof of Proposition 6.16.1. Just as C admits a left Kan extension, so do P, Sg and An:

SmAff //

C
��

USmAff

C∗xx

P∗

��

An
∗

��

Cpl(HMeff

⊕ )

o
��

Cpl(Λ) UManC
Sg
∗

oo

Endow Cpl(Λ) and Cpl(HMeff

⊕ ) with the injective model structures (cf. Fact C.2C.2), and the

presheaf categories with the projective model structures deduced from the injective model

structure on Cpl(Λ). We then use Lemma IIIIII.1.51.5 to prove that all these Kan extensions are

left Quillen functors. For Sg, P, and C this follows from the fact that they take values in

complexes of flat objects (see the proof of Corollary 5.45.4) hence the tensor product with these

complexes is a left Quillen functor for the injective model structure. For An, this is because

evaluation at a smooth affine scheme X clearly preserves (trivial) fibrations.
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Also, C∗ as well as P∗ and Sg
∗
An
∗ ≅ (Sg ○ An)∗ inherit canonically lax monoidal

structures (Proposition IIIIII.1.21.2). From Corollary 5.45.4 we deduce monoidal transformations

o ○ C∗ ←Ð P∗ → Sg
∗ ○An∗ (6.4)

of lax monoidal functors defined on USmAff taking values in Cpl(Λ). They give rise to

monoidal triangulated transformations between the corresponding left derived functors

(this uses Lemma C.4C.4), and to prove that these transformations are invertible, it suffices to

check it on objects of the form Λ(X), where X ∈ SmAff (by Lemma IIIIII.2.222.22 these compactly

generate the derived category). These objects are cofibrant, and we conclude since the maps

o ○ C∗Λ(X) ← P∗Λ(X) → Sg
∗ ○An∗Λ(X)

are identified with the quasi-isomorphisms

o ○ C(X) ← P(X) → Sg ○An(X).

We have now constructed a diagram of lax monoidal triangulated functors

D(HMeff

⊕ )

D(o)
��

D(USmAff)LC∗oo

LP∗uu
An
∗

��
D(Λ) D(UManC)

LSg
∗

oo

which commutes up tomonoidal triangulated isomorphism. Using the identificationDAeff

aff

∼Ð→
DAeff

the result therefore follows from Proposition 2.22.2. ☐

6.2. Bialgebramorphism. SinceHeff
n is a flat Λ-module,Cpl(HMeff

⊕ ) is canonically equiv-
alent to the category of Heff

n -comodules in Cpl(Λ) (Fact C.1C.1), and we can consider the

following composition of monoidal functors:

Rn ∶ DAeff ≃ DAeff

aff

LC∗ÐÐ→ D(HMeff

⊕ ) → coMod(Heff

n )D(Λ) ,

where the last term denotes the category of Heff
n -comodules in D(Λ). The upshot of the

discussion so far is that we obtain a diagram

DAeff
Rn //

Bti
eff,∗

))

coMod(Heff
n )D(Λ)

o
��

D(Λ)

of monoidal functors which commutes up to monoidal isomorphism. To apply Fact 3.23.2 we

still need to verify the following Lemma.

Lemma 6.5 Let K ∈ D(Λ), Λ a principal ideal domain. Then the coaction of Heff
n on

Rn(Kcst) is trivial.

Proof. We may assume that K is projective cofibrant consisting of free Λ-modules

in each degree (for example by Proposition IIIIII.3.43.4). Kcst is projective cofibrant, and in

each degree consists of a direct sum of Λ(Spec(k)), the presheaf represented by Spec(k).
Hence LC∗(Kcst) = C∗(Kcst) is a complex which in each degree consists of a direct sum of

C(Spec(k)) on whichHeff
n coacts trivially. HenceHeff

n also coacts trivially onRn(Kcst). ☐
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Corollary 6.6 Assume that Λ is a principal ideal domain. There is a morphism of bialgebras
Heff

a → Heff
n inducing φn ∶ Heff

a → Heff
n and rendering the following diagrams commutative up

to monoidal isomorphism:

DAeff

B̃ti
eff,∗

��

Rn // coMod(Heff
n )D(Λ)

o
��

coMod(Heff
a ) o

//

66

D(Λ)

DAeff

H0 B̃ti
eff,∗

��

H0Rn // coMod(Heff
n )

o
��

coMod(Heff
a ) o

//
φn

77

Mod(Λ)

There are two ways to obtain similar statements in the stable setting. The easier one is to

check thatHeff
a → Heff

n passes to the localizationsHa → Hn and consider the composition

DA B̃ti
∗

ÐÐ→ coMod(Ha) → coMod(Hn)D(Λ) .
This will be sufficient for our main theorem, and we will pursue it in section 7.17.1. However, it

might seem more natural and lead to stronger results to extend the construction of C∗ to the
level of spectra and derive the resulting functor. This will be done in §6.46.4.

6.3. Transfers. The remainder of §66 will not be strictly necessary for our main theorem

but the results obtained here are of independent interest. In §6.36.3, our goal is Proposition 6.76.7

where we prove that LC∗ extends to effective motives with transfers.

Recall ([5959, §3.1]) that to a finite correspondence X → SdY of degree d between affine

schemes, Nori associates a morphism C(X) → C(Y), defined as the composition

C(X) → C(SdY) ∼←Ð C(Y d)Σd

∑d
i=1 C(p i)ÐÐÐÐÐ→ C(Y),

where (●)Σd
denotes the Σd-coinvariants, and where the p i ∶ Y d → Y are the canonical

projections. As proved in [3131], this induces a functor Ctr ∶ SmAffCor → Cpl(HMeff

⊕ ) on
smooth affine correspondences, and the same procedure as above yields a left Quillen functor

C∗tr ∶ USmAffCor→ Cpl(HMeff

⊕ ) for the projective model structure on the domain and the

injective model structure on the codomain.

Proposition 6.7 Let Λ be a principal ideal domain. LC∗tr inherits a monoidal structure, and
takes (A1 , τ)-local equivalences to quasi-isomorphisms. Moreover, it fits into the following
diagram, commutative up to monoidal triangulated isomorphism.

DAeff

aff

LC∗ //

��

D(HMeff

⊕ )

DMeff

aff

LC∗tr

::

The vertical arrow is given by “adding transfers”. By Lemma IIIIII.4.174.17 there is a canonical

triangulated monoidal equivalenceDMeff

aff ≃ DMeff
.

Proof. It is proved in [3131] that the lax monoidal structure on C is natural with respect

to finite correspondences. It follows that C∗tr and LC∗tr inherit lax monoidal structures. To

check that the latter is strong monoidal it suffices to prove that C∗trΛtr(X) ⊗ C∗trΛtr(Y) →
C∗tr(Λtr(X) ⊗ Λtr(Y)) is a quasi-isomorphism for any smooth affine schemes X and Y (be-

cause the image of the Yoneda embedding Λtr ∶ SmAffCor→ D(U(SmAffCor)) compactly

generates the whole triangulated category; see Lemma IIIIII.2.222.22). But this morphism is canoni-

cally identified with C(X) ⊗C(Y) → C(X × Y) which we know to be a quasi-isomorphism.
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For the first claim we need to prove that the right adjoint Ctr,∗ takes a fibrant object K
to an (A1 , τ)-fibrant presheaf of complexes. In other words, we need to check that

● Ctr,∗K satisfies descent with respect to τ-hypercovers; and
● Ctr,∗K(X) → Ctr,∗K(A1

X) is a quasi-isomorphism for every smooth affine scheme

X.
But we can restrict Ctr,∗K to the site SmAff without affecting any of the two conditions hence

they are both satisfied since this is true for C∗K (by Proposition 6.16.1).

We just used that the composition SmAff → SmAffCor
CtrÐ→ Cpl(HMeff) coincides with

C which yields an isomorphism C∗tratr ≅ C∗ and therefore also a triangulated isomorphism

LC∗trLatr ≅ LC∗ ∶ DAeff

aff → D(HMeff

⊕ ), (6.8)

where atr denotes the functor which “adds transfers”, left adjoint to otr, “forgetting transfers”.
This concludes the proof of the proposition. ☐

6.4. Stabilization. In this subsection we will develop the stable motivic realizations for

motives with and without transfers in parallel. Statements containing the symbol (tr) thus
have two obvious interpretations.

For any flat complex of comodules K, there is an injective stable model structure on the

category of symmetric K-spectra, by Proposition C.3C.3. Denote by T , as in section 22, a cofibrant
replacement of Λ(A1)/Λ(Gm) and set Ttr = atrT . Notice that, canonically, C∗trTtr ≅ C∗T .

Lemma 6.9
(1) The canonical morphism of bialgebras ι ∶ Heff

n → Hn induces a functor

SptΣC∗T Cpl(HMeff

⊕ )
ιÐ→ SptΣιC∗T Cpl(HM⊕)

which preserves stable weak equivalences.
(2) There is a canonical Quillen equivalence

(Sus0ιC∗T , Ev0) ∶ Cpl(HM⊕) Ð→ SptΣιC∗T Cpl(HM⊕).

Proof. The functor is obtained by applying ι levelwise (cf. the following proof for the
details, or [22, Déf. 4.3.16]). The first part is then obvious, and the second part follows from [3737,

Thm. 9.1] since, as proved in the following section, tensoring with C∗T[2] (and hence with

C∗T) is a Quillen equivalence. ☐

Wewill prove in the following proposition thatC∗(tr) induces a left Quillen functorC∗(tr),s
on the level of spectra. Thus we may define the compositions

Rn,s ∶ DA ≃ DAaff

LC∗sÐÐ→ Hot(SptΣC∗T Cpl(HMeff

⊕ ))
REv0○ιÐÐÐ→ D(HM⊕),

Rn,tr,s ∶ DM ≃ DMaff

LC∗tr,sÐÐ→ Hot(SptΣC∗T Cpl(HMeff

⊕ ))
REv0○ιÐÐÐ→ D(HM⊕).

These are triangulated functors, and we will prove that they are in addition monoidal, at least

if Λ is a field.

Proposition 6.10
(1) The functors C∗ and C∗tr induce canonically lax monoidal left Quillen functors

C∗s ∶ SptΣTU(SmAff)/(A1
, τ) → SptΣC∗T Cpl(HMeff

⊕ ),
C∗tr,s ∶ SptΣTtr

U(SmAffCor)/(A1
, τ) → SptΣC∗T Cpl(HMeff

⊕ ).
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(2) The following triangles commute up to triangulated isomorphisms

DA

Bti
∗

$$

Rn,s // D(HM⊕)

D(o)
��

D(Λ)

DA

Latr
��

Rn,s // D(HM⊕)

DM
Rn,tr,s

::
(6.11)

(3) If Λ is a field thenRn,(tr),s is monoidal, and the triangles in (6.116.11) commute up to monoidal
isomorphisms.

(4) The Nori realization functors restrict to functors

Rn,s ∶ DAct → Db(HM), Rn,tr,s ∶ DMct → Db(HM)
on the categories of constructible motives.

Recall that the category of constructible motives is the thick subcategory generated by

smooth schemes.

Proof. We will prove the first part for C∗ but the case with transfers is literally the

same. C∗ together with the natural transformation θ ∶ C∗T ⊗ C∗(●) → C∗(T ⊗ ●) induces
a functor

C∗s ∶ SptΣTUSmAff → SptΣC∗T Cpl(HMeff

⊕ )
(cf. [22, Déf. 4.3.16]). Explicitly, it takes a symmetric T-spectrum E to the symmetric C∗T-
spectrum which in level n is given by C∗(En) and whose bonding maps are given by

C∗T ⊗ C∗(En)
θÐ→ C∗(T ⊗ En) → C∗(En+1),

the second arrow being induced by the bonding map of E. The lax monoidal structure on C∗
induces canonically a lax monoidal structure on C∗s .

It is clear that C∗s is cocontinuous hence admits a right adjoint, by the adjoint functor

theorem for locally presentable categories. Let f be a projective cofibration in SptΣTUSmAff.

Then f is in particular levelwise a cofibration ([22, Cor. 4.3.23]) and by the discussion in the

previous section, C∗ takes these to monomorphisms. Thus C∗s ( f ) is a monomorphism. The

same argument shows that C∗s takes projective cofibrations which are levelwise (A1 , τ)-local
equivalences to monomorphisms which are levelwise quasi-isomorphisms. In other words,

C∗s is a left Quillen functor for the unstablemodel structures. To prove the first part of the

proposition, it remains to prove that C∗s takes the morphism

ζDn ∶ Susn+1T (T ⊗ D) → Sus
n
TD

to a stable equivalence for every cofibrant object D and every n ≥ 0 (cf. [3737, Def. 8.7]). But in

the unstable homotopy category we can factor the image of ζDn as follows:

C∗s Susn+1T (T ⊗ D) ←Ð Sus
n+1
C∗TC∗(T ⊗ D)

←Ð Sus
n+1
C∗T(C∗T ⊗ C∗D)

Ð→ Sus
n
C∗TC∗D

Ð→ C∗s SusnTD.

The first, second and fourth arrows are all levelwise quasi-isomorphisms because LC∗ is
monoidal on the level of derived categories. Moreover, the third arrow is a stable equivalence

by definition.

We now come to the second part of the proposition. Commutativity of the triangle

on the right follows from (the proof of) Proposition 6.76.7. For the triangle on the left, recall
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that Sg
∗ ∶ U(ManC)/(D1 , usu) → Cpl(Λ) is a lax monoidal left Quillen functor. As for C∗

above this implies that there is an induced lax monoidal left Quillen functor Sg
∗
s on the

level of spectra (for the projective, respectively injective stable model structures). The Betti

realization can then also be described as the following composition:

DA An
∗

ÐÐ→ AnDA
LSg

∗

sÐÐ→
∼

Hot(SptΣSg∗An∗T Cpl(Λ))
REv0ÐÐ→
∼

D(Λ).

Analogously,D(o)Rn,s can be described as the composition

DAaff

LC∗sÐÐ→ Hot(SptΣC∗T Cpl(coMod(Heff

n )))
D(o)ÐÐ→ Hot(SptΣoC∗T Cpl(Λ))

REv0ÐÐ→
∼

D(Λ).

One is then essentially reduced to compareD(o)LC∗s and LSg
∗
s An

∗
which is done, as in the

effective case, by means of the intermediate functor P.
We come to the third part, and assume now that Λ is a field. Using Lemma C.5C.5 together

with [3737, Thm. 8.11] we see that the categories occurring in the definition ofRn,(tr),s all carry
induced monoidal structures. By the previous lemma, REv0 ○ ι is lax monoidal, as is LC∗(tr),s
by the first part of the proposition. It follows thatRn,(tr),s is a lax monoidal functor, and the

comparisons in part (2)(2) are compatible with these lax monoidal structures.

Monoidality ofRn,s now follows from monoidality of Bti
∗
and the fact that the derived

forgetful functor is conservative. Monoidality ofRn,tr,s in the étale case follows from this

since Latr is an equivalence of categories (cf. [55, Cor. B.14]). Finally, the Nisnevich realization

factors through the étale realization via a monoidal functor.

The last part of the proposition holds becauseRn,(tr),s takes a smooth affine scheme

into Db(HM). (For this we use that Db(HM) is a full subcategory of Db(HM⊕); see [4444,
Pro. 8.6.11 and Thm. 15.3.1.(i)].) ☐

Remark 6.12 During the preparation of the present chapter, Ivorra in [4141] independently

defined such a motivic realization for étale motives without transfers. While his construction

is more general in that it applies also to a relative case (involving his generalization of Nori

motives to “perverse Nori motives” over a base), he does not consider monoidality of the

functor nor its behaviour with respect to transfers.

There is a monoidal exact mixed Hodge realization for Nori motives whose composition

with the forgetful functor yields the forgetful functor onNori motives. Composing its derived

counterpart with Rn,(tr),s from the previous proposition yields the following immediate

corollary.

Corollary 6.13 There aremixed Hodge realization functors

Rh ∶ DAQ Ð→ D(MHSpol
Q,⊕), Rh,tr ∶ DMQ Ð→ D(MHSpol

Q,⊕)
to the derived category of (not necessarily finite dimensional) polarizable mixed Q-Hodge
structures satisfying the following properties:
(1) They are triangulated monoidal.
(2) They make the following triangles commute up to monoidal triangulated isomorphisms.

DAQ
Rh //

Bti
∗

%%

D(MHSpol
Q,⊕)

D(o)
��

D(Q)

DAQ
Rh //

Latr
��

D(MHSpol
Q,⊕)

DMQ

Rh,tr

99
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(3) They restrict to triangulated monoidal functors

Rh ∶ DAQ,ct Ð→ Db(MHSpol
Q
), Rh,tr ∶ DMQ,ct Ð→ Db(MHSpol

Q
)

on the categories of constructible motives.

7. Almost smooth pairs
In the sequel we will want to manipulate the Morel-Voevodsky motives of pairs of

varieties (X , Z), and describe their images under certain functors explicitly. This is easy

if both X and Z are smooth but turns out to be rather difficult in general. What we need

is a class of pairs which on the one hand are close enough to smooth ones so that explicit

computations are feasible, and on the other hand flexible enough so that we are able to

reduce our arguments from general pairs to this smaller class. This is provided by the class of

almost smooth pairs, i. e. pairs of varieties (X , Z) where X is smooth and Z a simple normal

crossings divisor. By resolution of singularities and excision, every good pair receives a

morphism from an almost smooth one which induces isomorphisms in Betti homology. In

this section, we will give rather explicit motivic models for almost smooth pairs, both on

the effective and the stable level, and compute their images under various functors. One

immediate consequence of our discussion here is that the morphism of bialgebras φn passes

to the stable level.

7.1. Effective level. (X , Z) will now be our running notation for an almost smooth pair.

We always denote the irreducible components of Z by Z1 , . . . , Zp and endow them with the

reduced structure. The (smooth) intersection of Z i and Z j is denoted by Z i j , and similarly

for intersections of more than two components. The presheaf Λ(X , Z) is defined to be the

cokernel of the morphism ⊕p
i=1Λ(Z i) → Λ(X).

In addition, let Y = (Y1 , . . . ,Yq) be an open affine cover of X. For any functor F ∶
SmAff → Cpl(C) into the category of complexes on an abelian category C, we define

FY(X , Z●) ∈ Cpl(C) to be the (sum) total complex of the tricomplex whose (i , j, k)-th
term is

⊕
a0<⋯<a i , b1<⋯<b j

Fk (Ya0⋯a i
∩ Zb1⋯b j

) ,

where by convention the empty intersection of the Z i ’s is X. This can also be understood as

the mapping cone of the morphism

FY∩Z●(Z●) → FY(X)

with an obvious interpretation of the first term. If F is defined on all smooth schemes, we

set F(X , Z●) to be F(X)(X , Z●), and if F is defined on all affine varieties, we can similarly

define FY(X , Z).
For example, we can consider the presheaf of complexes ΛY(X , Z●) with the canonical

map to Λ(X , Z). This defines a cofibrant replacement as we now prove.

Lemma 7.1 The canonical morphism ΛY(X , Z●) → Λ(X , Z) is a cofibrant replacement for
the τ-local model structure, and the complexes

C∗ΛY(X , Z●)
∼Ð→ CY(X , Z●)

∼Ð→ CY(X , Z)

all provide models for LC∗Λ(X , Z).
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Proof. To prove the first statement consider the following morphism of distinguished

triangles in the derived category of presheaves on smooth schemes:

ΛY(Z●) //

��

ΛY(X)

��

// ΛY(X , Z●) //

��

ΛY(Z●)[−1]

��
Λ(Z●) // Λ(X) // Λ(X , Z) // Λ(Z●)[−1]

(It should be clear what the first term denotes although we haven’t formally defined it above.

That the second row arises from a short exact sequence of complexes of presheaves (and

hence is indeed a distinguished triangle) is [6868, 2.1.4]; see [6565, Lem. 1.4] for a proof.) The

second vertical arrow is a τ-local equivalence as is the left vertical arrow by induction on the

number of irreducible components of Z. It follows that the third vertical arrow is a τ-local
equivalence as well. Since ΛY(X , Z●) is a bounded below complex of representables, it is

projective cofibrant (Fact IIIIII.2.102.10).

We now come to the second statement of the lemma. It is clear that the first arrow is

invertible. For the second arrow consider the following diagram:

oCY(X , Z●)

��

PY(X , Z●)oo //

��

(Sg)Y(X , Z●)

��
oCY(X , Z) PY(X , Z)oo // (Sg)Y(X , Z)

By the discussion in section 55, we know that the horizontal arrows are all quasi-isomorphisms.

Since the right-most vertical arrow is a quasi-isomorphism so is the left-most. ☐

Define the following zig-zag of morphisms of complexes of Λ-modules:

oCY(X , Z) ←Ð PY(X , Z) Ð→ (Sg)Y(X , Z) → Sg(X , Z). (7.2)

Lemma 7.3 Assume that (X , Z) is an almost smooth pair, and that Λ is a principal ideal
domain. Then (7.27.2) induces an isomorphism ofHeff

n -comodules

HnRnΛ(X , Z)
∼Ð→ Hn(X , Z)

for all n ∈ Z.

Proof. By Jouanolou’s trick there exists a smooth affine variety X′ and a Zariski locally

trivial morphism p ∶ X′ → X whose fibers are isomorphic to affine space. Setting Z′i =
Z i ×X X′ we obtain an almost smooth pair (X′ , Z′) with X′ affine, and a morphism p ∶
(X′ , Z′) → (X , Z) which induces an isomorphism in singular homology.
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Let Y ′ be the pullback of the affine cover to X′ and consider the following commutative

diagram, where all the arrows are the canonical ones:

oCY(X , Z) PY(X , Z)oo // (Sg)Y(X , Z)

oCY
′(X′ , Z′)

��

OO

PY
′(X′ , Z′)

��

OO

oo // (Sg)Y ′(X′ , Z′)

OO

��
oC(X′ , Z′) P(X′ , Z′)oo //

��

Sg(X′ , Z′)

��
P(X′)/P(Z′) // Sg(X′)/Sg(Z′)

By the discussion in section 55, we know that the top horizontal arrows are both quasi-

isomorphisms. All vertical arrows are quasi-isomorphisms. We thus reduce to prove that the

zig-zag of morphisms oC(X′ , Z′) ← P(X′ , Z′) → Sg(X′)/Sg(Z′) induces anHeff
n -comodule

(iso)morphism in the n-th homology. Writing (X , Z) for (X′ , Z′), this is expressed by

commutativity of the following diagram, where the vertical arrows are the coaction ofHeff
n

on the objects in question:

HnoC(X , Z)

ca

��

HnP(X , Z)
∼oo ∼ // Hn(X , Z)

ca

��
HnoC(X , Z) ⊗Heff

n HnP(X , Z) ⊗Heff
n∼

oo
∼
// Hn(X , Z) ⊗Heff

n

Start with any [( f , g)] ∈ HnP(X , Z). Thus there exist Xn ⊂ X, Zn−1 ⊂ Z closed subvarieties

of dimension at most n and n−1, respectively, such that f ∈ Sgn(Xn), g = ±∂ f ∈ Sgn−1(Zn−1)
(depending on the sign conventions for themapping cone). It is then clear from the definition

of the natural transformations oC ←Ð P Ð→ Sg that we reduce to prove commutativity of the

following diagram

HnoC(X , Z)

ca

��

Hn(Xn , Zn−1)oo

ca

��

// Hn(X , Z)

ca

��
HnoC(X , Z) ⊗Heff

n Hn(Xn , Zn−1) ⊗Heff
n

oo // Hn(X , Z) ⊗Heff
n

which is obvious. ☐

This lemma will be important later on as well but one immediate application is that it

allows us to extend the morphism of bialgebras φn ∶ Heff
a → Heff

n constructed in section 66

to a morphism Ha → Hn. Indeed, we see that there is the following isomorphism of Heff
n -

comodules:

H0φnB̃ti
eff,∗(T[2]) ∼Ð→ H0Rn(T[2]) by Cor. 6.66.6

∼Ð→ H0RnΛ(Gm , {1})[1]
∼Ð→ H1(Gm , {1}),

the last isomorphism by the previous lemma. One deduces easily that φn(sa) = sn ∈ Heff
n and

hence the morphismHeff
a → Heff

n from Corollary 6.66.6 passes to the localization and induces
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the following commutative squares:

Heff
a

//

ι
��

Heff
n

ι
��

Ha
// Hn

Heff
a

φn //

ι
��

Heff
n

ι
��

Ha φn
// Hn

Remark 7.4 In particular, we can now define a stable version of the functorRn constructed

in the effective case in section 66 (still assuming that Λ is a principal ideal domain). Indeed,

we set it to be the composition

Rn ∶ DA
B̃ti
∗

ÐÐ→ coMod(Ha) Ð→ coMod(Hn)D(Λ) .

As the composition of two monoidal functors,Rn is again monoidal. It follows also that the

diagrams analogous to the ones in Corollary 6.66.6 commute

DA

B̃ti
∗

��

Rn // coMod(Hn)D(Λ)

o
��

coMod(Ha) o
//

66

D(Λ)

DA

H0 B̃ti
∗

��

H0Rn // coMod(Hn)

o
��

coMod(Ha) o
//

φn

77

Mod(Λ)

as does the following square:

DAeff

aff

LSus
0
T

��

Rn // coMod(Heff
n )D(Λ)

ι
��

DA
Rn

// coMod(Hn)D(Λ)

7.2. Stable level. We continue our study of almost smooth pairs but now we work in the

context of non-effective motives. For such a pair, we will provide a rather explicit model for

both its homological as well as cohomological Morel-Voevodsky motive in Theorem 7.57.5, and

then similarly for its analytification in Theorem 7.97.9. Subsequently we prove that the Betti

realization is in some sense compatible with these models (Lemmas 7.107.10 and 7.127.12).

Let (X , Z) be an almost smooth pair. The inclusion of the complement U = X/Z → X
is denoted by j. Recall (from [55, §2.2.4]) the following constructions. Given a presheaf

K of complexes on smooth schemes, one defines K(X , Z) to be the kernel of the map

K(X) → ∏p
i=1 K(Z i). The endofunctor hom((X , Z), ●) is defined as the right adjoint to

tensoring with Λ(X , Z). Explicitly,

hom((X , Z),K)(Y) = K(Y × X ,Y × Z)

for any presheaf of complexes K and for any smooth scheme Y . hom((X , Z), ●) canonically
extends to an endofunctor on symmetric T-spectra of presheaves of complexes.

In general, we denote the internal hom in symmetric T-spectra by Hom. We note that

for a complex of presheaves K and a symmetric T-spectrum E, the object Hom(Sus0TK ,E)
admits the following simple description. In level n, it is given by Hom(K ,En), the action of

Σn is on En , and the bonding maps are given by the composition

T ⊗Hom(K ,En) → Hom(K , T ⊗ En) → Hom(K ,En+1),
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where the first arises from the adjunction (⊗, Hom), and the second uses the bonding maps

from E. To emphasize this description we write simply Hom(K ,E) for this symmetric

T-spectrum.

Using the notation from §7.17.1, Λ(X , Z●) denotes the augmented complex

⋯ → ⊕
i1<⋯<i l

Λ(Z i1⋯i l ) → ⋯ →⊕
i
Λ(Z i) → Λ(X),

the last term being in homological degree 0.

For the next result, recall that on presheaves of complexes on smooth schemes there

is also an injective (A1 , τ)-local model structure, obtained by (A1 , τ)-localization from the

“injective model structure”([22, Déf. 4.5.12]). The cofibrations and weak equivalences of the

latter are defined objectwise. One deduces then the existence of an “injective stable (A1 , τ)-
local model structure” on symmetric T-spectra as described in section 22 (cf. [22, Déf. 4.5.21]).

Theorem 7.5 Let (X , Z) be almost smooth.
(1) LetE be a projective stable (A1 , τ)-fibrant symmetric T-spectrum of presheaves of complexes

on Sm. Then Hom(Λ(X , Z●),E) provides a model for Rπ∗ j!E∣U in DA. Moreover, this
identification is functorial in E.

(2) If E is injective stable (A1 , τ)-fibrant instead, then one can replaceHom(Λ(X , Z●),E) by
hom((X , Z),E) in the statement above.

(3) For E an injective stable (A1 , τ)-fibrant replacement of the unit spectrum, hom((X , Z),E)
provides a model forRa(X , Z , 0)∨ in DA.

(4) In DA, LSus0TΛ(X , Z) ≅ Ra(X , Z , 0) canonically.

Proof. We first prove the second part. Let K●(E) be the object

E∣X → ⊕i i i∗E∣Z i
→ ⊕i< j i i j∗E∣Z i j

→ ⋯.

There is a canonical morphism

j!E∣U → Tot(K●(E)) =∶ K(E) (7.6)

(the totalization functor is applied levelwise; up to canonical isomorphism it doesn’t matter

whether Tot
⊕
or Tot∏ is used). We claim that it is a stable (A1 , τ)-local equivalence, and the

target is projective stable (A1 , τ)-fibrant.
For the first claim, one can use conservativity of the couple ( j∗ , Li∗), i ∶ Z ↪ X being

the closed immersion. It is obvious that j∗ applied to (7.67.6) is an equivalence while in the

case of Li∗ it is an easy induction argument on the number of irreducible components of

Z. For the second claim, we need to prove two things, namely that the target is levelwise

projective (A1 , τ)-fibrant, and an Ω-spectrum. For the first of these, fix a level n and set

E = En . We know that for each l , K l(E) is τ-fibrant hence so is K(E) by Lemma IIIIII.4.214.21.

The same argument shows that K(E) is A1-local.

We now prove that K(E) is an Ω-spectrum. Since K l(En) → hom(T ,K l(En+1)) is an
(A1 , τ)-local equivalence for each l so is the totalization

Tot(K●(En)) → Tot(hom(T ,K●(En+1))) = hom(T , Tot(K●(En+1))).

Hence this proves that K(E) is a projective stable (A1 , τ)-fibrant object.
We also find an (A1 , τ)-local equivalence

Λ(X , Z●) → Λ(X , Z) (7.7)
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between injective cofibrant objects hence Hom(●,E) will transform (7.77.7) into an (un)stable

(A1 , τ)-local equivalence. It follows that inDA,

hom((X , Z),E) = Hom(Λ(X , Z),E)
∼Ð→ Hom(Λ(X , Z●),E)
= Tot(Hom(Λ(X),E) → ⊕i Hom(Λ(Z i),E) → ⋯)
= Tot(π∗π∗E→ ⊕iπZ i∗π

∗
Z i
E→ ⋯)

= π∗Tot(K●(E))
∼←Ð Rπ∗ j!E∣U .

(7.8)

Finally, functoriality in E is clear.

Part three of the theorem is an immediate consequence of this and the identification

Ra(X , Z , 0)∨ = Rπ∗ j!1. Part four then follows by duality. The first part of the theorem

can be deduced as follows: Given E as in the statement of that part, we choose an injective

stable (A1 , τ)-fibrant replacement f ∶ E→ E′. f is a sectionwise quasi-isomorphism at each

level. Since pullback along a smooth morphism, and pushforward along a closed embedding

both preserve sectionwise quasi-isomorphisms, we see that K l( f ) ∶ K l(En) → K l(E′n) is
sectionwise a quasi-isomorphism for each l hence so is K( f ) ∶ K(En) → K(E′n) for each
n. It follows from what we proved in the first part of the theorem that K(E) is projective
stable (A1 , τ)-fibrant hence the same computation as above shows that Hom(Λ(X , Z●),E)
provides a model for Rπ∗ j!E∣U . ☐

We will need a similar result in the analytic setting. Thus let X be a complex manifold,

and Z a closed subset which is the union of finitely many complex submanifolds. We call

this an almost smooth analytic pair, and as before, we denote by Z1 , . . . , Zp the “components”

of Z, namely the connected components of the normalization of Z. We can then define,

analogously, Λ(X , Z●), Λ(X , Z) and hom((X , Z), ●) (cf. [55, §2.2.1]).

Theorem 7.9 Let E be a projective stable (D1 , usu)-fibrant presheaf of complexes onManC.
ThenHom(Λ(X , Z●),E) provides a model for Rπ∗ j!E∣U in AnDA. Moreover, this identifica-
tion is functorial in E.

Proof. The proof is very similar to the one of the last theorem and we omit the details.

(Also, the other parts of the previous theorem are equally true in the analytic setting, with

almost identical proofs.) ☐

Later on, we will use the following relation between the two descriptions of motives

we just gave. Choose a projective stable (A1 , τ)-fibrant replacement E of the unit spectrum

1. Also choose a projective stable (D1 , usu)-fibrant replacement E′ of 1. An∗1 ≅ 1 → E′
induces, by adjunction, 1→ An∗E′ and the latter is projective stable (A1 , τ)-fibrant. It follows
that there is a morphism E→ An∗E′ which induces An

∗E→ E′ rendering the triangle

1 //

!!

An
∗E

��
E′

commutative. Notice that the morphism An
∗E→ E′ is necessarily a stable (D1 , usu)-local

equivalence.
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Lemma 7.10 Under the identifications of the two previous theorems, the following square
commutes ((X , Z) is an almost smooth pair):

An
∗
Rπ∗ j!1

��

An
∗
Hom(Λ(X , Z●),E)

��
Rπan
∗ jan! 1 Hom(Λ(Xan , Zan

● ),E′)

Proof. By adjunction, this is equivalent to the commutativity of the following outer

diagram:

Rπ∗ j!E∣U
adj

��

Hom(Λ(X , Z●),E)

adj

��
Rπ∗ j!(An∗An∗E)∣U

��

Hom(Λ(X , Z●), An∗An∗E)

��
Rπ∗ j!(An∗E′)∣U

∼

Hom(Λ(X , Z●), An∗E′)

∼

RAn∗Rπan
∗ jan! E′∣U an An∗Hom(Λ(Xan , Zan

● ),E′)

Commutativity of the upper part follows from the functoriality statement in Theorem 7.57.5.

For the lower square, one checks that An∗ commutes with the relevant equalities in (7.87.8).

The main point is that An∗K(E′) = K(An∗E′). ☐

This lemma states that the analytification functor is compatible with our choices of

models for the relative motives. We now want to prove the analogous statement for the

Betti realization functor. Factoring the latter as ΓEv0An
∗
(where Γ is the global sections

functor, cf. section 22), we reduce to showing this compatibility for the composed functor

ΓEv0. Thus let (X , Z) be an almost smooth analytic pair. By what we saw in section 44 (or

rather appendix BB, specifically Fact B.3B.3), the object ΓEv0Rπ∗ j!1 is modeled by the complex

of relative singular cochains on (X , Z). Now suppose that in the situation of the previous

lemma, we choose E′ to be Sg∨ of Remark 2.42.4. Then we find a canonical quasi-isomorphism

Sg(X , Z)∨ ∼Ð→ Tot(Sg(X)∨ → ⊕iSg(Z i)∨ → ⋯)
= ΓHom(Λ(X , Z●), Sg∨)
= ΓEv0Hom(Λ(X , Z●), Sg∨).

(7.11)

Lemma 7.12 The following square commutes:

ΓEv0Rπ∗ j!1

∼

ΓEv0Hom(Λ(X , Z●), Sg∨)

Rπ̃∗ j̃!Λcst Sg(X , Z)∨
(7.117.11) ∼

OO

Here, we temporarily decorate the functors operating on sheaves on locally compact

topological spaces with a tilde to distinguish them from their counterparts in the complex

analytic world.
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Proof. Since the identification of Theorem 7.97.9 inducing the top horizontal arrow is lev-

elwise, we may prove the lemma staying completely on the effective level, thus decomposing

the square as follows:

RΓRπ∗ j!Λ
∼ //

∼

Γπ∗K(Sg∨) Sg
∨(X , Z●)

∼

vv
Rπ̃∗RιX∗ j!Λ

∼ // π̃∗ιX∗K(Sg∨)
∼ // π̃∗Tot(SX → ⊕i i i∗SZ i

→ ⋯)

Rπ̃∗ j̃!Λcst

∼

OO

∼ // π̃∗(SX ⊗ ΛU) α
∼ // π̃∗K(X ,Z)

∼

OO

Sg(X , Z)∨
β
∼oo

∼

OO

Recall (from appendix BB) that SX is the sheaf of singular cochains on the topological space

X, U = X/Z, and K(X ,Z) is the kernel of the canonical morphism SX → i∗SZ . K(Sg∨) is
defined as in the proof of Theorem 7.57.5, the maps α and β are also defined in appendix BB.

Everything except possibly the lower left inner diagram clearly commutes. Commu-

tativity of this remaining diagram can be proved before applying Rπ̃∗. We replace the

constant presheaf Λ by Sg
∨
, and the constant sheaf Λcst by SU . Then the lemma follows from

commutativity of the following diagram, which is obvious.

RιX∗ j!Sg∨∣U // ιX∗Tot(Sg∨∣X → ⊕i i i∗Sg∨∣Z i
→ ⋅) // Tot(SX → ⊕i i i∗SZ i

→ ⋅)

j̃! ιU∗Sg∨∣U

OO 55

// j̃!SU

44

SX ⊗ ΛU

OO

☐

We end this section with the following result expressing a duality between relative

Morel-Voevodsky motives associated to complements of two different divisors in a smooth

projective scheme. We will make essential use of it in the following section.

Lemma 7.13 (cf. [5959, p. 13], [3939, Lem. 1.13], [4848, Lem. I.IV.2.3.5]) LetW be a smooth projective
scheme of dimension d, W0 ∪W∞ a simple normal crossings divisor. Then there is a canonical
isomorphism

Ra(W −W∞ ,W0 −W∞ , n)∨ ≅ Ra(W −W0 ,W∞ −W0 , 2d − n)(−d)

in DA.

Proof. Fix the notation as in the following diagram:

W −W∞
j
∞ // W

W − (W∞ ∪W0)

j′0

OO

j′
∞

// W −W0

j0

OO

The left hand side of the equality to establish is

πW∗ j∞∗ j′0! j′!0 j∗∞π∗W1[−n] ≅ πW ! j∞∗ j′0! j′∗∞ j!0π!
W1(−d)[2d − n]
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by relative purity, hence to prove the lemma it suffices to provide a canonical isomorphism

j0! j′∞∗1 ≅ j∞∗ j′0!1. The candidate morphism is obtained by adjunction from the composi-

tion

j′∞∗
adjÐ→
∼

j′∞∗ j′!0 j′0! ≅ j!0 j′∞∗ j′0! .

It is clear that the candidate morphism is invertible on W −W0, hence by localization, it

remains to prove the same onW0. Denote by i●● the closed immersion complementary to j●●.
We add a second subscript 0 (resp.∞) to denote the pullback of a morphism along i0 (resp.
i∞).

Note that i∗0 j0! = 0 hence it suffices to prove i∗0 j∞∗ j′0!1 = 0. By one of the localization
triangles for the couple (W −W∞ ,W − (W∞ ∪W0)) we can equivalently prove that the

morphism

adj ∶ i∗0 j∞∗1→ i∗0 j∞∗ i′0∗1 (7.14)

is invertible. The codomain of this morphism is isomorphic to

i∗0 j∞∗ i′0∗1 ≅ i∗0 i0∗ j∞0∗1 ≅ j∞0∗1,

and under this identification, (7.147.14) corresponds to the morphism

i∗0 j∞∗1
bcÐ→ j∞0∗ i′∗0 1 ≅ j∞0∗1. (7.15)

Here, as in the rest of the proof, bc denotes the canonical base change morphism of the

functors involved. Consider now the following diagram:

i∗0 i∞! i !∞1

α
��

// i∗01

∼
��

// i∗0 j∞∗1 //

(7.157.15)

��

i∗0 i∞! i !∞1[−1]

α
��

i∞0! i !∞01
// 1 // j∞0∗1 // i∞0! i !∞01[−1]

The bottom row is a localization triangle, the top row arises from such by application of i∗0 . It
is clear that the middle square commutes. α is defined as the composition

i∗0 i∞! i !∞1
bcÐ→
∼

i∞0! i∗0∞ i !∞1
bcÐ→ i∞0! i !∞0 i∗01 ≅ i∞0! i !∞01,

and it is again easy to see that the left square commutes. Since there is only the zeromorphism

from i∗0 i∞! i !∞1[−1] to j∞0∗1, this implies commutativity of the whole diagram. Nowwe have

amorphism of distinguished triangles, and to prove invertibility of (7.157.15) (and therefore (7.147.14))

it suffices to prove invertibility of α. Only the middle arrow in its definition needs to be

considered, and for this we note that bc ∶ i∗0∞ i !∞1→ i !∞0 i∗01 is invertible by purity. ☐

8. Main result
The goal of this section is to prove the following theorem. The two main inputs are

Proposition 8.28.2 and Theorem 8.38.3 which we prove subsequently.

Theorem 8.1 Assume that Λ is a principal ideal domain. Then φa and φn are isomorphisms
of Hopf algebrasHa ≅ Hn, inverse to each other. In particular, there is an isomorphism of affine
pro-group schemes over Spec(Λ):

Ga ≅ Gn .
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Proof. Consider the following triangle:

D g
n

H̃
●

��

φnH0 B̃ti
∗Ra // coModf(Hn)

coModf(Heff
n )

ε

55

By construction, the triangle commutes (up to u. g.m. isomorphism) for ε = φnφa. By

Proposition 8.28.2 below it also commutes (up to u. g.m. isomorphism) for ε = ι, where ι ∶
Heff

n → Hn is the canonical localization map. By universality of Nori’s category (Corollary 1.11.1),

we must therefore have a monoidal isomorphism of functors φnφa ≅ ι. By [6464, II, 3.3.1],
we must then have φnφa = ι. Hence φnφa ∶ Hn → Hn is the identity. In particular, φa

is injective. If we prove surjectivity of φa then it will follow that φa and φn are bialgebra

isomorphisms, inverse to each other. And since an antipode of a Hopf algebra is unique, they

are automatically isomorphisms of Hopf algebras.

We use Theorem 8.38.3 below to deduce that the comultiplication cm ∶ Ha → Ha ⊗Ha is

equal to

Ha

caÐ→ Hn ⊗Ha

φa⊗idÐÐÐ→ Ha ⊗Ha

for some coaction ca of Hn on Ha. Composing cm with the counit id ⊗ cu ∶ Ha ⊗Ha →
Ha ⊗ Λ ≅ Ha yields the identity, therefore also

id = (id⊗ cu) ○ (φa ⊗ id) ○ ca = φa ○ (id⊗ cu) ○ ca.
It follows that φa is surjective. ☐

Proposition 8.2 Assume that Λ is a principal ideal domain. The following square commutes
up to an isomorphism of u. g. m. representations:

D g
n

H̃
●

��

Ra // DA

H0○B̃ti
∗

��
coMod(Hn) coMod(Ha)φn

oo

Proof. By Proposition 4.74.7, we already know that after composition with the forgetful

functor coMod(Hn) →Mod(Λ), the two u. g.m. representations are naturally isomorphic.

Call the isomorphism η. It therefore suffices to prove that the components of η are compatible

with theHn-comodule structure.

Let v = (X , Z , n) be an arbitrary vertex in D g
n . We find by resolution of singularities

a vertex v′ = (X′ , Z′ , n) and an edge p ∶ v′ → v such that (X′ , Z′) is almost smooth and

H●(p) is an isomorphism. Consider the following commutative square inMod(Λ):

H●(v′)
ηv′ //

H
●
(p)
��

φnH0B̃ti
∗Ra(v′)

φnH0 B̃ti
∗Ra(p)

��
H●(v) ηv

// φnH0B̃ti
∗Ra(v)

All arrows are invertible and both vertical arrows are coMod(Hn)-morphisms. We may

therefore assume that (X , Z) is almost smooth.
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Now consider the following diagram inMod(Λ):

H0Bti
∗Ra(X , Z , n)

η∼
��

∼
Thm. 7.57.5

// H0Bti
eff,∗

Λ(X , Z)[n]

∼Cor. 6.66.6
��

Hn(X , Z) H0RnΛ(X , Z)[n]
∼

(7.27.2)

oo

By Lemma 7.37.3, the bottom horizontal arrow is compatible with theHeff
n -coaction; the same is

clearly true for the top horizontal and the right vertical one. We are thus reduced to show

commutativity of this square.

For this, it suffices to prove it before applying Hn . Modulo the identification of Bti
eff,∗

with LSg
∗ ○ An∗ of Proposition 2.22.2, the composition of the right vertical and the bottom

horizontal arrow can be equivalently described as the composition

LSg
∗
An
∗
Λ(X , Z) → LSg

∗
Λ(Xan

, Zan) → Sg(Xan
, Zan).

Thus the square above will commute if the following diagram does:

Bti
∗
Lπ!R j∗ j∗π!1

∼

∼

Bti
∗
LSus

0
TΛ(X , Z●)

∼

∼
LSg

∗
An
∗
Λ(X , Z●)

∼
��

(Bti∗Rπ∗ j!1)∨

∼

(Bti∗Hom(Λ(X , Z●),E))∨

∼

LSg
∗
Λ(Xan , Zan

● )

∼
��

(Rπ̃an
∗ j̃an! Λcst)∨ Sg(Xan , Zan)∨∨ Sg(Xan , Zan)∼

oo

The arrows in the top left square are induced by the identifications in Theorem 7.57.5 (E is a

projective stable (A1 , τ)-fibrant replacement of the unit spectrum) and duality which makes

the square clearly commutative. Commutativity of the lower left square is Lemma 7.107.10

and 7.127.12. For the right half, consider the following diagram (all “arrows” are isomorphisms,

either canonical or introduced before):

(Bti∗LSus0Λ(X , Z●))∨ (Btieff,∗Λ(X , Z●))∨ (LSg∗An∗Λ(X , Z●))∨ (LSg∗Λ(Xan , Zan
● ))∨

RΓREv0(An∗LSus0Λ(X , Z●))∨ RΓREv0(LSus0Λ(Xan , Zan
● ))∨ RΓREv0LSus

0
Λ(Xan , Zan

● )∨ LSg
∗
Λ(Xan , Zan

● )∨

Bti
∗
Hom(Λ(X , Z●),E) RΓREv0Hom(Λ(Xan , Zan

● ), Sg∨) RΓHom(Λ(Xan , Zan
● ), Sg∨) LSg

∗
Hom(Λ(Xan , Zan

● ), Sg∨)

The upper part clearly commutes as does the lower right square. For the lower left square we

need to prove commutative

An
∗
Hom(Λ(X , Z●),E)

��

An
∗
RHom(LSus0Λ(X , Z●), 1)

��
Hom(Λ(Xan , Zan

● ), Sg∨) RHom(LSus0Λ(Xan , Zan
● ), 1)

and this is done as in Lemma 7.107.10. The lower middle square is easily seen to commute hence,

using duality, it only remains to prove that the composition of the dotted arrows is equal to

RΓHom(Λ(Xan
, Zan
● ), Sg∨) ← Sg

∨(Xan
, Zan) → (LSg∗Λ(Xan

, Zan
● ))∨ .
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For this notice that Sg
∨ = Sg∗Λ. Then, writing B for Λ(Xan , Zan

● ), we reduce to prove

commutative:

ΓHom(B, Sg∗Λ)

��

LSg
∗
Hom(B, Sg∗Λ)

��

LSg
∗
RHom(B, Λ)

��
ΓSg∗Hom(Sg

∗B, Λ) LSg
∗
Sg∗Hom(Sg

∗B, Λ)

��

RHom(LSg∗B, Λ)

Hom(Sg∗B, Λ)

55

Here we used that Sg○ ι⋆ ∶ ⋆ → Cpl(Λ) takes the value Sg(⋆) ≃ Λ hence Γ○Sg∗ is canonically
quasi-isomorphic to the identity. Since the undecorated functors Sg

∗
and Sg∗ appearing

are only applied to cofibrant, respectively fibrant, objects they can be identified with their

derived counterparts and the diagram is easily seen to commute. ☐

Theorem 8.3 Assume that Λ is a principal ideal domain. The bialgebraHa considered as a
comodule over itself lies in the essential image of

coMod(Hn)
φaÐ→ coMod(Ha).

Proof. We may prove this statement for the Nisnevich topology. Ayoub gives in [55,

Thm. 2.67] an explicit model for the symmetric T-spectrum Bti
Nis
∗ Λ which we are now going

to describe at a level of detail appropriate for our proof.

Recall the category Vét(D
n/An) (n ≥ 0) whose objects are étale neighborhoods of the

closed polydisk D
n
inside affine space An (for the precise definition see [55, §2.2.4]). It is

a cofiltered category. Forgetting the presentation as a scheme over An defines a canonical

functor D
n
ét ∶ Vét(D

n/An) → Sm. In other words we obtain a pro-smooth scheme. We

write Dét for the associated cocubical object in pro-smooth schemes where the faces d i ,ε are

induced from the faces in An (the “coordinate hyperplanes” through 0 and 1). For n ∈ N and

ε = 0, 1 write ∂εD
n
ét for the union of the faces d i ,ε(D

n−1
ét ), where i runs through 1, . . . , n. Also

write ∂Dn
ét for the union ∂0D

n
ét ∪ ∂1D

n
ét, and ∂1,1D

n
ét for the union of all d i ,ε(D

n−1
ét ) except

(i , ε) = (1, 1).
We obtain the bicomplex N(hom(Dét ,K)) which in degree n (in the direction of the

cocubical dimension) is given by hom((Dn
ét , ∂1,1D

n
ét),K), and whose differential in degree

n > 0 is d1,1.66 In particular, the cycles in degree n > 0 are given by hom((Dn
ét , ∂Dn

ét),K).
Thus we obtain a canonical morphism of bicomplexes

hom((Dn
ét , ∂Dn

ét),K)[−n] → N≤n(hom(Dét ,K))
where the right hand side denotes the bicomplex truncated at degree n from above. One can

check that this induces a quasi-isomorphism on the associated total complexes whenever K
is injective fibrant.

Taking the total complex of the bicomplex N(hom(Dét ,K)) (resp. N≤n(hom(Dét ,K)))
we obtain an endofunctor nSg

D

ét
(resp. nSg

D
≤n

ét
) of presheaves of complexes on smooth schemes.

6Given a pro-object (X i , Z i)i∈I of almost smooth pairs, hom((X i , Z i)i , K) takes a smooth scheme Y to

lim
Ð→
i∈I

K(Y × X i , Y × Z i).
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It extends canonically to an endofunctor on symmetric T-spectra. Let E be an injective stable

(A1 , Nis)-fibrant replacement of the unit spectrum 1. [55, Thm. 2.67] states that Bti
Nis
∗ 1 is

given explicitly by the symmetric T-spectrum

SingD,∞
ét
(E) ∶= limÐ→

r
sr−nSgD

ét
(E)[2r],

where s− denotes the “shift down” functor (so that s−(E)m = Em+1; see [22, Déf. 4.3.13]). As
we will not need a description of the transition morphisms in the sequential colimit above,

we content ourselves with referring to [55, Déf. 2.65]. Let Q ∶ SptΣTUSm→ DANis
denote the

canonical localization functor, and consider the following canonical morphisms:

limÐ→
r ,n

H0B̃ti
Nis,∗Q(sr− hom((D

n
ét , ∂Dn

ét),E)[2r − n]) → limÐ→
r ,n

H0B̃ti
Nis,∗Q(sr−nSgD

≤n

ét
(E)[2r])

→ H0B̃ti
Nis,∗Q(SingD,∞

ét
(E)) (8.4)

in coMod(Ha). The last term is the bialgebraHa considered as a comodule over itself. We

are going to show first that the composition in (8.48.4) is invertible, and then that the comodules

in the filtered system on the left hand side are in the essential image of φa. This is enough

since, as seen in the proof of Theorem 8.18.1, the previous proposition implies that φnφa ≅ id
hence the essential image of φa is a full subcategory of coMod(Ha) (since both φa and φn

are faithful) closed under small colimits (by Fact C.1C.1).

In order to show invertibility of (8.48.4), we can do so after forgetting the comodule

structure. Just as in the case of the étale singular complex there is an endofunctor SingD,∞

on symmetric An
∗(T)-spectra defined using Sg

D
instead of nSg

D

ét
(cf. [55, Déf. 2.45]). Denote

by F ∶ SptΣTUSm →Mod(Λ) the composition of functors H0ΓEv0SingD,∞
An
∗
and notice

that

(a) F commutes with filtered colimits, by construction;

(b) F takes levelwise quasi-isomorphisms of symmetric T-spectra to isomorphisms of

modules, as follows essentially from [55, Lem. 2.55];

(c) F applied to a projective stable (A1 , Nis)-fibrant spectrumK is a model for H0Bti
Nis,∗K,

by [55, Lem. 2.72 and Thm. 2.48].

We claim that the morphism of Λ-modules underlying (8.48.4) can be identified with the

composition

limÐ→
r ,n

F(sr− hom((D
n
ét , ∂Dn

ét),E)[2r − n]) → limÐ→
r ,n

F(sr−nSgD
≤n

ét
(E)[2r])

→ F(SingD,∞
ét
(E)). (8.5)

This follows from (c)(c) because both SingD,∞
et
(E) and hom((Dn

ét , ∂Dn
ét),E)) are projective

stable (A1 , Nis)-fibrant, as follows from [55, Thm. 2.67] for the first, and from our proof

of Theorem 7.57.5 together with [55, Lem. 2.69] for the second. But the first arrow in (8.58.5) is

invertible by (b)(b), and the second one by (a)(a) so we conclude that (8.48.4) is invertible.

Next we fix (r, n) ∈ N2 and consider the canonical morphism

limÐ→
(X ,x)∈Vét(D

n/An)

H0B̃ti
Nis,∗Q(sr− hom((X , ∂X),E)[2r − n]) →

H0B̃ti
Nis,∗Q(sr− hom((D

n
ét , ∂Dn

ét),E)[2r − n]).
The same argument as above establishes invertibility of this arrow and reduces us to show

that the comodules in the filtered system on the left hand side lie in the essential image
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of φa. Hence fix (X , x) ∈ Vét(D
n/An). By resolution of singularities there is a smooth

projective scheme W and a simple normal crossings divisor W0 ∪ W∞ on W together

with a projective surjective morphism p ∶ W −W∞ → X such that p−1(∂X) = W0 −W∞
and p∣W−p−1(∂X) ∶ W − p−1(∂X) → X − ∂X is an isomorphism. Therefore, canonically,

Ra(X , ∂X , 0) ≅ Ra(W −W∞ ,W0 −W∞ , 0), and we obtain inDANis
:

sr− hom((X , ∂X),E)[2r − n] ≅ hom((X , ∂X),E)[−n](r)
≅ Ra(X , ∂X , 0)∨[−n](r)
≅ Ra(W −W∞ ,W0 −W∞ , 0)∨[−n](r)
≅ Ra(W −W0 ,W∞ −W0 , n)(r − n)

≅ Ra(W −W0 ,W∞ −W0 , n) ⊗L Ra(Gm , {1}, 1)⊗
L(r−n)

,

where we used [22, Thm. 4.3.38] for the first, Theorem 7.57.5 for the second, and Lemma 7.137.13 for

the penultimate isomorphism. Applying H0B̃ti
∗
to these isomorphisms, and using (4.84.8) as

well as (4.94.9) we obtain the following sequence of isomorphisms

H0B̃ti
Nis,∗sr− hom((X , ∂X),E)[2r − n]

≅ H0B̃ti
Nis,∗ (Ra(W −W0 ,W∞ −W0 , n) ⊗L Ra(Gm , {1}, 1)⊗

L(r−n))

≅ φa (H̃●(W −W0 ,W∞ −W0 , n) ⊗L
H̃●(Gm , {1}, 1)⊗

L(r−n)) ,
which concludes the proof. ☐

A. Nori’s Tannakian formalism in the monoidal setting
In this section we indicate briefly which modifications to [3939, App. B] have to be made

in order to justify our arguments in the main body of the text regarding Nori’s Tannakian for-

malism. Most importantly we seek to obtain a universality statement for Nori’s construction

in the monoidal setting. Something similar was undertaken by Bruguières in [1212], and for the

main proof below we follow his ideas. However the results there onmonoidal representations

do not seem to apply directly to Nori’s construction since there is no obvious monoidal

structure (in the sense of [1212]) on Nori’s diagrams.77

A graded diagram and a commutative product structure on such a graded diagram are

defined as in [3939, Def. B.14]. From now on, fix such a graded diagram D with a commutative

product structure. Let (C ,⊗) be an additive (symmetric, unitary) monoidal category. A

graded multiplicative representation T ∶ D → C is a representation of D in C together with a

choice of isomorphisms

τ( f ,g) ∶ T( f × g) → T( f ) ⊗ T(g)
for any vertices f and g of D , satisfying (1)-(5) of [3939, Def. B.14]. Unital graded multiplicative
(u. g. m.) representations are then defined as in [3939, Def. B.14]. A u. g. m. transformation
η ∶ T → U between two unital graded multiplicative representations T ,U ∶ D → C is a family

of morphisms in C:
η f ∶ T( f ) → U( f ),

compatible with edges in D and the choices of isomorphisms τ, and such that ηid = id. η is a

u. g. m. isomorphism if all its components are invertible.

From now on, fix also a u. g.m. representation T ∶ D → Modf(Λ) taking values in
projective modules (we assume Λ to be of global dimension at most 2; see [1212, §5.3]). By

7This is related to the problem discussed in [3939, Rem. B.13].
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Nori’s theorem ([5959, Thm. 1.6], [3939, Pro. B.8]), there is a universal abelian Λ-linear category

C(T) with a representation T̃ ∶ D → C(T), through which T factors via a faithful exact

Λ-linear functor oT ∶ C(T) →Modf(Λ). Nori also showed (see [3939, Pro. B.16]) that in this

case C(T) carries naturally a (right exact) monoidal structure such that oT is a monoidal

functor. It is obvious from the construction of this monoidal structure that T̃ is a u. g.m.

representation. The following theorem states that these data are universal.

Theorem A.1 Given a right exact monoidal abelian Λ-linear category C and a factorization
of T into

D
SÐ→ C oSÐ→Modf(Λ)

with S u. g. m. and oS a faithful exact Λ-linear monoidal functor, there exists a monoidal
functor (unique up to unique monoidal isomorphism) F ∶ C(T) → C making the following
diagram commutative (up to monoidal isomorphism).

D
S //

T̃
��

C
oS
��

C(T) oT
//

F

66

Modf(Λ)

Moreover, F is faithful exact Λ-linear.

Explicitly, there exists a monoidal functor F ∶ C(T) → C, a u. g.m. isomorphism

α ∶ ST̃ ∼Ð→ F, and a monoidal isomorphism β ∶ oT
∼Ð→ oSF such that oSα = βT̃ . Moreover

given another triple (F′ , α′ , β′) satisfying these conditions, there exists a unique monoidal

isomorphism γ ∶ F′ ∼Ð→ F transforming α to α′ and β to β′.

Proof. Given [3939, Pro. B.8 and B.16], the only thing left to prove is that the functor and

transformations whose existence is asserted are monoidal. This could be proven by going

through the construction of these and checking monoidality directly. Alternatively, one can

deduce the monoidal structure from the existence of the functor and transformations alone

without referring to their construction. We sketch the latter proof which is due to Bruguières.

For the details we refer the reader to [1212].

Let ΨX ,Y be the composition

oS(FX ⊗ FY) = oSFX ⊗ oSFY ≅ oSF(X ⊗ Y),
for any X ,Y ∈ C(T). This defines a natural isomorphism of functors. Since oS is faithful, it
suffices to construct morphisms ΦX ,Y ∶ FX ⊗ FY → F(X ⊗ Y) which realize ΨX ,Y . Thus

consider the class

L = {(X ,Y) ∈ C(T) × C(T) ∣ ∃ΦX ,Y ∶ oSΦX ,Y = ΨX ,Y}.
Notice that L contains all pairs in the image of T̃ :

FT̃ f ⊗ FT̃ g ≅ S f ⊗ Sg → S( f × g) ≅ FT̃( f × g) → F(T̃ f ⊗ T̃ g)
can (and has to) be taken as ΦT̃ f ,T̃ g . Now for fixed f the functors FT̃ f ⊗F(●) and F(T̃ f ⊗●)
are exact hence one can define ΦT̃ f ,● on the subcategory of C(T) containing the image of T̃
and closed under kernels, cokernels and direct sums. But this is all of C(T). By symmetry

one sees that L contains all pairs (X ,Y) where one of X or Y is contained in the image of

T̃ . Now a similar argument shows that L also contains all pairs (X ,Y) where one of oTX or

oTY is projective (since then the functors considered above are still exact). Finally, one uses
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that every object in C(T) is a quotient of an object with underlying projective Λ-module to

conclude that L consists of all pairs of objects in C(T).
It is obvious from the definition of ΦT̃ f ,T̃ g that α is monoidal, and from the definition

of ΨX ,Y that β is as well. It is an easy exercise to prove that γ is monoidal as well. ☐

B. Relative cohomology
It is well-known that singular and sheaf cohomology agree on locally contractible topo-

logical spaces. The same is true for pairs of such spaces. However, we have not been able

to find in the literature the statements in the form we need them in the main body of the

chapter (in particular in section 44) although the book of Bredon [1111] comes close. We will

freely use the results of [1111, §III.1]. Λ is a fixed principal ideal domain. All topological spaces

are assumed locally contractible and paracompact.

B.1. Model. For a topological space X, denote by SX the complex of sheaves of singular

cochains on X with values in Λ. This is a flabby resolution of the constant sheaf Λ. Moreover,

the canonical map Sg(X)∨ → SX(X) is a quasi-isomorphism.

Now let i ∶ Z ↪ X a closed subset with open complement j ∶ U ↪ X. We denote by ΛU
(respectively ΛZ) the constant sheaf Λ supported at U (respectively Z), i. e. ΛU = j! j∗ΛX
(resp. ΛZ = i∗ i∗ΛX). The canonical morphism SX ⊗ ΛZ → i∗SZ induces the diagram of

solid arrows in the category of complexes of sheaves on X with exact rows:

0 // K(X ,Z) // SX // i∗SZ

0 // SX ⊗ ΛU //

α

OO

SX // SX ⊗ ΛZ

OO (B.1)

We obtain a unique morphism α rendering the diagram commutative. It induces a quasi-

isomorphism after taking global sections.

Similarly, β is the unique morphism of complexes making the following diagram com-

mute:

0 // K(X ,Z)(X) // SX(X) // i∗SZ(X)

0 // Sg(X , Z)∨ //

β

OO

Sg(X)∨

OO

// Sg(Z)∨

OO
(B.2)

Again, it is a quasi-isomorphism.

Now, SX ⊗ ΛU is a resolution of ΛU which computes derived global sections hence we

deduce the following result.

Fact B.3 The zigzag of α and β exhibits Sg(X , Z)∨ as a model for RΓ(X , ΛU) = Rπ∗ j!Λ in
D(Λ), where π ∶ X → ⋆.

B.2. Functoriality. We now turn to functoriality of these constructions. Suppose we are

given a morphism of pairs of topological spaces f ∶ (X , Z) → (X′ , Z′). We keep the notation

from above, decorating the symbols with a prime when the objects are associated to the

second pair.
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Lemma B.4 The following diagram commutes in D(Λ):

Rπ′∗ j′!Λ //

β−1α ∼
��

Rπ∗ j!Λ

β−1α ∼
��

Sg(X′ , Z′)∨
Sg( f )∨

// Sg(X , Z)∨

Here the top horizontal arrow is defined as Rπ′∗ applied to

j′!Λ
adjÐ→ R f∗ f ∗ j′!Λ Ð→ R f∗ j! f ∗Λ

∼Ð→ R f∗ j!Λ.

Proof. We will construct the two middle horizontal arrows below, and then prove that

they make each square in the following diagram commute:

Rπ′∗ j′!Λ // Rπ∗ j!Λ

SX′ ⊗ ΛU ′(X′)
(B.5B.5) //

α ∼
��

SX ⊗ ΛU(X)

α ∼
��

K(X′ ,Z′)(X′)
K f // K(X ,Z)(X)

Sg(X′ , Z′)∨
β ∼
OO

Sg( f )∨ // Sg(X , Z)∨
β ∼
OO

From the inclusion f −1(U ′) ⊂ U we obtain a canonical morphism of sheaves on X:

f ∗ΛU ′
∼Ð→ Λ f −1(U ′) Ð→ ΛU .

Composition with f induces a morphism S f ∶ SX′ → f∗SX and thus by adjunction also

f ∗SX′ → SX . Together we obtain a morphism

f ∗(SX′ ⊗ ΛU ′)
∼Ð→ f ∗SX′ ⊗ f ∗ΛU ′ Ð→ SX ⊗ ΛU . (B.5)

Similarly, we define morphisms

f ∗(SX′ ⊗ ΛZ′)
∼Ð→ f ∗SX′ ⊗ f ∗ΛZ′ Ð→ SX ⊗ ΛZ

and

f ∗ i′∗SZ′ Ð→ i∗ f ∗SZ′ Ð→ i∗SZ .
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It is then clear that the following diagram commutes

f ∗(SX′ ⊗ ΛU ′) //

��

SX ⊗ ΛU

��
f ∗SX′ //

��

SX

��
f ∗(SX′ ⊗ ΛZ′) //

��

SX ⊗ ΛZ

��
f ∗ i′∗SZ′ // i∗SZ

so that, in particular, we deduce the existence of a morphism f ∗K(X′ ,Z′) → K(X ,Z) rendering
the following two squares commutative:

f ∗K(X′ ,Z′) //

��

K(X ,Z)

��
f ∗SX′ // SX

f ∗K(X′ ,Z′) // K(X ,Z)

f ∗(SX′ ⊗ ΛU ′) //

α

OO

SX ⊗ ΛU

α

OO

Denote byK f ∶ K(X′ ,Z′) → f∗K(X ,Z) the morphism obtained by adjunction. We now claim

that also the following square of complexes commutes:

K(X′ ,Z′)(X′)
K f // K(X ,Z)(X)

Sg(X′ , Z′)∨
β

OO

Sg( f )∨
// Sg(X , Z)∨

β

OO

Indeed, using the injectionK(X ,Z)(X) ↪ SX(X) one reduces to prove commutativity of

SX′(X′)
S f // SX(X)

Sg(X′)∨
Sg( f )∨

//

OO

Sg(X)∨

OO

which is clear.

Finally, notice that (B.5B.5) is compatible with the coaugmentations Λ → SX′ and Λ → SX ,
thus the lemma. ☐

Lemma B.6 The following defines a morphism of distinguished triangles in D(Λ):

Rπ∗ j!Λ // Rπ∗Λ // Rπ∗ i∗Λ // Rπ∗ j!Λ[−1]

Sg(X , Z)∨ //

α−1β∼

OO

Sg(X)∨ //

∼

OO

Sg(Z)∨
∼

OO

// Sg(X , Z)∨[−1]

∼ α−1β

OO
(B.7)
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Here, the first row is induced by the localization triangle while the second row is the

distinguished triangle associated to the short exact sequence consisting of the first three

terms.

Proof. It is clear that the first two squares commute. We only need to prove this for

the third one.

Extend the first square in (B.1B.1) to a morphism of triangles in Cpl(Sh(X))

K(X ,Z)
a // SX // cone(a) // K(X ,Z)[−1]

SX ⊗ ΛU j
//

α

OO

SX // cone( j) //

OO

SX ⊗ ΛU[−1]

α

OO

using the mapping cones. Since Γ(X , cone(a)) = cone(aX) the first square in (B.2B.2) extends

to a morphism of triangles in Cpl(Λ):

K(X ,Z)(X)
aX // SX(X) // cone(a)(X) // K(X ,Z)(X)[−1]

Sg(X , Z)∨
b
//

β

OO

Sg(X)∨

OO

// cone(b)

OO

// Sg(X , Z)∨[−1]

β

OO

Notice that under the canonical identification cone(b) ∼Ð→ Sg(Z)∨, the bottom row is pre-

cisely the bottom row of (B.7B.7), while modulo the canonical identification cone(a)(X) ∼Ð→
SZ(Z), the top row of the first diagram induces the top row of (B.7B.7) (taking global sec-

tions). Indeed, the latter contention follows from the fact that inD(Sh(X)) there is a unique
morphism δ making the following candidate triangle distinguished:

j!Λ // Λ // i∗Λ
δ // j!Λ[−1].

The lemma now follows from the commutativity of the following diagram

SX ⊗ ΛZ(X)

��

cone( j)(X)

��

oo

i∗SZ(X) cone(a)(X)oo

Sg(Z)∨

OO

cone(b)oo

OO

The first square commutes since the second square in (B.2B.2) does, while the second square

does since the second square in (B.1B.1) does. ☐

B.3. Monoidality. We come to the last compatibility of the model, namely with the cup

product. For this we fix a topological space X and two closed subspaces Z1 and Z2 of X.
We write Z = Z1 ∪ Z2, and we assume that there exist open neighborhoods Vi of Z i in X
such that Vi deformation retracts onto Z i and V1 ∩ V2 deformation retracts onto Z1 ∩ Z2.

This is satisfied e. g. if X is a CW-complex and the Z i are subcomplexes. The cup product

in cohomology is denoted by ⌣, and Sg(X , Z1 + Z2) is the free Λ-module on simplices in X
which are neither contained in Z1 nor in Z2.
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Lemma B.8 The following diagram commutes in D(Λ):

Rπ∗ j1!Λ ⊗L Rπ∗ j2!Λ
⌣ //

β−1α ∼
��

Rπ∗ j!Λ

β−1α ∼
��

Sg(X , Z1)∨ ⊗ Sg(X , Z2)∨ ⌣
// Sg(X , Z1 + Z2)∨ Sg(X , Z)∨∼

oo

Here the top horizontal arrow is defined as the composition

Rπ∗ j1!Λ ⊗L
Rπ∗ j2!Λ Ð→ Rπ∗( j1!Λ ⊗L j2!Λ)

∼Ð→ Rπ∗ j!Λ. (B.9)

Proof. Notice that the composition

Sg(X ,Vi)∨ → Sg(X , Z i)∨
βÐ→ K(X ,Z i)(X)

factors through α ∶ SX ⊗ ΛU i
(X) → K(X ,Z i)(X) because Vi is open in X and SX ⊗ ΛU i

(X)
consists of sections of SX whose support is contained in U i . It follows that the left vertical

arrow in the lemma is equal to the composition of the left vertical arrows in the following

diagram.

(SX ⊗ ΛU1
)(X) ⊗L (SX ⊗ ΛU2

)(X) ⌣ // (SX ⊗ ΛU)(X)

α∼
��

Sg(X ,V1)∨ ⊗ Sg(X ,V2)∨
⌣ //

∼
��

∼

OO

Sg(X ,V1 + V2)∨

∼
��

∼ // K(X ,Z)(X)

Sg(X , Z1)∨ ⊗ Sg(X , Z2)∨ ⌣
// Sg(X , Z1 + Z2)∨ Sg(X , Z)∨∼

oo

β∼
OO

(B.10)

Recall that the sheaf SZ is the quotient of the presheaf V ↦ Sg(V)∨ where a section f ∈
Sg(V)∨ becomes 0 in SZ(V) if there exists an open cover (Wi)i of V such that f ∣Wi

= 0
for all i. Now, start with f ∈ Sg(X)∨ vanishing on both V1 and V2, i. e. an element of

Sg(X ,V1 + V2)∨. These two open subsets of X cover Z, and by the description of SZ just

given, we see that f defines the zero class in i∗SZ(X) hence lands inK(X ,Z)(X). This yields

the right horizontal arrow in the middle row. It follows that the upper half of the diagram

commutes. Evidently the lower left square does as well. For the lower right square denote by

V the union of V1 and V2. Then we may decompose this square as follows:

Sg(X ,V1 + V2)∨

∼
��

∼

))
Sg(X ,V)∨∼oo

��

K(X ,Z)(X)

Sg(X , Z1 + Z2)∨ Sg(X , Z)∨∼
oo

β
∼

88

Commutativity is now clear.

It remains to prove that the top horizontal arrow in (B.10B.10) is a model for (B.9B.9). This

follows from the fact that the resolution Λ
∼Ð→ SX of the constant sheaf on X ismultiplicative.

Namely, this makes the right square of the following diagram commutative; the left one
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clearly commutes.

Rπ∗ΛU1
⊗L Rπ∗ΛU2

// Rπ∗(ΛU1
⊗ ΛU2

) ∼ // Rπ∗ΛU

π∗(SX ⊗ ΛU1
) ⊗L π∗(SX ⊗ ΛU2

) // π∗(SX ⊗ ΛU1
⊗ SX ⊗ ΛU2

) ∼
// π∗(SX ⊗ ΛU)

☐

C. Comodule categories
In this section we recall some facts about categories of (complexes of) comodules used

in the main body of the text. Throughout we fix a ring Λ and a flat Λ-coalgebra C. By a
C-comodule we mean a counitary left C-comodule. coMod(C) (respectively, coModf(C))
denotes the category of C-comodules (respectively, C-comodules finitely generated as Λ-

modules).

The starting point is really the following result.

Fact C.1
(1) coModf(C) and coMod(C) are abelian Λ-linear categories, and there is a canonical

equivalence of abelian Λ-linear categories coModf(C)⊕ ≃ coMod(C).
(2) The forgetful functor o ∶ coMod(C) →Mod(Λ) is exact Λ-linear and creates colimits and

finite limits.
(3) coMod(C) is a Grothendieck category, copowered over Mod(Λ). In particular, it is

bicomplete.

Proof. The first statement follows from [6464, II, 2.0.6 and 2.2.3]. The rest is proved

in [6969], see [6969, Cor. 3 and 9, Pro. 38, Cor. 26]. Explicitly, the copower of a Λ-module m and

a C-comodule c is given by the tensor product (as Λ-modules) m ⊗ c with the comodule

coaction on c. ☐

Next, we are interested in different models for the derived category of coMod(C). The

following result is true more generally for any Grothendieck category.

Fact C.2 ([1515, Thm. 1.2]) Cpl(coMod(C)) is a proper cellular model category with quasi-
isomorphisms as weak equivalences and monomorphisms as cofibrations.

Themodel structure in the statement is called the injective model structure.
From now on assume that C is a (commutative) bialgebra. coMod(C) then becomes a

monoidal Λ-linear category with C coacting on the tensor product (as Λ-modules) c ⊗ d by

c ⊗ d ca⊗caÐÐÐ→ (c ⊗ C) ⊗ (d ⊗ C) ∼Ð→ (c ⊗ d) ⊗ (C ⊗ C) Ð→ (c ⊗ d) ⊗ C ,

the last arrow being induced by the multiplication of C. In particular, the forgetful functor

o ∶ coMod(C) →Mod(Λ) is monoidal. The category Cpl(coMod(C)) inherits a monoidal

structure in the usual way.

Proposition C.3 Let T be a flat object in Cpl(coMod(C)). Then there is a proper cellular
model structure on SptΣT Cpl(coMod(C)) with stable equivalences as weak equivalences and
monomorphisms as cofibrations.

Proof. The stable equivalences are described in [3737, Def. 8.7], and the proof in [1515,

Pro. 6.31] applies. ☐
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Themodel structure of the proposition is called the injective stable model structure.
Unfortunately, themonoidal structure does not, in general, interactwell with the injective

model structures. In the cases of interest in the main body of the text (namely, when Λ is a

principal ideal domain) we have the following result, essentially due to Serre.

Lemma C.4 Let Λ be a Dedekind domain. In Cpl(coMod(C)) there exist functorial flat
resolutions. In particular, D(coMod(C)) admits naturally a monoidal structure.

Proof. We follow [6666, Pro. 3]. Let E be a comodule and consider the morphism of

comodules caE ∶ E → C ⊗ E given by the coaction of C on E, where the target has a

comodule structure induced by the comultiplication on C (sometimes called the “extended

comodule associated to E”). In fact, the coaction ca● defines a natural transformation from

the identity functor on coMod(C) to the “extended comodule”-functor (this is the unit

of an adjunction whose left adjoint is the forgetful functor o ∶ coMod(C) → Mod(Λ);
cf. [55, Lem. 1.53]). Since E is counitary, this natural transformation is objectwise injective.

Let F ∶ Mod(Λ) → Mod(Λ) be the functor which associates to a Λ-module M the free

Λ-module ⊕m∈MΛ. It comes with a natural transformation η ∶ F → Id which is objectwise

an epimorphism. We obtain a diagram

E
caE // C ⊗ E

C ⊗ F(E)

1⊗ηE

OO

in the category of C-comodules (the module in the bottom row is again an extended comod-

ule). Since the forgetful functor from coMod(C) toMod(Λ) commutes with finite limits,

we see that the pullback of this diagram is a comodule E′ which both maps surjectively onto

E, and embeds into C ⊗ F(E). By assumption, C ⊗ F(E) is torsion-free thus so is E′. It is
clear from the construction that the association E ↦ E′ defines a functor together with a

natural transformation η′ from it to the identity functor.

Using that coMod(C) is a Grothendieck category, the usual procedure leads to functorial
flat resolutions. ☐

If Λ is a field then we can do better.

LemmaC.5 LetΛ be a field. The injective model structure onCpl(coMod(C)) is amonoidal
model structure.

Proof. Indeed, since the forgetful functor is monoidal, exact and creates colimits, the

conditions for the injective model structure to be monoidal can be checked in Cpl(Λ). ☐
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