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Abstract

These are notes for a series of lectures delivered at the “Motives in Montpellier” winter
school in January 2026. In them we provide a glimpse into Morel-Voevodsky’s stable
motivic homotopy theory.

Please send any corrections to martin.gallauer@warwick.ac.uk.
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This is a school on motives and you will be familiar with the idea that these should form the
‘universal cohomology theory’. You will also be familiar with two common complaints from
people outside (and sometimes inside) the field: that the theory of motives is purely conjectural,
or quite to the contrary, that there are (too) many theories of motives. But surely the latter,
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and to some extent possibly the former too, simply stems from the ambiguity in the term
‘cohomology theory’: of what? valued in what? satisfying what?. ..

Algebraic topologists, on the other hand, find themselves in an enviable situation: there is an
accepted notion of cohomology theory for spaces, these assemble into a category (the category
of spectra), and for many decades mathematicians have been busy uncovering a beautiful and
rich picture capturing what seems to be the essence of this object. It is therefore very natural
to want to imitate this in algebraic geometry and to define a category of motivic spectra in
parallel to its topological cousin. These notes are about such an attempt that started with the
work of Morel-Voevodsky [MVo9] and has been pursued by many others in the meantime.’

Even at the surface level, spectra have some particularly attractive features:
(i) as mentioned, they classify cohomology theories
(ii) they admit a rather explicit description connecting them to spaces
(i) the category of spectra has a very convenient universal property

A downside, at least from a pedagogical point of view, is that spectra are by nature ‘derived’
or ‘homotopical’ objects: not the individual cohomology groups H" but rather the entire H*
takes center stage. Accordingly, it is really the co-category of spectra that has this convenient
universal property. In algebraic geometry, such a ‘derived’ or ‘homotopical’ turn can be dated
to the 80’s when Beilinson suggested to construct a derived category of motives, something
that was subsequently implemented independently by Hanamura, Levine and Voevodsky.

This entire strand of derived and homotopical motivic research in the last 40 years has been
extremely rich and successful and these notes do not offer but an invitation to explore it. To
wit, the goals and the outline are as follows:

* In Section 2 we trace the construction and features of the co-category of spectra men-
tioned above. This involves a brief introduction to the language of co-categories.

* In Section 3 the translation to algebraic geometry is discussed, resulting in the construc-
tion of the co-category of (A!-)motivic spectra. Part of this translation is recognizing
what the attractive features of motivic spectra analogous to (i)—(iii) are.

* In Section 4 motivic spectra are put into action: some basic objects and maps between
them are introduced, and we see how rich these are already. To connect with some of
the other talks at the school, motivic refinements of enumerative geometry are treated
£0O.

* We then turn in Section 5 to less elementary motivic spectra, that is, cohomology the-
ories. We discuss in particular classical Weil cohomology theories, but also algebraic
K-theory, and finally motivic cohomology. The latter provides the link with Voevod-
sky’s derived category of motives and Chow motives which form the subject of another
set of lectures at the school.

There are many other introductions to (stable) motivic homotopy theory. To mention
just a few with a somewhat similar flavour: [Dég2s; AE17; Bacai].

Another take could be that in topology there are ordinary and generalized cohomology theories, and Morel-
Voevodsky’s impetus was to transport the generalized ones to algebraic geometry, with all their methods and tools.
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2 Topological preliminaries

The goal of this section is to make the definition of motivic spectra in the next section come
about as naturally as possible. For this it behooves us to recall the construction and the basic
features of spectra in topology. As mentioned in the introduction, this is preferrably phrased
in the language of co-categories to which we offer a brief non-rigorous introduction. For a
rigorous treatment see [Lurog; HA]. The shorter introduction [Gal] contains virtually every-
thing we’ll need but omits many proofs.

Spaces
Let X be a topological space. It has:
0. points
1. paths between points
2. homotopies between paths
3. homotopies between homotopies

4. etc ad infinitum
Moreover,

1. paths can be composed to form new paths, in fact in many different ways, and
2. any two choices of compositions are homotopic.
3. Not only that but such homotopies are themselves homotopic.

4. etc ad infinitum

We could summarize these last points by saying that composition of paths is unique up to coherent
homotopy.

This resulting structure which encodes the homotopical information of & and nothing
more goes under various names, such as the fundamental co-groupoid or the homotopy type
of X. When we forget X and just focus on this structure we call it a space. (Note how we
dropped “topological”.) Note that a space X has associated homotopy sets/groups

mo(X) € Set, m (X, x) € Grp, m,(X,x) € Ab (n > 2).

Moreover, we want to consider a map f: X — Y of spaces to be an equivalence if it induces
bijections on all homotopy sets/groups.



Alternative 2.1. (If the above is not precise enough for you the following is at least a start.)
One way of formalizing the notion of a space is via simplicial sets. Recall that the simplex
category A has objects the natural numbers [n],n > 0, and morphisms [m] — [n] are non-
decreasing functions {0, 1,...,m} — {0,1,...,n}. A simplicial set is a presheaf A’ — Set.

Sending [n] to the standard topological simplex |A"| € R™*! extends to a functor A — Top
and to a topological space X we may associate the simplicial set

X := Hom(|A®], ),
called the singular simplicial set.

Exercise 2.2. Convince yourself that the singular simplicial set X does indeed capture the
structure of the fundamental co-groupoid of & described above.

In the course of that you might want to look up what a Kan complex is and convince
yourself that X is an example of such.

Remark 2.3. Let x ~» y and y ~» z be two paths in L parametrized by maps f,g: |A'| - X,
that is, by f,g € X([1]). Write Hom(S, T) = Hom(S X A®, T) for the internal hom in simplicial
sets. The simplicial set of composites

Hom(A% X) Xpom(a2,x) 1(f>#:9)}

is a contractible (that is, its 7; = = are all trivial) Kan complex. This makes precise the unique-
ness up to coherent homotopy above.

co-categories

Definition 2.4. An co-category has objectsc,d, . .. and mapping spaces Map(c, d) for each pair (c, d).
A morphism f: ¢ — d is a point in Map(c, d). Morphisms can be composed uniquely up to co-
herent homotopy.

Example 2.5. Let X be a space. Then X is an co-category with objects its points, and with
Map(x, y) the space of paths from x to y. (If X is the space associated to X then this is the space
associated to {x} Xg PX Xg {y} where PX is the free path space.)

Example 2.6. Let C be an ordinary category. C can be viewed as an co-category with the
same objects and discrete mapping spaces given by Hom(c, d). The composition is unique (not
only up to coherent homotopy).

Construction 2.7. Let C be an co-category. Its homotopy category ho(C) has the same objects,
and
Homy,,(¢) (¢, d) = mo Map(c,d) =: Homc(c, d).

Since the composition of morphisms in C is associative up to (coherent) homotopy, ho(C)
inherits the structure of an ordinary category.

Example 2.8. The homotopy category of a space is its fundamental 1-groupoid. The homo-
topy category of an ordinary category is just the ordinary category itself.



Definition 2.9. A morphism f: ¢ — d in an co-category C is invertible (or an equivalence) if it
is so in ho(C).

Exercise 2.10. Show that this is equivalent to the existence of g: d — ¢ such that fg =~ id,

gf ~id.

Remark 2.11. Of course, in a space all morphisms are invertible (since a path can be run
backwards). But in fact the converse holds as well. That is, for C an co-category the following
are equivalent:

1. C is a space;

2. all morphisms in C are invertible.

Convention 2.12. If C is an co-category we denote by C~ its core: the (wide) subcategory
spanned by invertible morphisms. In other words, this is the largest subspace of C.

Alternative 2.13. If you prefer a rigorous definition, an co-category is a simplicial set C such
that for all 0 < i < n:2
v
An Y ¢

[ 5
An
Here A7 € A" := hom(—, [n]) is the ‘ith inner horn’, the subsimplicial set generated by all

the faces except the ith. For example, for n = 2 (and necessarily i = 1) this is saying that for
morphisms f and g where the domain of g and the codomain of f match, there is a composition

h=go f:
I

f g

0 2 s h
Other choices of n > 2 and 0 < i < n express the fact that this composite is unique up to
coherent homotopy.
Functors

Definition 2.14. A functor F: C — D of co-categories is a map Ob(C) — Ob(D) and maps of
spaces Map.(c,d) — Map,(F(c), F(d)) that are coherently compatible with composition.

Alternative 2.15. This is especially straightforward to express in the simplicial set model of
co-categories: A functor F: C — D is simply a map of simplicial sets between co-categories!

Example 2.16. For C,D ordinary one recovers the usual notion of functors. For spaces one
recovers maps of spaces.

2Specifically, this simplicial set model of co-categories is known as a quasicategory.



Definition 2.17. F: C — D is
* fully faithful if the maps of spaces Map(c,d) — Map(F(c), F(d)) are equivalences;
* essentially surjective if ho(F) is;

* an equivalence if fully faithful and essentially surjective.

Remark 2.18. Given co-categories C, D the functors themselves assemble into an co-category
Fun(C, D) with morphisms given by natural transformations {0 — 1} x C — D.

Example 2.19. If C,D are ordinary then Fun(C, D) is the ordinary category of functors and
natural transformations. If X, ¥ are topological spaces then the functor co-category underlies
the topological space of continuous maps C — D (with the compact-open topology).

Remark 2.20. There exists a (large) co-category Cat,, with objects (small) co-categories and
Map(C, D) = Fun(C, D)*. From the preceding discussion we have two full subcategories:

* Spc: spaces X,Y,... and mapping spaces Map(X,Y) = Fun(X,Y) (since Fun(X,Y) =
Fun(X, Y)%).

* Caty: ordinary categories, functors and invertible natural transformations.

Example 2.21. It is a fact that a functor F: C — D of co-categories is an equivalence in the
sense of Definition 2.17 iff it is an equivalence in Cat,, in the sense of Definition 2.9.
Adjunctions

Many further concepts from ordinary categories can now easily be translated to co-categories.
For example:

Definition 2.22. An adjunction F: C = D :G consists of natural transformations id — GF
and FG — id with the usual triangle identities witnessed by homotopies.

Definition 2.23. Let F: K — C be a functor. A colimit of F is an object ¢ € C together with a

. N C
natural transformation F — A(c) of functors (with, of course, A(c): K — * — C the constant
functor) such that the composite

Map(c,d) = Map(A(c), A(d)) — Map(F, A(d))
is an equivalence of spaces for all d € C.

Remark 2.24. The expected properties hold:

* These notions recover the usual ones for ordinary categories.
* Left adjoints preserve colimits.
* The space of colimits (resp. left adjoints) is either empty or contractible.

* Limits are defined in a similar way, and the dual statements are true.



Example 2.25. 1. Theinclusion Cat; < Cat,, admits a left adjoint given by the homotopy
category ho: Cat,, — Cat;.

2. The inclusion Spc < Cat,, admits a right adjoint given by the core (-)*: Cat,, — Spc.
3. ¢ € Cis initial iff Map(c,d) ~ = for all d € C.

Remark 2.26. The first item is an example of a localization: a left adjoint with fully faithful

right adjoint.

Alternative 2.27. In ordinary category theory the Yoneda lemma ‘reduces the computation’
of (co)limits in categories to those in sets. Similarly, (co)limits in co-categories can be ‘tested’
in Spc. In that case, they coincide with the classical notion of homotopy limits. To give an idea,

the homotopy pullback of topological spaces

SIX%?,/ — Y

l ls

X g2

has points x € X, y € Y together with a path f(x) ~ g(y) in . (To be precise, it is the
ordinary pullback X x PE x¢ Y.) Since homotopy products are just ordinary products, this
gives a recipe in general for how to compute homotopy limits in topological spaces.

Presentability

Remark 2.28. Because it is virtually impossible to write down functors by hand, the adjoint
functor theorem is more important for co-categories than for ordinary categories. Presentable
co-categories admit a very convenient adjoint functor theorem. This notion is a bit technical
but the upshot is that a presentable co-category is complete and cocomplete and determined
by a small co-category. An important example is a presheaf category.

Definition 2.29. Let C be a small co-category. The presheaf category P(C) is the functor
category Fun(C°P, Spc). It comes with the Yoneda functor y: C — 9 (C) which is fully faithful.

Remark 2.30. The presheaf category is the free cocompletion: it is cocomplete, and for every
cocomplete D, restriction along Yoneda induces an equivalence

Fun®lim™ (% (¢), D) = Fun(C, D)
where the left-hand side denotes the full subcategory on colimit preserving functors.
Example 2.31. The co-category of spaces is the free cocompletion on a point:
Fun®™(Spc, D) 5 D

by evaluation at the final object .



Definition 2.32. Let k be a regular cardinal. An co-category L is called x-filtered if for every
k-small’ co-category K and every F: K — L there exists an ‘upper bound”: an object ¢ € L
and a natural transformation F — A(¢). Finally, let C be a small co-category. We denote by
Ind,.(C) € P (C) the full subcategory on presheaves that are k-filtered colimits of representa-
bles.

A presentable co-category is one of the form Ind, (C) for some small C and for some regular
cardinal .

Remark 2.33. Equivalently, a presentable co-category is an accessible localization of 2 (C) for
some small C, that is, the (fully faithful) right adjoint is accessible, meaning: preserves x-filtered
colimits for some regular .

Example 2.34. Caty, Spc, Cat,, are all presentable (with x = Ro).

We now come to the adjoint functor theorem for presentable co-categories. A simplified
version that will be enough for us says:

Remark 2.35. A functor F: C — D between presentable co-categories is

* left adjoint iff it preserves colimits:

» right adjoint iff it preserves limits and is accessible.

Convention 2.36. We denote by Pr" ¢ CAT., the subcategory (of large co-categories) on
presentable co-categories and left adjoint functors. Similarly, PrR ¢ CAT., are the presentable
oco-categories and right adjoint functors.

Remark 2.37. Passing to adjoints induces an equivalence (Pr")°P ~ PrR.

Remark 2.38. Presentable co-categories are stable under many constructions. For example,
both forgetful functors Prl PR — CAT. preserve limits. Together with the previous remark
this means that colimits in Pr* are computed by passing to right adjoints and computing the
limit in CAT .

Stability

An area where co-categories shine is homological and, more generally, higher algebra. If
you’re familiar with triangulated categories (e.g. derived categories), stable co-categories en-
hance these in the sense that their homotopy categories have a canonical triangulated struc-
ture.*

Definition 2.39. An co-category is pointed if it has initial objects and final objects and these
coincide.

3This means that objects and all homotopy groups of all mapping spaces are k-small.
4Rather, and more accurately, there are fwo such structures, one being the negative of the other.



Example 2.40. The co-category of pointed spaces Spc, := Spc, ’* is pointed. In fact, adding a
disjoint base point ( ), : Spc — Spc, is the initial pointed co-category in PrIS‘p o/~ Alternatively,
it is the free pointed cocompletion on a point: for any cocomplete pointed D,

FunCOIim(Spc*,D) 5D
by evaluation at S° := (x),.

Definition 2.41. Let C be pointed and have finite limits and colimits. Given a map f: ¢ — d
we define fiber (= ‘homotopy kernel’) and cofiber (= homotopy cokernel’) as

fib(f) := lim(c ER d « %), cof (f) := colim(x « ¢ ER d).

In particular, we have suspension and loop functors, with 2(c) := cof (¢ — *) and Q(c) :=
fAb(x — ¢).
3 is left adjoint to Q.

Definition 2.42. A pointed co-category is stable if it has finite limits and colimits, and a square
is cartesian iff it is cocartesian. Functors are called exacr if they preserve finite limits and col-
imits.

Remark 2.43. It turns out that C is stable ift = 4 Q are inverse equivalences to each other.

Remark 2.44. Let C, D be stable. A functor F: C — D is exact iff it preserves finite limits iff
it preserves finite colimits.

Convention 2.45. We denote by Prl; € Pr" the full subcategory on stable presentable co-categories.

Observe that the morphisms in Pr} are automatically exact functors.

Definition 2.46. The oo-category of spectra Sp is the initial stable presentable co-category
¥®: Spc, — Spin Prgpc ;- Alternatively, it is the free stable cocompletion on a point: for any

stable cocomplete D,
Fun®!i™(Sp, D) 5 D

by evaluation at the sphere spectrum S = £°S°.

Remark 2.47. Remark 2.43 suggests how to construct Sp from Spc,: it is obtained by invert-
ing 3, that is, Sp is the colimit in Prl of the diagram

- — Spc, iSpc* i
By Remark 2.38, it can also be viewed as the limit in CAT, of the diagram
-« Spc, <£Spc* 3,

Hence a spectrum is a collection of pointed spaces E, and equivalences E, ~ QEp.4.

3You may define the slice category C,; as the pullback of the diagram Fun({0 — 1},C) Yo {c}.



Monoidal structures

Traditionally, a symmetric monoidal category is an ordinary category C and a functor ®: C x
C — C together with various natural isomorphisms (associativity, symmetry, unitality) satis-
fying certain properties. One way to encode the necessary higher coherences in the case of
an co-category C is as follows.

Convention 2.48. We denote by Fin, the ordinary category of finite pointed sets. Note that
every object is isomorphic to one of the form (n) := {x,1,...,n} for n > 0. We denote by
pi: (n) — (1) the map that sends all but i to the base point x.

Definition 2.49. A symmetric monoidal co-category is a functor €: Fin, — Cat,, such that for
each n > 0, the p; (for i = 1,...,n) induce an equivalence

Gny = (B(1y) "

The co-category 61y is called the underlying co-category. We often abusively say that C € Cat,,
is symmetric monoidal without specifying the structure with underlying co-category C.

A symmetric monoidal functor is simply a natural transformation between symmetric monoidal
co-categories.

Remark 2.50. Let € be a symmetric monoidal co-category and denote by C = €6y the
underlying co-category. The map (2) — (1) that sends both 1 and 2 to 1 is taken by 6 to a
functor ®: C x C — C which we interpret as the symmetric monoidal (bi)product. The value
of € on the unique map (0) — (1) is a functor * — C that picks out a unit for ®.

Exercise 2.51. Extract the associativity and symmetry constraints from €.

Example 2.52. When C has finite products then it admits a symmetric monoidal structure for
which the product is the categorical product. This is called the cartesian monoidal structure.
For example this applies to Spc and Cat,,.

Remark 2.53. Given a symmetric monoidal co-category C one can speak about CAlg(C),
commutative algebras in C. We will not define these since they require the language of co-
operads. In the case of a cartesian monoidal structure it can be done just as in Definition 2.49.
For example, a commutative algebra in Cat,, (with the cartesian monoidal structure) is nothing
but a symmetric monoidal co-category.

Using the symmetric monoidal structures we can now give alternative universal properties
of Spc, Spc,, Sp.

Example 2.54. Spc is the initial object in CAlg(Pr"). In fact, for any D € CAlg(Pr") we have
Fun™®(Spc, D) =~ *.

Example 2.55. The co-category of pointed spaces Spc, has a unique symmetric monoidal
structure A compatible with colimits such that adding a disjoint base point (-).: Spc — Spc,
is symmetric monoidal. It is called the smash product, and X A Y ~ X x Y/X Vv Y. The unit

I0



is S°. Just as before, Spc, is the initial object in CAlg(Prk) (where Prl are, of course, pointed
presentable co-categories).

Remark 2.56. The co-category of spectra has a unique symmetric monoidal structure com-
patible with colimits such that %: Spc, — Sp is symmetric monoidal. In fact, it is the initial
object in CAlg(PrL) and one even has for any D € CAlg(PrY):

Fun®®(Sp, D) =~ «
We continute to denote this symmetric monoidal structure on Sp by A. The unitis S = Z*5°.

Exercise 2.57. Show that as endofunctors of Spc,, = =~ AS'. It follows that =*: Spc, — Sp is
also the initial way in Prl to invert S' (that is, to make AS! an autoequivalence).
Cohomology theories

We finally link spectra with the notion of a cohomology theory for topological spaces.

Remark 2.58. Recall that a cohomology theory in topology is a collection of functors
H": CWP - Set, nez,
on pointed CW complexes® together with isomorphisms (‘bonding maps’) y: H™'S = H”
satisfying:
« homotopy invariance: H"(X) — H™(X x [0,1])
* sheaf conditions:
- Forany X; € CW,, H"(V X;) — [1H"(X)).

- H" sends (homotopy) pushouts in CW, to ‘weak’ pullbacks, meaning the canonical
map to the pullback is surjective.

Remark 2.59. Brown representability implies that each H" is representable by a pointed CW-
complex E, (unique up to homotopy equivalence) and E,, ~ QE,.. In particular, it gives rise
to a spectrum E = (E,) (Remark 2.47). Conversely, a spectrum E = (E,) € Sp yields a
cohomology theory via H” = Homspc_ (-, E,) and the isomorphisms

H"™'S = Hom(2(-), Ens1) = Hom(—, QE,41) = Hom(—, E,,) = H™.
Altogether these are part of a bijection
cohomology theories/~ «  spectra/=~

Example 2.60. Let A be an abelian group. The singular cohomology X — H*(X; A) is rep-
resented by a spectrum HA € Sp, called the Eilenberg—MacLane spectrum associated with A.
In degrees n > 0 it is the Eilenberg-MacLane space K(A, n) with canonical homotopy equiv-
alences QK(A,n+1) ~ K(A, n), see Exercise 2.61I.

°It is enough to consider finite CW complexes.
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Exercise 2.61. 1. Assume the statements in Example 2.60 and compute the homotopy
groups of K(A, n). The latter is characterized by being a CW complex and having these
homotopy groups. Deduce that indeed QK (A, n + 1) ~ K(A, n) canonically.

2. Conversely, with this definition of K(A, n) show that HA = (K(A, n))>0. (You might
want to use the characterization of singular cohomology due to Eilenberg-Steenrod.)

Example 2.62. Let KU € Sp represent complex topological K-theory. It has pointed spaces
BU x 7, QBU, BU X Z,...

where BU is the classifying space for the infinite unitary group and Bott periodicity Q2BU =~
Z x BU as the non-trivial bonding maps.

Exercise 2.63. The stable homotopy groups of a spectrum E € Sp are defined as
7m(E) := Hom(S™, E), meZ.
If E = (E,) with QE,+1 =~ E, you can compute these as
Ttm(E) = TomnEn

for any n such that m + n > 0. Compute the homotopy groups of

1. HA (this is easy if you did the previous exercise),

2. KU (the even ones are easy and I'll just tell you that the odd ones vanish).
Remark 2.64. In summary we have now seen several perspectives on spectra:

1. The co-category Sp arises as
% ~> Spc w» Spc, v Sp

by free cocompletion followed by rendering it pointed and stable. In particular, Sp is
the free stable cocompletion on a point.

2. (Sp, A) is the initial object of CAlg(Prk).

3. An object of Sp is a collection of pointed spaces E, together with equivalences E, =
QEn+1-

4. An object of Sp is a cohomology theory on pointed CW complexes.

3 Dehfnition
Convention 3.1. Let k be a field. All schemes are separated and of finite type over k.

In this section we will give the formal definition of motivic spectra Sp, following the
template of 1 in Remark 2.64: we first define motivic spaces Spc;, pass to pointed objects, and
then (P!-)stabilize. We will also have analogues of the other perspectives in Remark 2.64. Let

I2



us anticipate the outcome by describing what a cohomology theory represented by a motivic
spectrum will look like. You will no doubt see the parallel to Remark 2.58. The differences
will be discussed subsequently. (Some of the terms will not necessarily make sense to you yet.
They will all be introduced below.)

Definition 3.2. A Morel-Voevodsky cohomology theory is a collection of functors
H": (Smy)°? — Spc,, neZz,
on smooth k-schemes together with equivalences y: Qpi H™! ~ H" satisfying:
. homotopy invariance: H*(X) — H"(X x Al)
. Sheafconditions:
- H"(0) = *
- H" sends Nisnevich squares to pullbacks.

3.1 Motivic spaces

Let us talk about the differences between Definition 3.2 and Remark 2.58.

Remark 3.3. The interval is replaced by the affine line A'. This is quite natural, of course,
and gives the theory its name.

Remark 3.4. Just as there are technical reasons to choose CW complexes over all topological
spaces, our algebro-geometric cohomology theories are not defined on all schemes but only on
smooth schemes. Closely related to that, the sheaf condition is with respect to the Nisnevich
topology. We’ll come back to these choices in Remarks 3.31 and 3.32.

Definition 3.5. For now, let us define a (distinguished, or elementary) Nisnevich square to be a
cartesian square

W — V
(3.6) l f
U

I x
where j is an open immersion, f is étale and induces an isomorphism (V\W),eq = (X\U),eq-

Example 3.7. If j and f are both open immersions and U UV = X then the resulting cartesian
square is a Nisnevich square. (And also a Zariski cover.)

Exercise 3.8. Let char(k) # 2and A € k*. Let j: Al — {1’} — Aland f: A - {0,1} — A!
the “squaring” map x + x2. Show that these two maps induce a Nisnevich square (which is
not a Zariski cover).
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Remark 3.9. The change from Set-valued presheaves in Remark 2.58 to Spc, -valued ones in
Definition 3.2 is less of a conceptual leap than might appear. Indeed, you can easily convince
yourself that the H” in topology uniquely lift to Set. (because of the base point in CW.), and
given the Brown representability result, also to Spc,.”

On the other hand, we do not know of a characterization of MV-cohomology theories in
terms of presheaves valued just in sets (except if one changes smooth schemes on which the
presheaves are defined to something substantially richer). This makes the construction of such
cohomology theories apriori more involved than in topology.

Definition 3.10. An (A!-)motivic space is a functor F: (Smy)°P — Spc satisfying:

* homotopy invariance: F(X) - F(X x A") for all X € Smy;

* Nisnevich excision: F takes a Nisnevich square (3.6) with X smooth to a cartesian square
in spaces and F(0) =~ =.

Motivic spaces form a full subcategory Spc, € % (Smy).
Remark 3.11. 1. Of course, P (Smy) is a presentable co-category. The inclusion Spc; —

P (Smy) is accessible and admits a left adjoint Ly: (“motivic localization”) so that Spc is
also presentable.

2. P(Smyg) has a unique (‘pointwise’) symmetric monoidal structure compatible with col-
imits so that the Yoneda embedding is symmetric monoidal.

The motivic localization is compatible with the symmetric monoidal structure and there-
fore endows Spc;, with a symmetric monoidal structure A compatible with colimits. Al-
ternatively, there is a unique lift of L1 : 9 (Smy) — Spcy to an object in CAlg(Pr)g sm ) /-

Convention 3.12. In particular, the Yoneda embedding followed by motivic localization in-
duce a symmetric monoidal functor

y Lt
Smy = P(Smy) — Spc;
and we often abusively write X for the image of X € Smy under this composite.

Exercise 3.13. Given a Nisnevich square (3.6), show that its image in Spc; is a cocartesian
square.

Exercise 3.14. Let p: E — X be a vector bundle. Then p induces an equivalence in Spc,.

Remark 3.15. There is also a unique lift of ();: Spc, — (Spcy). to CAlg(PrL)spk/. This
symmetric monoidal structure on (Spy). is denoted by A as in topology.
3.2 Stabilization

Remark 3.16. In topology, the connection between the different H" was expressed in terms
of suspension, that is, the smash product with S! in pointed spaces (Exercise 2.57). Passing to

7In fact, even to infinite loop spaces.
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spectra can be viewed as a process of inverting S'. In algebraic geometry, there are several
spheres available. For example, the R- and C-points of Gy, and P, respectively, are

Gm(R) =S, Gn(C)=S', PY(R)=S' P'(C)=Ss

It will turn out that inverting P! in our context will automatically make Gy, and S! invertible
too (see Example 4.2). In particular, motivic spectra will automatically be stable.

Definition 3.17 (Morel-Voevodsky [MVog], Robalo [Robrs]). There is an initial recipient

31 (Spcy)s — Spy in CAlg(Prh) inverting (P, 0o). This is called the co-category of (A!-)motivic

spectra or stable A'-homotopy theory.

Remark 3.18. In summary, our definition of Sp; follows the template of 1 in Remark 2.64:
Spc > (Spe)« » Spy

by rendering motivic spaces pointed and then inverting P!

Convention 3.19. 1. If the base point is clear from the context or irrelevant we omit it
from the notation.

2. We often omit the infinite suspension =% from the notation as well.
Hence we write P! for all of the following three objects:

P' € Spc,, (P!, ) € (Spc)., E%(P!, ) € Sp,

Remark 3.20. One can give a more explicit description of Sp. (This relies on the fact that
the cylic permutation acts identically on (P!')"?.) Namely, it is the sequential colimit of

1 1
= (SPe). 25 (Spegl < -

in Pr'. Equivalently (Remark 2.38), it is the sequential limit of

Qi Qp
e (SPG) - (Spy).

where we denote by Qp: the right adjoint functor Hom(P!, -). In particular, we deduce an
analogue of 3 and 4 in Remark 2.64:

Corollary 3.21. A motivic spectrum E = (E,) € Spy is the same thing as a Morel-Voevodsky
cohomology theory (Definition 3.2).

Exercise 3.22. Show that the functor Qp:: (Spcy). — (Spe). is given by
QpiF(X) = fib (F(x X P') — F(X x {oo})) .

Finally, we give a universal property of Sp; in the spirit of Remark 2.64.2.
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Corollary 3.23. For any C € CAlg(Prk), the canonical functor ( )+: Smy — Spy induces a fully

faithful embedding
Fun™®(Sp,, C) — Fun®(Smy, C)

onto those functors F satisfying:

1. F sends the canonical projection to F(X) — F(X x A1),
2. F sends a Nis-square (3.6) to a cocartesian square and F(0) = 0,

3. F(PY) is invertible.

Proof. We can factor the functor as

> L ~
Fun’® (Spy, €) —5 Funb®((Spcy)., €) 2 Funb® (Spcy, €) — Funb® (P (Smy), ) = Fun®(Smy, C)

and each of these is fully faithful by the respective universal properties of the symmetric
monoidal functors stated before. The description of the image is clear. O

Example 3.24. This universal property makes it relatively easy to construct realizations. For
example, assume k = C and consider the functor (C): Smec — Sp which sends X to X(C)
with the analytic topology. Since : Spc — Sp is symmetric monoidal so is R¢ = 3 o (C).
We now observe:

1. Al(C) = C = * thus homotopy invariance.

2. One can show that the analytification of a Nis-square is cocartesian in Spc. (This is
essentially because the analytification of an étale map is a local homeomorphism.) Since
3 preserves colimits, the same is true in Sp.

3. As already remarked, P(C) = S2. We deduce that Re(P!) = S? which is invertible.

Altogether we deduce from Corollary 3.23 a symmetric monoidal colimit preserving functor
Re: Spe — Sp, called the complex realization.

Remark 3.25. One can further compose with HZA: Sp — Moduz =~ D(Z) to get Betti
homology.

Example 3.26. Similarly, there is a real realization Rg: Spr — Sp induced by sending X €
Smp to IFX(R) with the analytic topology.

Exercise 3.27. If you’re familiar with basic equivariant homotopy theory construct a C,-
equivariant realization R, : Spr — Spc,-
3.3 Motivic sheaves

Remark 3.28. To a smooth k-scheme we have associated an object in Sp, which we can
think of as its stable motivic homotopy type. Extending this to singular schemes involves the
six-functor formalism which we briefly introduce.
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Remark 3.29 (Ayoub [Ayoo7], Cisinski-Déglise [CD19]).

1. Nothing in the construction of Sp, relied on k being a field. Indeed, for any scheme S
we may start with Smg and consider the subcategory Spcg € P (Sms) of Al-invariant
Nisnevich sheaves. Spg is the P!-stabilization as before.

2. For a morphism f: § — T, the functor

Smy LTS> Smg — Spg

clearly satisfies the analogous conditions of Corollary 3.23 thus a symmetric monoidal
left adjoint

f7:Spr — Sps
called pullback. Its right adjoint is denoted f; and called push-forward.

3. There is also an adjunction fi: Sps == Spr : f' between exceptional pushforward and
pullback. The former can be computed as follows. By Nagata compactification (and our
scheme conventions) each morphism factors as f = p o j where p is proper and j an
open immersion. The functor j* has a left adjoint ji which is induced by Smg — Smr,
X + X. In this situation, fj = p, o ji. (Once one knows that p. commutes with colimits,
the adjoint functor theorem (Remark 2.35) guarantees the existence of f*.)

Convention 3.30. Let f: X — Spec(k) be a k-scheme. The association f + ff'S underlies
a functor M: Schy — Sp; which makes the following diagram commutative:

Z;L+LA1Y
Smyp —— Sp;

[

Schk

The object M(X) € Spy is the (homological) motive associated with X € Schy.

Remark 3.31. These four functors f*, f., fi, f' together with A and internal hom satisfy many
compatibilities, the structure of which is best encoded in terms of categories of correspon-
dences. We will not develop this here but mention that such data goes by the name of six-
functor formalisms. Examples are, besides motivic spectra, constructible étale derived categories,
holonomic Z-modules, mixed Hodge modules and many more. There is a meta-theorem that
motivic spectra form the initial six-functor formalism satisfying some natural axioms, see for
instance [DG22]. We’d like to draw attention to two points:

* The axioms make no mention of the Nisnevich topology at all so that this result can be
seen as an aposteriori justification for choosing this topology.

* If a cohomology theory is supposed to entail a six-functor formalism - this hypothesis
is certainly in line with beliefs held by early proponents of a theory of motives - then
this result can be seen as substantiating motivid spectra’s claim to being a ‘universal
cohomology theory’.
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Remark 3.32. One of the natural axioms alluded to above is localization. Given X € Schy
and a closed immersion i: Z < X with open complement j: U < X, the co-category Spy is
‘clued’ from Sp,, and Spy; in a precise way. A consequence is the ‘glueing theorem’ [MVgo],
which says that

(3.33) Jijt —id — ii*

is a bifiber sequence of endofunctors of Spy.. The proof of this result seems to rely heavily on
the choice of smooth schemes and the Nisnevich topology.

Remark 3.34. Given p: X — Spec(k) in Schy the object M*(X) := piS € Spy is compact.
(That is, Map(p;S, —): Sp;, — Spc commutes with filtered colimits.) In contrast to Conven-
tion 3.30, M°(X) is the cohomological motive with compact support associated with X. Evaluat-
ing (3.33) on S and applying py to it we get a bifiber sequence

M(U) — M*(X) — M(Z)
in (Sp)®. It also follows from the properties of the six functors that
ME(X) ® ME(Y) =~ ME(X X Y).
Together this yields a ring homomorphism
[M€]: Ko(Vark) — Ko((Spp)®),

where the latter is the free abelian group on isomorphism classes of objects in (Sp;)® modulo
the relation A + C = B for any bifiber sequence A —» B — C.

Most other motivic measures will factor through this one. For example, composing with
the complex realization yields a ring homomorphism

[Re o M°]: Ko(Varc) — Ko((Spe)”) — Ko(Sp”) =~ Z

which is nothing but the topological Euler characteristic.

4 Basic objects and maps

4.1 Bigraded spheres

Convention 4.1. By the universal property of Spc, (Example 2.54) there exists a unique col-
imit preserving symmetric monoidal functor Spc, — (Spc). — Sp for which we don’t
introduce any particular name.

Example 4.2. By Exercise 3.13, the square

(Gm 1) —— (AL1)

b

(A1) — (P!, o)
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of open immersion is a cocartesian square in (Spcy ). and we deduce that it remains cocartesian
in Spy. Since A! = x this implies that Gy,, ~ P! € Sp;. Since the tensor product is compatible
with colimits we may also write this as

S'AGn = P!
and we see that both ‘spheres’ on the left become invertible in Sp,. In particular, Spy is stable.
Remark 4.3. By the universal property of spectra (Remark 2.56) and the previous example,

there is a unique colimit preserving symmetric monoidal functor Sp — Sp; which we don’t
baptize either.

Convention 4.4. For a,b € Z define the motivic sphere spectrum in Sp;,
Sa,b — Sa—Zb A ([FD1)/\b ~ Sa_b A (G )/\b
= = m
of topological degree a and weight b. For any E € Sp;. we also let Z**E denote S** A E.
Another common notation is 1(b)[a] instead of S®P.
Example 4.5. ¢ S¥0=8"=s
* Gy =S
. pl =2l
. (An _ O) — §2n—1,n

Example 4.6. The complex realization satisfies:
Re(SY) =84,

which justifies calling a the topological degree.

Exercise 4.7. What is the real realization R (S*?)?

Example 4.8. Recall Remark 3.34. In Ko((Sp;)®) one has SA = —A because of the bifiber
sequence A — 0 — ZA. We then deduce:

1. [M(Spec(k))] = [S] = 1
2. [MS(PH] = [S@S™271] = [S]+[S727!] =1+ [S®7!] (see Example 4.26)
3. [ME(AD)] = [ME(P)] - [M°(Spec(k))] = [S>']

Remark 4.9. It follows from the last example that [M¢] factors through the localization

(4.10) [M€]: Ko(Varg) [[A'] 7] — Ko((Spp)®).-

The map is presumably not surjective (example?) although this becomes true if one replaces
(Spi)® by the stable subcategory (Spy)f™ generated by S A M¢(X), X € Schy, b € Z, of
course, cf. [Rénzs]. The inclusion (Sp;)™ < (Sp,)® is the idempotent-completion and the
induced morphism on Kj is injective [Thog7].

Some potential elements in the kernel of (4.10) are discussed in [BM2s, § 5].
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Convention 4.11. We set 7,5(S) := Homsp, (S*,S), the (bigraded) homotopy groups of
the motivic sphere spectrum.

Remark 4.12. Computing these homotopy groups is difficult. This won’t be surprising given
that the same is true for the homotopy groups of the sphere spectrum in topology. We now
consider a special case: 7,(S).

4.2 Degree

Example 4.13. Let f: P! — P! be a pointed self-map. Under the complex realization,
Rc(E*(f)) € m(S) = Z is given by the Brouwer degree of the self-map f(C): $*> — $%. If
we write f = g/h where g, h € k[t] are coprime monic polynomials with n = deg(g) > deg(h)
then

deg(Z*(f(©))) = n.

Similarly, under the real realization, it is given by the Brouwer degree of the self~map f(R): S! —
S'. Using the local-degree formula, pick a regular value y. Then deg(f(R)) = ¥ ¢(r) (x)=y £1,
where the sigh measures whether f(R) is orientation-preserving or -reversing at x.

Remark 4.14. It turns out that both of the values in the above example are encoded by a
classical invariant, called the Bézout form, which we now recall [Caz12, Definition 3.4]. Write

g(X)h(g:?(Y)h(X) _. Z CpgXP YT,
1<p,q<n

(One can show that the left-hand side is indeed a polynomial.) The coefficients c, 4 are the
entries of a symmetric (n X n)-matrix, corresponding to a non-degenerate symmetric bilinear
form B(f).

Recall also that the Grothendieck-Witt ring GW (k) is the group completion of isomorphism
classes of non-degenerate symmetric bilinear forms under orthogonal sum. The multiplication
is induced by the tensor product of forms. We have therefore produced a map

(4.15) End.(P') > GW (k),
f = B(f).
Note (?) that the rank of B(f) is n = deg(f(C)) while the signature of B(f) is deg(f(R)).
Theorem 4.16 (Morel [Mor12], Cazanave [Cazi2]). The map (4.15) factors through an isomor-
phism of rings
deg™ : m0(S) > GW(k).
Remark 4.17. 1. Reflect for a minute on the fact that at no point in defining Sp, did
symmetric bilinear forms occur. It’s quite a remarkable isomorphism!

2. Morel actually computes the entire Z-graded ring @,7,,(S) as the Milnor-Witt K-
theory of k. Cazanave gave the isomorphism in degree 0 the explicit form above in
terms of the Bézout form.
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3. While the theorem shows that
o Map(spck)*(ﬂj’l, PYH - Mapg, (S,S) = m,0(S)

is surjective, it is not injective. The relations come from (P')"?. (In fact, all further
P!-suspensions induce isomorphisms.)

Remark 4.18. There is a canonical map k¥ — GW (k) that sends u to the form (x,y) — uxy
denoted (u), and these generate the ring, with three relations:

L (u)(v) = (uo)
2. (u%0) = (v)
3. {u) +{©) = {u+0) + (uo(u +0))

whenever these make sense.

Remark 4.19. The fact that these are generators is the statement that every form is (stably)
diagonalizable. We explain why this lifts to Spy.

Suppose first that char(k) # 2. Every symmetric matrix is similar to a diagonal one via a
special linear matrix. The latter can be written as a product of elementary matrices each of
which is A'-homotopic to the identity matrix.

If char(k) = 2 the same argument shows that the symmetric matrix is homotopic to a block
diagonal matrix with blocks of size at most 2 of the form ({ | ). But the latter is homotopic to

(1) which is diagonalizable.

Remark 4.20. Note that (u) is the degree of the pointed self-map
p! - p!
(x:y) — (x:uy)

where the base point is oo = (1 : 0).

Example 4.21. Ifk is algebraically closed then rank: GW (k) — Z. In fac, this is true already
when k is quadratically closed.

Example 4.22. For k = R one has R*/(R¥)? = Z/2 so GW(R) = Z[X]/(X? - 1) with
X = (-1). The identification is given by rank and signature (that is, the trace of the symmetric
matrix). (Every real symmetric form is equivalent to one with +1 and 0 on the diagonal only.
So the signature is the number of 1’s minus the number of —1’s. Compare Example 4.13.)

4.3 Enumerative geometry

The AV—degree feeds into a program of arithmetically enriching results in enumerative ge-
ometry. For an introduction see e.g. [Lev2z].

21



Example 4.23. We mention as an example a beautiful work of Kass—Wickelgren [KW21].
Let X C P? be a smooth cubic surface. It is a classical result that the number of lines on X is
always 27 when k = C. When k = R the number is not independent of the surface® but it was
observed not too long ago that a signed count (depending on whether the line is ‘hyperbolic’
or ‘elliptic’) is. In [KW21], the following identity is established for arbitrary k with char(k) # 2:

> (#lines of type u) - Trp i ((u)) = 15(1) + 12(-1) € GW (k)

uel>/(L*)2

By taking the rank GW(C) — Z one obtains the classical count of 27. By taking the signature
GW(R) — Z one obtains the signed count of 3 (=3-0=5-2=9-6 = 15— 12). By taking
the discriminant GW(F,;) — Z/2 one obtains a parity constraint over a finite field of odd
characteristic.

Remark 4.24. Let (C,®, 1) be a symmetric monoidal category. An object ¢ € C is (strongly)
dualizable if there exists ¢ € C and morphisms 1 — c¢®c", ¢ ®c — 1 such that the composites

c—>c®cv®c—>c, " >5c'®@cxc’ -V

are both the identities. (The dual and the ‘unit’ and ‘counit’ are unique up to unique isomor-

phism if they exist.)

Exercise 4.25. Show that a k-vector space V is dualizable (with respect to the usual tensor
product of k-vector spaces) iff it is finite-dimensional.

Example 4.26. The six-functor formalism for Sp_ (Section 3.3) implies that M(X) = X, € Sp;
is dualizable whenever X /k is smooth and proper, with dual M¢(X), see [Rioos].

Remark 4.27. Given an endomorphism f: ¢ — ¢ of a dualizable ¢ € C, one defines its frace

tr(f):ﬂec@cvﬂc@)cvzc\/@c—ﬂl € End(1).
The Euler characteristic y(c) is the trace of the identity on c.
Exercise 4.28. If you did the previous exercise you will have no difficulty verifying that these

notions recover the trace of a linear map and the dimension of a (finite-dimensional) vector
space, respectively.

Remark 4.29. Using the degree we observe that traces in Sp, take values in GW (k) and
therefore may encode interesting arithmetic information. This was explored by Hoyois in [Hoy14]
to whom the following examples are due.

Example 4.30. Let f: X — X be an endomorphism with X smooth and proper, and assume
that the fixed points X/ are étale. Then

r(f1 Xe > X)) = Y Tregeu(det(id—df)).

xexf

81t can be 3, 7, 15, or 27.
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In particular, if X = Spec(L) with L/k a finite separable extension then

X(X) = Trp (1),

Example 4.31. If f: X — X isan endomorphism with X smooth and proper, and if tr (f: Xy —
X:) # 0 then f has a fixed point.

On the other hand, if the sheaf of differentials on X has a non-vanishing global section
(e.g. an elliptic curve) then y(X,) = 0.

Remark 4.32. By [LR20], the Euler characteristic of a smooth and proper X can also be
computed in terms of its Hodge cohomology with coherent duality as bilinear form.

Remark 4.33. Let k be of characteristic zero (or admit resolution of singularities). Then all
compact objects in Sp;. are also dualizable [Rioos] and so we may compose the association
X — M°(X) of Remark 3.34 with the Euler characteristic. By the additivity of Euler charac-
teristics [Mayo1], y descends to K, and we get a ring homomorphism

Ko(Varp) [[A171] 25 Ko ((Sp)©) £ GW (k).

This morphism is surjective [BM2s, Proposition 7.5].

s Cohomology theories

5. Classical

Convention 5.1. Let E € Sp;. We define E-cohomology and E-homology of p: X — Spec(k)
in Schy, as

E“?(X) := Homsp, (S™ %, p.p*E),  Eqp(X) := Homsp, (S*?, pip'E).

For E = S we also denote E,;(X) by 7,5(X) and call them stable motivic homotopy groups. (This
generalizes the bigraded homotopy groups of the motivic sphere spectrum defined earlier
which is the case X = Spec(k).)

Note that if E € CAlg(Spy) (or just a monoid in ho(Spy,)) then the cohomology E**(X)
becomes a bigraded ring.

Example 5.2. Recall the complex realization R¢: Spe — Sp which has a right adjoint Re ..
In particular, for any topological cohomology theory, that is, any spectrum E € Sp, we get
an induced cohomology theory E := R¢ .E € Spe. For any complex X one then has (non-
obviously):

E*? (X) = E**(X(C)).

Example 5.3. Take E = HA or E = KU € Sp as in Examples 2.60 and 2.62. It follows that
Re.HA € Sp represents Betti cohomology with coefhicients in A. Similarly, R¢ .KU € Spe
represents complex topological K-theory.
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Remark 5.4. All the examples of cohomology theories mentioned so far were obtained from
the complex realization. In fact, there is a close relation between “Weil” cohomology theories
and realizations, see [Ayo]. The following examples are conveniently collected in loc. cit.

Example s.5. For any prime ¢ different from the characteristic of k there is a motivic ring
spectrum E, representing £-adic cohomology.

Example 5.6. Let char(k) = 0. There is a motivic ring spectrum Egg representing algebraic
de Rham cohomology.

Example 5.7. Under suitable assumptions there is a motivic ring spectrum Eyjg representing
Berthelot’s rigid cohomology.

5.2 Algebraic K-theory

We now turn to MV-cohomology theories that are not as ‘classical. One way to import
cohomology theories from topology into algebraic geometry was presented using a topolog-
ical realization in Section 5.1. However, many of these topological theories afford genuine
algebro-geometric analogues. For example, if X is a scheme, there is an algebraic K-theory
space (or spectrum) K(X) and if X/C there is a map induced by analytification

K(X) - KU(X(C)),

which, however, is not an equivalence in general. In this section we discuss this algebraic
K-theory as a MV-cohomology theory, following [Bac21].

Convention 5.8. Let M € CAlg(Spc). The functor mp: Spc — Set is symmetric monoidal so
that 77o(M) is a monoid. We say that M is grouplike if o(M) is a group.

By the adjoint functor theorem, the inclusion of grouplike objects CAlgg, (Spc) < CAlg(Spc)
has a left adjoint (—)* called group completion.

Definition 5.9. Let X/k be a scheme. Vector bundles on X form a symmetric monoidal cat-
egory under direct sum. Passing to the core (Convention 2.12) we obtain a commutative
algebra in Spc that we may group-complete:

K®(X) = ((Vectx, ®)”)* € CAlgy,(Spo),
which is the direct-sum K-theory space of X. It is canonically pointed at 0.

Example 5.10. We may describe K§¥ (X) as the Grothendieck group of the monoid 7z ((Vectx, ®)*).
That is, the free abelian group on isomorphism classes of vector bundles on X modulo the re-
lation [M] + [N] = [M & N].

For example, Ko (Spec(k)) = Z.

Definition s.m. Let K = Lz, K®: (Smg)°P — Spc be the Zariski sheafification. K(X) is
called the algebraic K-theory space of X € Smy. (One can also sheafify the functor (Smy)°P —
CAlggp (Spe) instead. This shows that K has a canonical grouplike infinite loop space structure.)
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Remark s.12. This is arguably not the most enlightening definition of K-theory. But one
can show (e.g. [Weir3]):

* For X = Spec(R) a smooth affine k-scheme, K(X) ~ K®(X) is the group completion of
finitely generated projective R-modules and isomorphisms.

* For general schemes X (not necessarily affine nor regular), the correct (meaning, the
accepted) definition of K(X) was given by Thomason-Trobaugh [TTgo]. It is an in-
variant of the stable co-category of perfect complexes on X. In any case, it turns out
that this restricts to K: (Smg)°P — Spc defined above. Ky(X) is the free abelian group
on isomorphism classes of vector bundles on X modulo the relation [Vi] + [V3] = [V3]
whenever there is a short exact sequence Vi — V, — V3.

Construction 5.13. Let & € Vectpi. For any (smooth) X, tensoring with « yields an additive
functor
a ® —: Vecty — Vectpiyy

and therefore a morphism of commutative monoids in Spc,
a: K®(X) - K®(P! x X),

and, Zariski sheafifying,
a: K - K(P' x -).

Example s5.14. The tautological line bundle (corresponding to the invertible sheaf 6(-1))
defines an object y € Vectp:. Similarly, the trivial line bundle (corresponding to the invertible
sheaf ©) defines 1 € Vectp:. Using the grouplike monoid structure on K we may consider the
difference

y-1: K - K(P'x-)

Lemma s5.15. The map y — 1 induces an equivalence
(5.16) y-1: K = QK
in (Spcy)«.

Proof. (Since y — 1 is a morphism of commutative monoids and the basepoint is given by 0,
it is clear that y — 1 also preserves the basepoint.) Restricting y to co € P! yields the trivial
1-dimensional vector space so that yle = 1| via some fixed isomorphism. This yields a
homotopy between the composite

Y_l 1 |oo
K— K(P'x-) > K
and 0. By Exercise 3.22, this provides the required lift
K — Qu])lK

in (Spcy)s. That this is an equivalence is a consequence of the projective bundle theorem for
K-theory. i
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Definition 5.r7. The algebraic K-theory spectrum is KGL = (K, K, K, ...) € Sp, with bonding
equivalences (5.16).

Kop_o(X) :2b-a>=0
Proposition 5.18. Let X € Smy. Then KGL*!(X) = { 2-a(X) ¢ )

s else

Proof. Note that P! A (Eo, Ey,...) = (E1, E,...) in Sp; hence P! A KGL = KGL and it follows
that
S$** A KGL = $*7220 A KGL = §?/~%%b-2 A KGL.

If —p:=a—-2b < 0then
KGL*?(X) = Homsp, (X+ A S, KGL)

= Hom(spck)* X5 A SP, K)
= Kop—a(X).

If p:=a-2b>0then

KGL% (X) = Homsp, (X; A SP#,KGL)
= Hom(spck)* (Xs A (Gm)/\ps K).

We will show that this vanishes by induction on p > 0. If p = 1 we apply Map g, | (Xs A= K)
to the cofiber sequence
§” - (Gm)+ = G

to get a long exact sequence ending in
Ki(X X Gy) — K1 (X) = KGL**(X) = Ko(X X Gm) — Ko(X).

The last map is an isomorphism by the fundamental theorem of algebraic K-theory. The first
map is split surjective by the projection map X x Gy, — X. It follows that the third term
vanishes, as required.

The induction step is similar and we leave it as an exercise. |

Remark s5.19. If X/k is not smooth then KGL*?(X) does not compute the correct K-theory
groups (Remark 5.12) in general. To see this, observe that the latter are not A!-invariant for
general schemes.

Remark 5.20. There are more geometric models of KGL, in terms of the classifying space
of GLe or in terms of Grassmannians. Such models allow to show, among other things, that
if k = C then RcKGL = KU.

5.3 Motivic cohomology

We can also ask for an algebro-geometric analogue of singular cohomology. To find the
correct analogue let us see which descriptions of HZ € Sp can be translated.
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Remark s.21.

1. Given that HZ = (K(Z, n))n>0 we could try to find analogues of the Eilenberg-MacLane
spaces in (Spc). together with bonding equivalences.

2. In Exercise 2.61 you proved that z,(HZ) is concentrated in degree 0 and equal to Z.
This singles out this spectrum as an object of the heart of the homotopy t-structure
on Sp. That is, let Sp,, C Sp denote the subcategory generated by S” under colimits
and extensions. By the adjoint functor theorem, the inclusion Sp.,, < Sp admits a right
adjoint and we denote the composite f,: Sp — Sp., < Sp. Clearly, we get a filtration

(5.22) N T A

indexed by the integers, and we denote by s, := cof (f;+1 — fy) the nth slice. It turns out
that sq factors as

500 Sp =% Mody 2 sp.

It follows that so(S) = HZ. This suggests an approach would be to find a filtration on
Spy analogous to (5.22).

3. Singular homology associates to any topological space X a chain complex C,.(X) € D(Z)
in the derived category of abelian groups. This descends to an adjunction

L:Sp = D(Z) :R
and HZ = RL(S). This suggests looking for an analogue of D(Z) in algebraic geometry.

4. The complex C, () may be expressed in terms of the singular simplicial set X = Hom(|A®|, &)
of Alternative 2.1. This suggests looking for an algebraic version of the simplices [A"| in
order to define an analogue of singular homology.

Remark 5.23. Each of these approaches can be implemented:

1. Voevodsky [Voeg8; Voero] defined Eilenberg-MacLane spaces K(Z(n),2n) € (Spcy)-
using an analogue of symmetric powers in algebraic geometry, inspired by the Dold-
Thom theorem in topology. The bonding maps P! AK(Z(n),2n) — K(Z(n+1),2n+2)
can be defined quite easily but showing that their adjoints are equivalences is hard (and
requires resolution of singularities). We may consider the associated spectrum HZ®™ €
Spg.

2. There are different filtrations on Sp, one might try but the correct one for this purpose is
by letting (Sp;)>n denote the stable subcategory generated by X, A (P1)"" for X € Smy
under colimits. This is called the slice filtration [Voeo2]. One can then define Hzst =
s0(S) € Spy [Voeoy; Levos].

3. Hanamura [Hanos], Levine [Levo8] and Voevodsky [Voeoo] define? the derived co-category
of mixed motives DM and there is a functor L: Sp, — DM that ‘adds transfers (=multi-

valued maps) and linearizes’. We may define HZ™ = RL(S) where R denotes the right
adjoint to L [Hoyis].

9Two caveats: Not all of them originally came with an co-categorical enhancement, and they are only (anti-
Jequivalent. To be specific, we use Voevodsky’s.
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4. Suslin and Voevodsky [SVo6] use the algebraic simplices A:lg = {xo+- - +x, = 1} C A"
and ‘multivalued maps’ A;’lg — X to define the Suslin homology of X.

Somewhat miraculously and somewhat by design they all give rise to essentially the same
theory, namely motivic (co)homology. To be more precise the above references show:

Theorem 5.24. Assume k of characteristic zero or invert the characteristic of the field. Then:
(5.25) HZ" ~ HZ® ~ HZ™

Definition 5.26. We denote by HZ € Sp;. this common spectrum, called the motivic cohomol-
ogy spectrum.

Remark 5.27. One may endow HZ with the structure of a commutative algebra. This can
be done in all three approaches above canonically and they all coincide. In particular, one may
consider modules over this algebra, and [RJ08; HKD17] show (under the same assumptions
as above) that

MOdHZ x~ DMk.

This gives an approach to the derived co-category of mixed motives without mentioning
transfers (although the comparisons (s.25) aren’t as puristic). Of course, this is also analogous
to the equivalence Modyz ~ D(Z) in topology.

Example 5.28. Let X be a smooth k-scheme. Then
Hz?»"(X) ~ CH™(X)
identifies with the codimension-n Chow groups of X.

Remark 5.29. Thisleads to the observation that Chow motives embed fully faithfully into the
derived category of mixed motives. By the former we understand the additive ordinary cat-
egory CHMy which has objects smooth projective k-schemes, and morphisms Hom(X,Y) =
CHg4(X x Y) where X is of pure dimension d. There is a functor

CHM;. — ho(DMy), X - HZAX,

which is fully faithful. This creates the bridge between Grothendieck’s pure motives (which
are conjecturally an additive quotient of CHMy) and the theory described in these notes.

Remark 5.30. Letusalso mention the relation with the last approach to motivic (co)homology.
For any smooth X/k, its Suslin homology, it turns out, is computed as

H"8(X) = HZ,,0(X).

Remark 5.31. Let k = C. Then RcHZ = HZ.
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