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Introduction

Let k be an algebraically closed �eld and let us work in the category Sch/k of separated �nite type
k-schemes. Let us be given a correspondence c = (c1 , c2) ∶ C → X × X, a complex of l-adic sheaves
F ∈ Db

ctf (X ,Ql), where l is invertible in k, and a cohomological correspondence u ∶ Rc2!c
∗
1 F →F .

Assume that both X and c1 are proper.
�e correspondence c gives rise to the scheme of �xed points Fix(c) ⊂ C which is de�ned as

c−1(diag X). Also, u gives rise to an endomorphism RΓc(u) ∶ RΓc(X ,F) → RΓc(X ,F) of the
cohomology with compact support on X with values in F . Representing RΓc(X ,F) by a pro-
jective system of perfect complexes of Z/l νZ-modules (ν ≥ 1), we may assign to RΓc(u) its trace
Tr(RΓc(u)) ∈ Ql . In this setting, the Lefschetz-Verdier trace formula [14, III, 4.7–8] expresses this
global term as a sum of “local terms” on Fix(c):

Tr(RΓc(u)) = ∑
β∈π0(Fix(c))

ltβ(u).

Unfortunately, these local terms are not easy to compute for general correspondences. At the same
time this result fails if X or c1 is not proper. Let us sketch possible strategies (one in each case) to
cope with these “defects”:

• One obvious way to accommodate a non-proper scheme X is to compactify and “extend” F
and u “by zero”. One would hope that neither the global trace nor the local terms change under
this operation.

• Suppose now that c1, although not necessarily proper on the whole ofC, admits an open subset
U ⊂ X such that c1∣c−11 (U) ∶ c

−1
1 (U) → U is proper and F ∣X/U = 0. In this case the two ob-

jects RΓc(X ,F) and RΓc(U ,F ∣U) are isomorphic and u still gives rise to an endomorphism
RΓc(u) of RΓc(X ,F). “Restricting” c and u to c−11 (U) ⊂ C, one would again hope that the
local terms remain the same.

• As for the non-explicitness of the local terms, here is a situation where one has a natural guess
for how to compute them. Suppose that y is an isolated �xed point of c, and that c2 is quasi-
�nite. In this case, u gives rise to an endomorphism uy of the stalk Fc2 y . Its trace is called the
“naive local term of u at y”. One’s task is then to �nd conditions which guarantee that the �xed
points are isolated and that the naive and the true local terms coincide.

In [19], Varshavsky stated a set of conditions and proved them su�cient to carry out the strategies
just sketched, i. e. he proved that this set of conditions su�ces to express the global trace associated
to RΓc(u) as a �nite sum of naive local terms, even for X and c1 not necessarily proper. A bit more
explicitly (we won’t give all the conditions here in the introduction), he assumes k to be the algebraic
closure of a �nite �eld, and he also assumes that c is de�ned over the �nite �eld.�us, one has at one’s
disposal the geometric Frobenius which one may use to “twist” c1. Deligne conjectured that twisting
c1 by a su�ciently high power n of the Frobenius, and assuming c2 quasi-�nite and c1 proper, will
ensure that the global term is a �nite sum of naive local terms. �emain result of [19] generalizes this
by allowing c1 to be non-proper as explained above. (�e condition not mentioned here explicitly is
related to this generalization.) As to the number n of necessary “twists”, the article gives a relatively
explicit upper bound on it, depending on the correspondence only. Weaker results had been obtained
before by Pink in [18] and Fujiwara in [9], and a signi�cant part of the strategy employed in [19] is
already present in these two articles. �e reader is referred to the introductions of all these articles
for some information on the role played by the Lefschetz-Verdier trace formula and the calculation
of local terms in algebraic geometry.
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In the pages to come, I give a detailed account of [19]. Mathematically, there is (at least from an
expert’s point of view) nothing new here in comparison with [19]. I have reorganized the exposition
at some points, silently corrected a few (minor) mistakes (and most certainly introduced others),
and mainly given much more details.

I would like to thank Andrew Kresch and Joseph Ayoub for their assistance during the time I
have been working on my master’s thesis.

Letme end the introduction by giving an outline of the rest of the document. A�er some prelimi-
naries in section 1, correspondences and cohomological correspondences are introduced in section 2
(§1, §2). As seen above, under the �rst two bullets, we will need operations of some kind of proper
pushforward and pullback on cohomological correspondences. Apart from these (§3, §4), the sec-
ond section contains a discussion of the specialization operation on cohomological correspondences
(§5) and its application to the deformation to the normal cone construction (§6). Specialization to
the normal cone is a main ingredient in proving the vanishing of some local terms. �e last para-
graph §7 of the second section proves a result of Verdier [20] which says that specialization to the
normal cone commutes with restriction to the zero section.

�e third section gives the de�nition of a general “trace map” from which the local terms are
obtained by “integration”, and which also yields the global trace term when applied to RΓc(u) (§1).
It is of course important that this trace map behaves well under the operations on cohomological
correspondences discussed in the second section. It is in fact proved that it commutes with some-
thing called a “cohomological morphism”, which subsumes all these operations (§2–§5). Moreover,
the Lefschetz-Verdier trace formula is seen to follow easily from the naturality of the trace map with
respect to proper pushforward. Finally, the additivity of the trace map is deduced from the additivity
of its �ltered counterpart, which is in turn proved in §6.

�e last section starts by introducing the key concept of a “contracting correspondence” and by
relating it to the construction of the deformation to the normal cone (§1, §2). Roughly, for corre-
spondences which are contracting in a neighborhood of their �xed points, the local terms equal the
naive local terms. In §3, it is shown that correspondences over �nite �elds can be made contracting
by twisting them with a su�ciently high power of the Frobenius, while §4 concludes this document
with the proof of the generalization of Deligne’s conjecture explained above.
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1 Preliminaries

In this �rst section we will �x our notation and recall some concepts and facts used later on. Except
for §1 and §2, the reader is advised to skip this section and come back to it if and when needed. We
will facilitate this by referring to the individual paragraphs of this section at the relevant places in
the main body of the text. (See also the list of notations at the end of the document.)

§1 Schemes

(a) Most of the time, and if not explicitly mentioned otherwise, all schemes considered in the
sequel are separated and of �nite type over a �xed algebraically closed �eld k. Seemingly absolute
notions from scheme theory are always to be understood relative to k, e. g. morphisms of schemes
are morphisms of schemes over k, direct products of schemes are �ber products of schemes over k.
Another way to say this is that all statements about schemes and their morphisms are to be under-
stood as applying to the category of separated schemes of �nite type over k, denoted Sch/k (except
that we will be sloppy and identify morphisms X → k with their source X, as usual).

Sometimes, we also work in the category of separated schemes of �nite type over a �xed discrete
valuation ring R (satisfying some properties yet to be stated), accordingly denoted Sch/R. More
explicitly, this is the case in 1.§4, 2.§5–§7 and at a few places in section 3. However, we will always
make clear when we change the category.

(b) �e scheme de�ned by k (i. e. the terminal object in Sch/k) is again denoted k. For any
scheme X (separated and of �nite type over k) we denote by Xred the associated reduced scheme and
by πX ∶ X → k its structure morphism. Similar conventions apply to Sch/R.�e diagonal morphism
X ↪ X × X is denoted ∆X . For a morphism of schemes f ∶ X → Y we denote both morphisms
of sheaves OY → f∗OX and f ∗OY → OX by f ♯. Moreover, if F is a sheaf of OY -modules then we
denote by f⊛F the inverse image of F by f , i. e. f⊛F = f ∗F ⊗ f ∗OY

OX .
If Z ⊂ Y is a closed subscheme thenIZ ⊂ OY denotes the ideal sheaf de�ning Z. For amorphism

of schemes f ∶ X → Y we denote the inverse image ideal sheaf of IZ by f ∗IZ ⋅ OX . It is de�ned
as the ideal sheaf generated by the image of f ∗IZ ↪ f ∗OY → OX , where the second morphism is
f ♯. �e scheme-theoretic inverse image of Z along f is denoted f −1(Z), i. e. f −1(Z) = X ×Y Z. �e
relationship between f −1(Z) and f ∗IZ ⋅OX is given by I f −1(Z) = f ∗IZ ⋅OX .

§2 Derived category

(c) We �x a prime l invertible in k, and a commutative ring with identity Λ which is �nite and
annihilated by some power of l .�e generalization of our main results to the case where Λ is a �nite
extension of either Zl or Ql is immediate. (In fact, most of the proofs in this document go through
word for word in this context.)

(d) To any scheme X we may associate the derived category of sheaves of Λ-modules for the
étale topology on X, denoted D(X , Λ), and its full “subcategories of bounded above complexes”
D−(X , Λ) as well as of “complexes of �nite tor-dimension with constructible cohomology”, denoted
Db

ctf (X , Λ) (or simply Db
ctf (X)). Recall that the objects of Db

ctf (X) are exactly those complexes

F ∈ D−(X , Λ)which satisfy any of the two following equivalent conditions ([6, Rapport, 4.6]):

1. F is isomorphic (in D
−(X , Λ)) to a bounded complex of sheaves which are both �at and

constructible.
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2. F has �nite tor-dimension and the cohomology sheaves Hi(F) are constructible.

In particular, if X = k thenDb
ctf (X , Λ) is equivalent to the category of bounded complexes of sheaves

of projective �nite type Λ-modules with morphisms taken modulo homotopy, denoted Kparf(Λ) in

[6, Rapport, 4.3]. From the second description above it is easy to see that Db
ctf (X) is a triangulated

subcategory ofD−(X , Λ).
Since we have imposed the right “�niteness conditions” (the schemes are of �nite type over a

�eld), the categories Db
ctf (X) are stable under the six operations

f ∗ , f∗ , f
! , f! ,⊗,RHom

(see [7, 1.1.2–3]). Here, of course, we abuse notation by writing the same symbol for the functor as
for its derived counterpart. �e transitivity isomorphisms for these functors (e. g. (g f )∗ ≅ f ∗g∗)
will usually not be denoted speci�cally. Recall also the “cocycle condition” for the transitivity iso-
morphisms (see e. g. [2, XVII, 5.1.8 (i); XVIII, 3.1.13]).

(e) For a scheme X we denote by ΛX ∈ D
b
ctf (X) (or just Λ) the constant sheaf associated to Λ,

by KX = π
!
X(Λk) the dualizing complex of X, and by DX = RHom(−,KX) (or simply D) the Verdier

dual of X. Recall that there is a natural isomorphism of endofunctors of Db
ctf (X), D

2 → 1 (see [6,

�. �nitude, 4.3]). Instead of πX! we also write RΓc(X ,−), instead of Hi
○πX∗ we write H

i(X ,−),
i ∈ Z. If j ∶ U ↪ X is an immersion and F ∈Db

ctf (X) we o�en denote j∗F by F ∣U .

(f) For a morphism of schemes f ∶ X → Y , there are well-known adjointness relations

f ∗ ⊣ f∗ , f! ⊣ f !

of the functors between the categories Db
ctf (X) and Db

ctf (Y). We denote the units and counits of
these adjunctions ambiguously adj. Moreover,

(−)⊗F ⊣ RHom(F ,−)

for anyF ∈Db
ctf (X) and we denote by ev the adjunction morphism (counit) F ⊗RHom(F ,G )→

G derived from the morphism on the level of complexes

F ⊗Hom(F ,G )Ð→ G

x ⊗ f z→ f (x)

(see [14, III, 2.2]).
Recall also that f! = f∗ in the case f is proper ([2, XVII, 5.1.8]), f ! = f ∗ in the case f is étale ([2,

XVIII, 3.1.8 (iii)]) and f ! is the functor “sections with support on X” if f is a closed immersion ([2,
XVIII, 3.1.8 (ii)]).

§3 Some morphisms

(g) Let f ∶ X → Y be a morphism of schemes, A ,B ∈Db
ctf (X), and F ,G ∈Db

ctf (Y).
If M ,N are two étale Λ-sheaves on Y , and if V is étale over X, there is a canonical Λ-bilinear

map

limÐ→
U

M (U) × limÐ→
U

N (U)ÐÐ→ limÐ→
U

(M (U) ×N (U))ÐÐ→ limÐ→
U

(M (U)⊗Λ N (U)),
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where the limit is taken over thoseU étale over Y through which the morphism V → X → Y factors.
�is map induces a morphism of sheaves

f ∗M ⊗Λ f ∗N ÐÐ→ f ∗(M ⊗Λ N ),

which is in fact an isomorphism. Since f ∗ is exact and takes �at objects to �at objects, it induces in
an obvious way an isomorphism of functors between the derived categories,

t f ∗ ∶ f
∗F ⊗ f ∗G

≅Ð→ f ∗(F ⊗ G ). (1.1)

We denote by t f∗ the morphism obtained by adjunction:

f∗A ⊗ f∗B
adjÐ→ f∗ f

∗( f∗A ⊗ f∗B)
t−1
f∗Ð→
≅

f∗( f
∗ f∗A ⊗ f ∗ f∗B)

adjÐ→ f∗(A ⊗B). (1.2)

(h) �ere is a canonical morphism, called the projection formula,

proj ∶ f∗A ⊗F
adjÐ→ f∗ f

∗( f∗A ⊗F)
t−1
f∗Ð→
≅

f∗( f
∗ f∗A ⊗ f ∗F)

adjÐ→ f∗(A ⊗ f ∗F). (1.3)

It is an isomorphism e. g. if f = πX is the structure morphism of a scheme X (see the proof of [2,
XVII, 5.2.11]). Moreover, if f is proper, it coincides with the following isomorphism,

proj ∶ f!A ⊗F
≅Ð→ f!(A ⊗ f ∗F) (1.4)

([2, XVII, 5.2.9]), also called the projection formula.
�e composition

f!( f
!F ⊗ f ∗G )

proj−1ÐÐÐ→
≅

f! f
!F ⊗G

adjÐ→F ⊗G

de�nes by adjunction a morphism

t f ! ∶ f
!F ⊗ f ∗G ÐÐ→ f !(F ⊗G ), (1.5)

and the composition

f ! RHom(F ,G )⊗ f ∗F
t f !Ð→ f !(RHom(F ,G )⊗F)

evÐ→ f !G

de�nes, also by adjunction, a morphism

ind ∶ f ! RHom(F ,G )
≅Ð→ RHom( f ∗F , f !G ), (1.6)

which is an isomorphism by [2, XVIII, 3.1.12.2], called the induction isomorphism.

(i) Let f ∶ X → Y be a morphism of schemes. �ere is a canonical isomorphism

ε ∶ f ∗ΛY
≅Ð→ ΛX

de�ned as follows. Denote by f p the inverse image functor of presheaves, by Λ
p
W the constant

presheaf on the scheme W associated to Λ, and by a the shea��cation functor. �en the inverse
of ε is

ΛX = aΛ
p
X = a f

pΛ
p
Y

≅Ð→ a f paΛp
Y = f ∗ΛY ,
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induced by the canonical morphism of presheaves Λ
p
Y → aΛp

Y . �e morphism corresponding to ε
by adjointness will be denoted ε′ ∶ ΛY → f∗ΛX .

If g ∶ Y → Z is a second morphism of schemes then ε induces the following commutative dia-
gram:

ΛX (g f )∗ΛZ
ε

≅

f ∗ΛY

ε ≅

f ∗g∗ΛZε

≅

≅

(1.7)

Moreover, if M is an étale sheaf on X then the following square commutes

f∗M f∗(M ⊗ ΛX)
≅

f∗M ⊗ ΛY

≅

ε′
f∗M ⊗ f∗ΛX

t f∗

(1.8)

It follows by adjointness that if N is an étale sheaf on Y then

f ∗N f ∗(N ⊗ ΛY)
≅

f ∗N ⊗ ΛX

≅

f ∗N ⊗ f ∗ΛYε

t f∗

is also commutative. Since the functor of sheaves f ∗ is exact and preserves �at objects, the same
diagram commutes in the derived context as well. One then deduces again by adjointness that the
diagram corresponding to (1.8) in the derived context is also commutative.

(j) If f is a proper morphism, we de�ne the integration map

∫
f

∶ H0(X ,KX)ÐÐ→ H0(Y ,KY) (1.9)

as the composition

H0(X ,KX)
≅Ð→ H0(Y , f! f

!KY)
adjÐ→ H0(Y ,KY).

If f = πX is the structure morphism of a scheme X, we also denote ∫πX
simply by ∫X .

(k) Let

X

f

X′
g′

f ′

Y Y ′g

(1.10)

be a commutative diagram of morphisms of schemes. We shall now list the base change morphisms
we will need in the following sections. Each one will be denoted bc followed by the equation number
referring to the equation where it is de�ned.
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Without any assumptions on the morphisms there are base change morphisms

f ′! g
′! ÐÐ→ g ! f! , (1.11)

g∗ f∗ ÐÐ→ f ′∗g
′∗, (1.12)

the �rst de�ned in [2, XVIII, 3.1.13.2], the second de�ned in [2, XVII, 4.1.5].
If the square (1.10) is cartesian, then there are two isomorphisms

g∗ f!
≅ÐÐ→ f ′! g

′∗, (1.13)

f ′∗g
′! ≅ÐÐ→ g ! f∗ (1.14)

([2, XVIII, 3.1.14.1 and 3.1.12.3]). From these we obtain by adjunction two other morphisms

f ′∗g ! ÐÐ→ g′! f ∗ , (1.15)

f! g
′
∗ ÐÐ→ g∗ f

′
! (1.16)

([2, XVIII, 3.1.14.2] for the �rst one). If f is proper then (1.16) is the usual transitivity isomorphism
and (1.13) coincides with (1.12). If g is smooth and the square cartesian then both (1.12) and (1.15) are
isomorphisms. If g is étale then (1.15) is the usual transitivity morphism, (1.14) is the inverse of (1.12),
and (1.13) is the inverse of (1.11).

Note that all these base changemorphisms behavewell with respect to composition ofmorphisms
in the sense of [2, XII, 4.4] (see e. g. [2, XVII, 5.2.4–5; XVIII.3.1.14]).

(l) For two schemes Xi , i = 1, 2, we denote the projections X1×X2 → Xi by pi . ForFi ∈D
b
ctf (Xi)

we set F1 ⊠F2 ∶= p
∗
1 F1 ⊗ p∗2F2 . We will need the following constructions from [14, III].

�e composition

p∗1 π
!
X1
Λk ⊗ p∗2F2

(1.15)ÐÐ→ p!2π
∗
X2
Λk ⊗ p∗2F2

tp!2ÐÐ→ p!2(ΛX2
⊗F2)

≅ÐÐ→ p!2F2

de�nes an isomorphism

KX1
⊠F2

≅ÐÐ→ p!2F2 (1.17)

by [14, III, 1.7.4]. �is also gives rise to an identi�cation (cf. [14, III, 3.1.1])

DF1 ⊠F2
≅ÐÐ→ RHom(p∗1 F1 , p

∗
2F2), (1.18)

de�ned by adjunction as follows:

p∗1 F1 ⊗(DF1 ⊠F2)
≅ÐÐ→ (p∗1 F1 ⊗ p∗1 DF1)⊗ p∗2F2

tp∗1ÐÐ→
≅

p∗1 (F1 ⊗DF1)⊗ p∗2F2
=ÐÐ→

(F1 ⊗DF1)⊠F2
evÐÐ→ KX1

⊠F2

(1.17)ÐÐ→ p!2F2 .

If f ∶ X → Y and F ,G ∈ Db
ctf (Y) there is a canonical morphism at the level of complexes

f ∗Hom⋅(F ,G ) → Hom⋅( f ∗F , f ∗G ) which can be derived to yield

f ∗ RHom(F ,G )ÐÐ→ RHom( f ∗F , f ∗G ). (1.19)

Also, if Fi ,Gi ∈ D
b
ctf (X), then the composition

F1 ⊗F2 ⊗RHom(F1 ,G1)⊗RHom(F2 ,G2)
≅ÐÐ→

F1 ⊗RHom(F1 ,G1)⊗F2 ⊗RHom(F2 ,G2)
ev⊗ evÐÐÐ→ G1⊗G2
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gives rise, by adjunction, to a morphism

RHom(F1 ,G1)⊗RHom(F2 ,G2)ÐÐ→ RHom(F1⊗F2 ,G1⊗G2). (1.20)

Now, let Fi ,Gi ∈D
b
ctf (Xi). Composing the two morphisms above yields

RHom(F1 ,G1)⊠RHom(F2 ,G2)
=ÐÐ→p∗1 RHom(F1 ,G1)⊗ p∗2 RHom(F2 ,G2)

(1.19)⊗ (1.19)ÐÐÐÐÐÐ→RHom(p∗1 F1 , p
∗
1 G1)⊗RHom(p

∗
2F2 , p

∗
2G2)

(1.20)ÐÐ→RHom(p∗1 F1 ⊗ p∗2F2 , p
∗
1 G1⊗ p∗2G2)

=ÐÐ→RHom(F1 ⊠F2 ,G1 ⊠G2). (1.21)

By [14, III, 2.3], this is an isomorphism.

§4 Nearby cycle functor

We will here recall the construction of the “nearby cycle functor” (cf. [8, XIII]).

(m) For some of the following statements see e. g. [4] and [17]. Let R be a discrete valuation ring

over k with residue �eld also k, and let Rh be the henselization of R. Rh is again a discrete valuation
ring, with residue �eld k. Denote by K the fraction �eld of Rh and let Ksep ⊃ K be a separable

algebraic closure of K. �en the integral closure Rh of Rh in Ksep is still a one-dimensional henselian
valuation ring, still has residue �eld k, and its fraction �eld is Ksep . We denote by the same symbols

R, Rh and Rh the corresponding schemes (they are not necessarily objects of Sch/k), by η (resp. ηh ,

ηh) the generic point of R (resp. Rh , Rh) and by s = k the closed point of all these rings.
If X is any scheme over k we denote its base change along πR by XR = X × R, and we abbreviate

(XR)η by Xη when there is no risk of confusion. Similar conventions hold in the case of Rh or Rh

instead of R, of morphisms and sheaves instead of schemes, and of s, ηh and ηh instead of η.

(n) Continuing the notation of (m), let X̃ be a scheme over R. �en the functor of nearby cycles,

ΨX̃ ∶D
b
ctf (X̃η)ÐÐ→Db

ctf (X̃s),

is explicitly given as follows. Let Fη ∈D
b
ctf (X̃η).

1. Suppose �rst that R is henselian. Let i ∶ X̃s ↪ X̃R and j ∶ X̃η ↪ X̃R be the canonical mor-
phisms. �en

ΨX̃(Fη) = i
∗ j∗Fη .

2. In the general case, we have
ΨX̃(Fη) = ΨX̃

Rh
(Fηh ),

the right hand side being de�ned as in 1.
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(o) Still continuing the above notation, suppose we are given a morphism f̃ ∶ X̃ → Ỹ of schemes
over R. �en the following diagram is commutative

X̃η

f̃η

X̃

f̃

X̃s

f̃ s

X̃
ηh

f̃
ηh

X̃
Rh

f̃
Rh

X̃s

f̃ s
Ỹη Ỹ Ỹs

Ỹ
ηh

a

j
Ỹ
Rh Ỹsi

and we may de�ne the following base change morphisms (the arrows on the back face are denoted
by the same symbols as on the front face):

f̃ ∗s ΨỸ = f̃ ∗s i
∗ j∗a

∗ ≅ÐÐ→ i∗ f̃ ∗
Rh
j∗a
∗ (1.12)ÐÐ→ i∗ j∗ f̃

∗
ηh
a∗

≅ÐÐ→ i∗ j∗a
∗ f̃ ∗η = ΨX̃ f̃

∗
η , (1.22)

f̃s!ΨX̃ = f̃s! i
∗ j∗a

∗ (1.13)ÐÐ→
≅

i∗ f̃
Rh !

j∗a
∗ (1.16)ÐÐ→ i∗ j∗ f̃ηh !

a∗
(1.13)ÐÐ→
≅

i∗ j∗a
∗ f̃η! = ΨỸ f̃η! , (1.23)

ΨỸ f̃η∗ = i
∗ j∗a

∗ f̃η∗
(1.12)ÐÐ→ i∗ j∗ f̃ηh∗

a∗
≅ÐÐ→ i∗ f̃

Rh∗
j∗a
∗ (1.12)ÐÐ→ f̃s∗ i

∗ j∗a
∗ = f̃s∗ΨX̃ , (1.24)

ΨX̃ f̃
!
η = i

∗ j∗a
∗ f̃ !η

(1.15)ÐÐ→ i∗ j∗ f̃
!

ηh
a∗

(1.14)ÐÐ→
≅

i∗ f̃ !
Rh
j∗a
∗ (1.15)ÐÐ→ f̃ !s i

∗ j∗a
∗ = f̃ !sΨỸ . (1.25)

�e latter two may also be described as follows:

ΨỸ f̃η∗
adjÐÐ→ f̃s∗ f̃

∗
s ΨỸ f̃η∗

(1.22)ÐÐ→ f̃s∗ΨX̃ f̃
∗
η f̃η∗

adjÐÐ→ f̃s∗ΨX̃ ,

ΨX̃ f̃
!
η

adjÐÐ→ f̃ !s f̃s!ΨX̃ f̃
!
η

(1.23)ÐÐ→ f̃ !sΨỸ f̃η! f̃
!
η

adjÐÐ→ f̃ !sΨỸ .

If f̃ is smooth then (1.22) is an isomorphism and if f̃ is étale then (1.25) is its inverse; if f̃ is proper
then (1.23) is an isomorphism and (1.24) is its inverse (cf. (k)).

It follows from the compatibilitywith respect to composition of schememorphisms of the various
base change morphisms appearing in the de�nition above (see (k)) that also (1.22) until (1.25) behave
well with respect to composition. More precisely, suppose we are given an additional morphism
g̃ ∶ Ỹ → Z̃ of schemes over R. �en the following diagram is commutative:

f̃ ∗s g̃
∗
s ΨZ̃

(1.22)

≅

f̃ ∗s ΨỸ g̃
∗
η

(1.22)
ΨX̃ f̃

∗
η g̃
∗
η

≅

(g̃ f̃ )∗s ΨZ̃ (1.22)
ΨX̃(g̃ f̃ )

∗
η

Similar diagrams commute in the other cases.

§5 Filtered derived categories

Our main reference for this paragraph is [15, Chapter V].
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(p) Fix an abelian category A. We denote by C(A) the category of complexes in A. A (�nite)
�ltration on an object L of C(A) is a decreasing sequence of objects in C(A),

⋯ ⊃ F iL ⊃ F i+1L ⊃ ⋯, i ∈ Z,

such that F iL = 0 for i ≫ 0 and F iL = L for i ≪ 0. A morphism f ∶ L → M in C(A) is said to
preserve the �ltrations (F iL), (F iM) on L and M, respectively, if f (F iL) ⊂ F iM for all i ∈ Z; in
this case we denote the induced morphism F iL → F iM by F i f . We de�ne Cf(A) to be the category
whose objects are objects L of C(A) equipped with a (�nite) �ltration (always denoted (F iL)), and
whose morphisms are morphisms in C(A) preserving the �ltrations. �is is an additive category.

Given −∞ ≤ a ≤ b ≤ ∞ there are full subcategories Cf[a ,b](A) of Cf(A) consisting of those
objects L such that F iL = L for i ≤ a and F iL = 0 for i > b (notice the asymmetry). �ere are
truncation functors τ[a ,b] ∶ Cf(A)→ Cf(A) which are de�ned on objects by τ[a ,b](L) = F aL/Fb+1L
with the induced �ltration F iτ[a ,b](L) = F iL/Fb+1L in the interval [a, b] (and in an obvious way on
morphisms). We abbreviate [−∞, b] (resp. [a,∞]) by ≤ b (resp. ≥ a).

We denote by ω the forgetful functor Cf(A) → C(A) and for each i ∈ Z by gri the composition
of functors ωτ[i ,i] ∶ Cf(A)→ C(A) which maps L to F iL/F i+1L.

(q) We say that a morphism f in Cf(A) is a quasi-isomorphism if F i f (or, equivalently (cf. [15,

V, 1.2]), gri f ) is a quasi-isomorphism in C(A) for all i ∈ Z. �ere is a way to de�ne a triangu-
lated homotopy category Kf(A) to which this notion of quasi-isomorphism extends (the details are
not important for our purposes; cf. [15, V, p. 271]). We denote by Df(A) the triangulated category
obtained by the usual localization process with respect to these quasi-isomorphisms. Similarly, by

starting from Cf[a ,b](A) one obtains categories Df[a ,b](A) and these are canonically full subcate-
gories ofDf(A) ([15, V, 1.2.7.1]).

By Dbf(A) we denote the full subcategory of Df(A) consisting of those objects L such that
Hn griL = 0 for all but �nitely many i and n. If we denote by Cbf(A) the full subcategory of Cf(A)
consisting of those objects L such that Ln = 0 for all but �nitely many n then, as usual, Dbf(A)
is naturally equivalent to the category arising from Cbf(A) by localizing with respect to the quasi-
isomorphisms. Similar de�nitions and remarks apply toD+f(A) andD−f(A).

�e functors from (p) induce additive functors τ[a ,b] , ω and gri between derived categories.
Moreover, for every i ∈ Z, there is a distinguished triangle of functors τ≥i → 1 → τ≤i−1 →+, i. e.
natural transformations of functors which, evaluated at any object of Df(A), yield a distinguished
triangle.

(r) Fix in addition two abelian categories B and C.

We say that a triangulated functor G̃ ∶ Df(A) → Df(B) (resp. G̃ ∶ Df(A)0 → Df(B)) is �ltered
if

G̃(Df[a ,b](A)) ⊂Df[a ,b](B) (resp. G̃(Df[a ,b](A)0) ⊂Df[−b ,−a](B))
for all a ≤ b. A �ltered li� of a triangulated functor G ∶ D(A) → D(B) (resp. G ∶ D(A)0 → D(B))
is a pair (G̃ , φG) where G̃ is a �ltered triangulated functor as above and φG is an isomorphism of
functors φG ∶ ωG̃ → Gω.

Similar de�nitions can be formulated for bifunctors: We say that a triangulated bifunctor G̃ ∶
Df(A) ×Df(B)→Df(C) (resp. G̃ ∶Df(A)0 ×Df(B)→Df(C)) is �ltered if

G̃ (Df[a ,b](A) ×Df[c ,d](B)) ⊂ Df[a+c ,b+d](C)
(resp. G̃ (Df[a ,b](A)0 ×Df[c ,d](B)) ⊂ Df[−b+c ,−a+d](C)).
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A �ltered li� of a triangulated bifunctor G ∶ D(A) ×D(B) → D(C) (resp. G ∶ D(A)0 ×D(B) →
D(C)) is a pair (G̃ , φG) where G̃ is a �ltered bifunctor as above and φG is an isomorphism of bi-
functors φG ∶ ωG̃ → G(ω × ω).

Finally, by a �ltered li� of a morphism H ∶ G1 → G2 between triangulated functors (resp. bifunc-
tors) we mean a morphism H̃ ∶ G̃1 → G̃2 between �ltered li�s of G1 and G2 such that the following
diagram commutes:

ωG̃1

φG1

ωH̃
ωG̃2

φG2

G1ω Hω
G2ω

respectively ωG̃1

φG1

ωH̃
ωG̃2

φG2

G1(ω × ω)
H(ω×ω)

G2(ω × ω)

(s) Assume that A has enough injectives. �en, by [15, V, 1.4.5] the bifunctor RHom ∶ D(A)0 ×
D+(A)→D(Ab) (whereAb denotes the category of abelian groups) possesses a �ltered li� R̃Hom ∶
Df(A)0 ×Df

+(A)→Df(Ab). Moreover, there is a natural isomorphism of bifunctors

Hom
≅ÐÐ→ H0 ωτ≥0R̃Hom,

where the le� hand side denotes the bifunctor of �ltered morphisms ([15, V, 1.4.6]).
Specializing to the case of interest, let f ∶ X → Y be a morphism of schemes and set A to be the

category of sheaves of Λ-modules for the étale topology on X. According to [15, V, 2], the (bi)functors
f∗, f

∗, RHom and ⊗ onD?(X , Λ) etc. possess natural �ltered li�s toD?f(X) ∶=D?f(A) etc.:
f̃∗ ∶D

+f(X)→D+f(Y),
f̃ ∗ ∶D−f(Y)→D−f(X),

R̃Hom ∶Df(X)0 ×D+f(X)→Df(X),
⊗̃ ∶D−f(X) ×Df(X)→Df(X).

Moreover, they enjoy the same adjointness relations as the original functors.
�e global sections functor Γ(X ,−) ∶D+(X)→D+(Ab) possesses a �ltered li�

Γ̃(X ,−) ∶D+f(X)ÐÐ→D+f(Ab)
according to [15, V, 2.2.7]. �ere is a canonical isomorphism

Γ̃(X , R̃Hom) ≅ÐÐ→ R̃Hom

of �ltered bifunctorsD−(X)0×D+(X)→D+(Ab) ([15, V, 2.2.10]). In particular, there is a canonical
isomorphism of bifunctors

H0(X , ωτ≥0R̃Hom) ≅ Hom .
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2 Cohomological correspondences and operations on them

§1 Correspondences

To de�ne our main object of study, cohomological correspondences, we �rst need the notion of a
correspondence.

De�nition 2.1 1. Let X1, X2 be two schemes. A correspondence (from X1 to X2) is a morphism
c ∶ C → X1 × X2.

1 It is called a self-correspondence if X1 = X2.

2. Given two correspondences c = (c1 , c2) ∶ C → X1 × X2, b = (b1 , b2) ∶ B → Y1 ×Y2, amorphism
from c to b is a triple [ f ] = ( f1 , f ♮ , f2) of morphisms of schemesmaking the following diagram
commutative:

X1

f1

C
c1

f ♮

c2
X2

f2

Y1 B
b1 b2

Y2

(2.1)

Amorphism of self-correspondences in addition satis�es f1 = f2.
�is de�nes a category in an obvious way, the category Cor(k) of correspondences over k. It has

a terminal object, namely the trivial correspondence k → k× k, denoted ck . Given a correspondence
c ∶ C → X1 × X2, the structure morphism c → ck is denoted [π]c . Similarly one de�nes the category
Cor(R) of correspondences over a discrete valuation ring R.

�e subcategories of self-correspondences are denoted sCor(k), sCor(R), respectively.
Notation 2.2 Whenever we mention a correspondence c ∶ C → X1 × X2 in the sequel and if not
explicitly stated otherwise, we will tacitly assume the following notational convention: pi ∶ X1 ×

X2 → Xi denotes the projection onto the ith factor, c i = pi ○ c. Similarly, if [ f ] is a morphism of
correspondences we will assume [ f ] = ( f1 , f ♮ , f2) except if mentioned otherwise.

Since correspondences are built out of schemes and morphisms of schemes we may transfer sev-
eral notions from scheme theory to the theory of correspondences as follows.

De�nition 2.3 Let P be a property of morphisms of schemes.

1. A morphism ( f1 , f ♮ , f2) between correspondences is said to possess the property P if each
component f1 , f ♮ , f2 does.

2. A correspondence c is said to possess the property P if the structure morphism [π]c does.
Example 2.4 1. Let c ∶ C → X1 × X2 be a correspondence and j ∶ W ↪ C an open (resp. closed)

subscheme. We may restrict c to W , denoted c∣W , and thus obtain an open (resp. closed)
immersion [ jW ] = ( j, 1X1

, 1X2
) ∶ c∣W ↪ c.

2. Similarly, let c ∶ C → X1 ×X2 be a correspondence and j i ∶ U i ↪ Xi open subschemes, i = 1, 2.
�en we may restrict c to

c∣U1 ,U2 ∶ c−11 (U1) ∩ c−12 (U2)ÐÐ→ U1 ×U2 .

1Recall (1.(a)) that this means that C, X1 , X2 are separated schemes of �nite type over k, X1 × X2 is actually X1 ×k X2 and
c is a morphism over k.

14



Again, there is an open immersion [ jU1 ,U2 ] = (i , j1 , j2) ∶ c∣U1 ,U2 ↪ c, where i ∶ c−11 (U1) ∩
c−12 (U2)↪ C.

If X1 = X2 = X andU1 = U2 = U we will simply write c∣U and [ jU ] instead of c∣U ,U and [ jU ,U ],
respectively.

3. Finally, let c ∶ C → X1×X2 be a correspondence, let Z i ⊂ Xi be closed subschemes, and assume
that c restricts to a correspondence

c∣Z1 ,Z2 ∶ c−12 (Z2)red ÐÐ→ Z1 × Z2 .

�ere is an obvious closed immersion c∣Z1 ,Z2 ↪ c, denoted [iZ1 ,Z2 ]. Again, if X1 = X2 and
Z1 = Z2 = Z we will simply write c∣Z and [iZ].
Note the ambiguity if Z i = U i ⊂ Xi are open as well as closed subschemes. �en, in general,
c∣Z1 ,Z2 as de�ned now is not equal to c∣U1 ,U2 as de�ned in 2. Context will always make clear
which one is meant.

Note also that the condition for c restricting to c∣Z is equivalent to c1(c−12 (Z)) ⊂ Z (set-
theoretically). In a later section we will say that Z is “c-invariant” if this condition is satis�ed
and it will play an important role in the course of the argument (cf. 4.§1).

We will be interested in the second part of the above de�nition only when P is the property of
being proper. In fact, this case will be quite important in the sequel so we end this paragraph with
a simple but useful observation regarding it. Notice that De�nition 2.3 tells us in particular what a
compacti�cation of a correspondence is and what it means for a morphism of correspondences to
extend another one.

Lemma 2.5 1. Every correspondence admits a compacti�cation. In fact, more is true: Let c =(c1 , c2) ∶ C → X1 × X2 be a correspondence and j1 ∶ X1 ↪ X1 and j2 ∶ X2 ↪ X2 any two
given compacti�cations. �en there exists a compacti�cation j♮ ∶ C ↪ C and a correspondence
c ∶ C → X1 × X2 such that the pair (c, ( j1 , j♮ , j2)) is a compacti�cation of c.

2. Given a morphism of correspondences [ f ] ∶ c → b there exist compacti�cations c of c and b of b
and a morphism of correspondences [ f ] ∶ c → b extending [ f ].

Proof 1. Choose any compacti�cation j′ ∶ C ↪ C′ and let C be the closure of the image of the
embedding

j♮ = ( j′ , j1 ○ c1 , j2 ○ c2) ∶ C Ð֒→ C′ × X1 × X2 .

�e composition C → C′×X1×X2 → X1×X2 with the projection de�nes c and [ j] = ( j1 , j♮ , j2)
is a morphism since the following diagram clearly commutes for i = 1, 2:

C
c i

j♮

( j′ ,c1 ,c2)

Xi

j iC′ × X1 × X2

1C′× j 1× j2

C C′ × X1 × X2 Xi

Finally, j♮ and hence [ j] are compacti�cations.
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2. Assume that c ∶ C → X1 × X2 and b ∶ D → Y1 ×Y2 are the two correspondences. First choose a
compacti�cation [ j] ∶ b ↪ b as in part 1, where b ∶ D → Y 1 × Y 2 is a proper correspondence.
Next, for i = 1, 2, let k i ∶ Xi ↪ X i be a compacti�cation such that fi extends to a morphism

f i ∶ X i → Y i . Finally, choose a compacti�cation k♮ ∶ C ↪ C such that the morphism ( f ♮ , c) ∶
C → D ×Y1×Y2

(X1 × X2) extends to a morphism ( f ♮ , c) ∶ C → D ×Y 1×Y 2
(X1 × X2). With

similar diagrams as in part 1, one checks easily that (k1 , k♮, k2) ∶ c → c is a morphism of

correspondences (hence clearly a compacti�cation), that [ f ] = ( f 1 , f ♮ , f 2) is a morphism of
correspondences, and that it extends f . ◻

§2 Cohomological correspondences

Now, we may introduce our main object of study.

De�nition 2.6 Let c = (c1 , c2) ∶ C → X1 × X2 be a correspondence and let Fi ∈ D
b
ctf (Xi), i = 1, 2

(see 1.(d)). A cohomological correspondence (from F1 to F2 li�ing c) is a morphism

u ∶ c2!c
∗
1 F1 →F2 .

2

�e set of cohomological correspondences from F1 to F2 li�ing c will be denoted Homc(F1 ,F2).
§3 Pushforward

In the notation of 2.1, assume one of the following conditions is satis�ed:

(F1) �e le� square of (2.1) is cartesian.

(F2) �e morphisms f1 and f ♮ are both proper.

(F3) �e morphisms c1 and b1 are both proper.

In each of these cases we will de�ne a base change morphism of functors

b∗1 f1! ÐÐ→ f ♮! c
∗
1 . (2.2)

In the cases (F1) and (F2) this is simply (1.13) and (1.12), respectively. In the case (F3) it is de�ned as
the composition

b∗1 f1!
adjÐÐ→ b∗1 f1!c1∗c

∗
1 = b

∗
1 f1!c1!c

∗
1
≅ÐÐ→ b∗1 b1! f

♮
! c
∗
1 = b

∗
1 b1∗ f

♮
! c
∗
1

adjÐÐ→ f ♮! c
∗
1 . (2.3)

Or, alternatively, it arises by adjointness from the base change morphism

c1! f
♮! bc (1.11)ÐÐÐÐ→ f !1 b1!

via the identi�cations c1∗ = c1! and b1∗ = b1! .

De�nition 2.7 In the notation of 2.1, suppose (F1) (resp. (F2), (F3)) is satis�ed. We de�ne the proper
pushforward map (of type (F1) (resp. (F2), (F3))) associated to [ f ],

[ f ]! ∶ Homc(F1 ,F2)ÐÐ→ Homb( f1!F1 , f2!F2),
2�is de�nition is slightly di�erent from the one in [14, III, 3.2]; they coincide if c is proper.
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as follows. Given u ∈ Homc(F1 ,F2), let [ f ]!(u) be the composition

[ f ]!(u) ∶ b2!b∗1 ( f1!F1) (2.2)ÐÐ→ b2! f
♮
! c
∗
1 F1

≅ÐÐ→ f2!c2!c
∗
1 F1

f2!uÐÐ→ f2!F2 .

[ f ]!(u) is called the proper pushforward of u along [ f ] (of type . . . ).
Lemma 2.8 Proper pushforwards are compatible with composition in the following sense. Let [ f ] ∶
a → b and [g] ∶ b → c be two morphisms of correspondences such that in both cases (F j) is satis�ed.
�en (Fj) is satis�ed in the case [g][ f ] ∶ a → c also and the following diagram commutes for any Fi :

Homa(F1 ,F2) ([g][ f ])!

[ f ]!

Homc((g1 f1)!F1 , (g2 f2)!F2)
≅

Homb( f1!F1 , f2!F2)
[g]!

Homc(g1! f1!F1 , g2! f2!F2)
Proof It is clear that (F j) is satis�ed in the case [g][ f ]. Now, �x u ∈ Homa(F1 ,F2) and consider
the following diagram (where all unlabeled isomorphisms are the obvious ones):

c2!c
∗
1 (g1 f1)!F1

(2.2)

≅

c2!(g♮ f ♮)!a∗1 F1

≅

≅ (g2 f2)!a2!a∗1 F1

≅

(g2 f2)!u (g2 f2)!F2

≅

c2!c
∗
1 g1! f1!F1

(2.2)

1© c2!g
♮
! f
♮
! a
∗
1 F1

≅ g2! f2!a2!a
∗
1 F1

g2! f2!u
g2! f2!F2

c2!g
♮
! b
∗
1 f1!F1

≅

(2.2)
c2!g

♮
! f
♮
! a
∗
1 F1

≅

g2!b2!b
∗
1 f1!F1

(2.2)
g2!b2! f

♮
! a
∗
1 F1

≅
g2! f2!a2!a

∗
1 F1

g2! f2!u
g2! f2!F2

�e top row is ([g][ f ])!u, the bottom row g2!([ f ]!u), hence commutativity of the outer rectangle
would imply the lemma.

All inner squares except 1© are obviously commutative. To prove the lemma, we thus have to
show the commutativity of 1©, i. e. of the following diagram:

c∗1 (g1 f1)! (2.2)

≅

(g♮ f ♮)!a∗1
≅

c∗1 g1! f1!
(2.2)

g♮! b
∗
1 f1!

(2.2)
g♮! f
♮
! a
∗
1

(2.4)

But this follows from the fact that the base change morphism (2.2) is compatible with composition
(1.(k)). ◻

We will now apply the pushforward construction in the case of the structure morphism. Recall
that RΓc(X ,−) denotes the functor πX! for any scheme X (see 1.(e)).
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De�nition 2.9 Let c ∶ C → X1 × X2 be a correspondence and assume that c1 is proper. �en (F3) is
satis�ed for the structure morphism [π]c and we may de�ne, for any u ∈ Homc(F1 ,F2), the proper
pushforward of u along [π]c :

RΓc(u) ∶= [π]c!(u) ∶ RΓc(X1 ,F1) ÐÐ→ RΓc(X2 ,F2).

Remark 2.10 In the notation of 2.9, let (c ∶ C → X1×X2 , [ j]) be a compacti�cation of c. �en πX 1
c1 =

πC is proper hence so is c1. �is implies that [ j] satis�es (F3) and u ∶= [ j]!(u) ∈ Homc( j1!F1 , j2!F2)
is de�ned. We may then ask what the relationship is between RΓc(u) and RΓc(u). Of course, it is
the nicest possible, namely the following diagram commutes:

RΓc(X1 ,F1) RΓc(u)

≅

RΓc(X2 ,F2)
≅

RΓc(X1 , j1!F1) RΓc(u)
RΓc(X2 , j2!F2)

(Here the vertical arrows are induced by the isomorphisms (πX i
j i)! ≅Ð→ πX i !

j i ! .) Indeed, this is a
special case of 2.8.

Notice also that for the commutativity of the diagram above we did not use the fact that [ j] is a
compacti�cation. It would have su�ced to assume that [ j] is an open immersion into a correspon-
dence c with c1 proper.

§4 Pullback

In the notation of 2.1 assume one of the following conditions is satis�ed:

(B1) �e canonical map C → B ×Y2
X2 induces an isomorphism on the reduced subschemes.

(B2) f ♮ and f2 are both étale.

In both cases there is a base change morphism

c2! f
♮∗ ÐÐ→ f ∗2 b2! . (2.5)

Namely, in the case (B2) this is simply (1.11), while in the case (B1) it is de�ned as follows. In the
commutative diagram

C
c2

i

f ♮
B ×Y2

X2
p2

p1

X2

f2

B
b2

Y2

i is a closed immersion onto by assumption. �is implies that the adjunction map adj ∶ 1 → i∗i
∗ is

an isomorphism hence we may de�ne (2.5) by

c2! f
♮ ∗ ≅ÐÐ→ p2! i∗ i

∗p∗1
adj−1ÐÐ→
≅

p2!p
∗
1

(1.13)ÐÐ→
≅

f ∗2 b2! .

18



De�nition 2.11 In the notation of 2.1 assume (B1) (resp. (B2)) is satis�ed. We de�ne the pullback
map associated to [ f ] (of type (B1), (B2) resp.),

[ f ]∗ ∶ Homb(F1 ,F2)ÐÐ→ Homc( f ∗1 F1 , f
∗
2 F2),

as follows. Given u ∈ Homb(F1 ,F2), let [ f ]∗(u) be the composition

[ f ]∗(u) ∶ c2!c∗1 ( f ∗1 F1) ≅ÐÐ→ c2! f
♮∗b∗1 F1

(2.5)ÐÐ→ f ∗2 b2!b
∗
1 F1

f ∗2 uÐÐ→ f ∗2 F2 .

[ f ]∗(u) is called the pullback of u along [ f ] (of type . . . ).
Remark 2.12 As in the case of the pushforward construction, the pullback of cohomological corre-
spondences is compatible with composition in the following sense. Let [ f ] ∶ a → b and [g] ∶ b → c
be two morphisms of correspondences such that in both cases (B j) is satis�ed. �en (B j) is satis�ed
in the case [g][ f ] ∶ a → c also and the following diagram commutes for any Fi :

Homc(F1 ,F2) ([g][ f ])∗

[g]∗

Homa((g1 f1)∗F1 , (g2 f2)∗F2)
≅

Homb(g∗1 F1 , g
∗
2 F2)

[ f ]∗
Homa( f ∗1 g∗1 F1 , f

∗
2 g
∗
2 F2)

�e proof of this statement is similar to the one of 2.8.

We will now apply this construction to some particular situations described in 2.4.

Example 2.13 1. As in 2.4, let c ∶ C → X1 × X2 be a correspondence and W ⊂ C an open subset.
�en the pullback map (of type (B2))

[ jW ]∗ ∶ Homc(F1 ,F2)ÐÐ→ Homc∣W (F1 ,F2)
de�nes, for any u ∈ Homc(F1 ,F2), [ jW ]∗(u), the restriction of u to W . We also denote it by
u∣W .

2. Similarly, if c ∶ C → X1 × X2 is a correspondence and j i ∶ U i ⊂ Xi are open subschemes, then
the pullback map (of type (B2))

[ jU1 ,U2 ]∗ ∶ Homc(F1 ,F2)ÐÐ→ Homc∣U1 ,U2 (F1 ∣U1
,F2∣U2

)
de�nes, for any u ∈ Homc(F1 ,F2), [ jU1 ,U2 ]∗(u), the restriction of u to U1, U2. We also denote
it by u∣U1 ,U2 . If X1 = X2 = X and U1 = U2 = U we will simply write u∣U .

3. Finally, let c ∶ C → X1×X2 be a correspondence, let Z i ⊂ Xi be closed subschemes and assume
that c∣Z1 ,Z2 exists. �en the closed immersion [iZ1 ,Z2 ] clearly satis�es condition (B1) and we
may de�ne the pullback map

[iZ1 ,Z2 ]∗ ∶ Homc(F1 ,F2) ÐÐ→ Homc∣Z1 ,Z2 (F1 ∣Z1
,F2∣Z2

).
If u ∈ Homc(F1 ,F2), [iZ1 ,Z2]∗(u) is called the restriction of u to Z1, Z2 and it is also denoted
u∣Z1 ,Z2 . If X1 = X2 and Z1 = Z2 = Z we will simply write u∣Z .
Again, there is an ambiguity if U i = Z i ⊂ Xi are open as well closed subschemes but we will
always make clear which one is meant.
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We end this paragraph with a few simple results on composing di�erent types of restriction and
pushforward maps.

Lemma 2.14 Let c ∶ C → X × X be a correspondence, let F ∈ Db
ctf (X), and let V ⊂ W ⊂ C be open

subsets. Also, let Z ⊂ X be a closed subscheme and assume that c∣W ∣Z exists. �en c∣V ∣Z also exists and
for every u ∈ Homc(F ,F), the following equality holds:

u∣V ∣Z = u∣W ∣Z ∣V∩c−12 (Z)red . (2.6)

Notice that the statement is meaningful because the le� hand side of (2.6) is a cohomological cor-
respondence from F ∣Z to itself li�ing c∣V ∣Z while the right hand side is one from F ∣Z to itself
li�ing c∣W ∣Z ∣V∩c−12 (Z)red , and these two correspondences are the same (both are c restricted to V ∩
c−12 (Z)red → Z × Z).

Proof We have to prove that the following rectangle commutes:

Homc(F ,F) [ jV ]
∗

[ jW]
∗

Homc∣V (F ,F) [iZ ]∗

Homc∣V ∣Z (F ∣Z ,F ∣Z)

Homc∣W (F ,F)
[iZ ]∗

Homc∣W ∣Z (F ∣Z ,F ∣Z) [ jV∩c−12 (Z)red
]∗

Homc∣W ∣Z ∣V∩c−12 (Z)red
(F ∣Z ,F ∣Z)

By 2.12, [ jV ]∗ factors through [ jW ]∗ as indicated by the dotted arrow. Hence we may assumeW = C
and that c∣Z exists. For notational convenience only we will also assume that c−12 (Z) ⊂ C is already
reduced. We �x our notation as in the following “cartesian square of correspondences”:

C
c

X × X

V

j♮

d
X × X c−12 (Z) e

i♮

Z × Z

i×i

V ∩ c−12 (Z)
i
♮

f

j
♮

Z × Z

We deduce the following diagram:

f2! f
∗
1 i
∗ ≅

≅

e2! j
♮
! j
♮∗
e∗1 i
∗

adj

≅

e2!e
∗
1 i
∗

≅e2! j
♮
! j
♮ ∗
i♮∗c∗1

adj

f2! i
♮∗
d∗1

≅

(1.13) ≅

e2! j
♮
! i
♮ ∗

j♮∗c∗1

≅

(1.13)

e2! i
♮∗c∗1

(1.13)e2! i
♮∗ j♮! j

♮ ∗c∗1

adj

(1.13)

i∗d2!d
∗
1 ≅

i∗c2! j
♮
! j
♮ ∗c∗1

adj
i∗c2!c

∗
1
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�e parallelogram in the middle commutes by the de�nition of (1.13), the lower pentagon on the
le� commutes by the compatibility of (1.13) with respect to composition, the commutativity of the
upper pentagon on the le� follows immediately from the “cocycle condition” (1.(d)), while the two
trapezoids on the right clearly commute. Hence the whole diagram is commutative. But applying
this diagram to F and following the two outer paths followed by i∗u yields exactly the le� (resp.
right) hand side of (2.6). ◻

Lemma 2.15 Let c ∶ C → X1 × X2 be a correspondence, let Fi ∈ D
b
ctf (Xi), and let Z i ⊂ Xi be closed

subschemes contained in open subsets U i ⊂ Xi . Assume that c∣Z1 ,Z2 exists. �en c∣U1 ,U2 ∣Z1 ,Z2 exists as
well and for every u ∈ Homc(F1 ,F2), the following equality holds:

u∣Z1 ,Z2 ∣c−11 (U1)∩c−12 (Z2)red = u∣U1 ,U2 ∣Z1 ,Z2 , (2.7)

both sides considered as elements of Homc∣Z1 ,Z2 ∣c−11 (U1)∩c
−1
2 (Z2)red

(F1 ∣Z1
,F2∣Z2

).
Proof c∣Z1 ,Z2 exists i� c1(c−12 (Z2)) is set-theoretically contained in Z1 while c∣U1 ,U2 ∣Z1 ,Z2 exists i�
c1(c−12 (Z2) ∩ c−11 (U1)) is set-theoretically contained in Z1. Hence the �rst claim is clear.

Essentially the same proof as in the previous lemma shows that the le� hand side of (2.7) is equal
to u∣c−11 (U1)∣Z1 ,Z2 , while the right hand side is equal to u∣c−11 (U1)∣U1 ,U2 ∣Z1 ,Z2 by 2.12. Setting u′ = u∣c−11 (U1)

we thus have to prove
u′∣Z1 ,Z2 = u′∣U1 ,U2 ∣Z1 ,Z2 . (2.8)

Set C′ = c−11 (U1), c′ = c∣C′ , d = c′∣U1 ,U2 , e = d∣Z1 ,Z2 and assume for notational convenience again that
c′−12 (Z2) is reduced. Finally, denote the canonical inclusions by [ j] ∶ d ↪ c′, [i] ∶ e ↪ d. �en the
claim is equivalent to the commutativity of the following diagram (where we abstain from writing
F1):

e2!e
∗
1 i
∗
1 j
∗
1

≅

≅

e2! i♮
∗d∗1 j

∗
1

≅

bc (2.5)
i∗2 d2!d

∗
1 j
∗
1

≅

e2! i♮
∗ j♮ ∗c′∗1

bc (2.5)

≅

i∗2 d2! j
∗c′∗1

bc (2.5)
i∗2 j
∗
2 c
′
2!c
′∗
1

≅

e2!e
∗
1 ( j1 i1)∗ ≅

e2!( j♮ i♮)∗c′∗1 bc (2.5)
( j2 i2)∗c′2!c′∗1

Indeed, the dotted path followed by i∗2 j
∗
2u
′ is equal to the right hand side of (2.8) while the bottom

row followed by ( j2 i2)∗u′ is equal to the le� hand side. Now, the le� square of the diagram is com-
mutative by the “cocycle condition”, the upper right square is commutative by the naturality of (2.5),
and the lower right square commutes because all base change morphisms involved are instances of
(1.13) (see 1.(k)). ◻

Lemma 2.16 Let [ j] ∶ c → c be an open immersion and assume that c1 and c1 are both proper, and j♮

dominant. �en [ j]∗[ j]! is the identity map.
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Proof Consider the following diagram:

c2!c
∗
1 j
∗
1 j1!

≅

c2!c
∗
1

adj=1

adj=1

adj=1c2! j♮
∗c∗1 j1!

bc (1.11)

adj
c2! j♮

∗c∗1 j1!c1!c
∗
1

bc (1.11)

≅
c2! j♮

∗c∗1 c1! j
♮
! c
∗
1

adj

bc (1.11)

c2! j♮
∗ j♮! c

∗
1

bc (1.11)

j∗2 c2!c
∗
1 j1! adj

j∗2 c2!c
∗
1 j1!c1!c

∗
1 ≅

j∗2 c2!c
∗
1 c1! j

♮
! c
∗
1 adj

j∗2 c2! j
♮
! c
∗
1 ≅

j∗2 j2!c2!c
∗
1

Applying the whole diagram to F1 and following the dotted path by j∗2 j2!u yields [ j]∗[ j]!u (any
u ∈ Homc(F1 ,F2)). Hence it su�ces to prove the commutativity of the diagram.

�e three squares in the lower half commute by the naturality of (1.11), and the commutativity of
the trapezoid on the right is easily deduced from the de�nition of (1.11). For the upper trapezoid we
use the description of the transitivity isomorphism j1!c1! ≅ c1! j

♮
! given in [2, XVII, 5.1.5]. Since our

hypotheses imply that the square j1c1 = c1 j♮ is cartesian, it reduces to the dotted path in the following
diagram:

c∗1
adj

j♮ ∗ j♮! c
∗
1 j♮ ∗c∗1 c1∗ j

♮
! c
∗
1

adj

c∗1

1

adj

adj
c∗1 c1∗c

∗
1

adj

adj

adj

c∗1 c1∗ j♮
∗ j♮! c

∗
1

adj

adj

c∗1 j
∗
1 c1∗ j

♮
! c
∗
1

adj

≅

bc (1.12)

≅

c∗1 j
∗
1 j1!

adj

≅

c∗1 j
∗
1 j1!c1∗c

∗
1

adj

≅

c∗1 j
∗
1 j1!c1∗ j♮

∗ j♮! c
∗
1

≅

c∗1 j
∗
1 j1! j

∗
1 c1∗ j

♮
! c
∗
1

bc (1.12)

≅

≅

j♮ ∗c∗1 j1! adj
j♮ ∗c∗1 j1!c1∗c

∗
1 adj

j♮ ∗c∗1 j1!c1∗ j♮
∗ j♮! c

∗
1 j♮ ∗c∗1 j1! j

∗
1 c1∗ j

♮
! c
∗
1bc (1.12)

≅

adj

�is diagram clearly decomposes the upper trapezoid in the previous diagram, and its commutativity
follows from the naturality of the morphisms involved. ◻

§5 Specialization

Let R be a discrete valuation ring as in 1.(m). Recall that we constructed in 1.(n), for each scheme X̃
over R, the nearby cycle functor ΨX̃ ∶D

b
ctf (X̃η) ÐÐ→Db

ctf (X̃s). We will use this functor to construct
another functor called “specialization functor”, similar to the one introduced in [20]. We continue
the notation of 1.§4.

De�nition 2.17 1. Let X be a schemeover k. A pair (X̃ , φX) is a li� of X if X̃ is an object of Sch/R
and φ = φX ∶ X̃ → XR is a morphism in Sch/R inducing an isomorphism φη ∶ X̃η → Xη . We

will sometimes say that X̃ li�s X and let φX remain implicit.

2. Let f ∶ X → Y be a morphism of schemes over k. A triple ( f̃ , X̃ , Ỹ) is a li� of f if X̃ is a li�
of X, Ỹ is a li� of Y and f̃ ∶ X̃ → Ỹ is a morphism in Sch/R such that φY f̃ = fRφX , i. e. the
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following diagram commutes:

XR

fR

X̃
φX

f̃

YR Ỹ
φY

(2.9)

We will also simply say that f̃ ∶ X̃ → Ỹ li�s f .

3. Given a li� (X̃ , φ) of X, we de�ne the specialization functor (with respect to X, X̃ and φ),

spX , X̃ ,φ ∶D
b
ctf (X)ÐÐ→Db

ctf (X̃s),
by spX , X̃ ,φ(F) = ΨX̃(φ∗ηFη). We will usually write spX̃ instead of spX , X̃ ,φ .

Example 2.18 Let X be a scheme over k. �en clearly (XR , 1XR
) is a li� of X in the above sense. We

call it the trivial li� of X. Notice that if f ∶ X → Y is a morphism of schemes then there is a unique
li� of f to the trivial li�s XR and YR , namely fR ∶ XR → YR . fR is also called the trivial li�.

Suppose we are given a li� f̃ ∶ X̃ → Ỹ of a morphism f ∶ X → Y of schemes over k. From the
commutativity of (2.9) we deduce the commutativity of

X

f

Xη
kX

fη

X̃η

(φX)η

f̃η

Y Yη
kY

Ỹη
(φY )η

and we may thus de�ne several base change morphisms (setting cX = (φX)η ○ kX and cY = (φY)η ○
kY ):

bc∗ ∶ f̃ ∗s spỸ = f̃ ∗s ΨỸ c
∗
Y

(1.22)ÐÐ→ ΨX̃ f̃
∗
η c
∗
Y
≅ÐÐ→ ΨX̃ c

∗
X f
∗ = spX̃ f

∗ ,

bc! ∶ f̃s!spX̃ = f̃s!ΨX̃c
∗
X

(1.23)ÐÐ→ ΨỸ f̃η!c
∗
X

(1.13)ÐÐ→
≅

ΨỸ c
∗
Y f! = spỸ f! ,

bc∗ ∶ spỸ f∗ = ΨỸ c
∗
Y f∗

(1.12)ÐÐ→ ΨỸ f̃η∗c
∗
X

(1.24)ÐÐ→ f̃s∗ΨX̃ c
∗
X = f̃s∗spX̃ ,

bc! ∶ spX̃ f
! = ΨX̃ c

∗
X f

! (1.15)ÐÐ→ ΨX̃ f̃
!
ηc
∗
Y

(1.25)ÐÐ→ f̃ !sΨỸ c
∗
Y = f̃ !s spỸ ,

and, as in 1.(o), the latter two can also be described as follows:

bc∗ ∶ spỸ f∗
adjÐÐ→ f̃s∗ f̃

∗
s spỸ f∗

bc∗ÐÐ→ f̃s∗spX̃ f
∗ f∗

adjÐÐ→ f̃s∗spX̃ ,

bc! ∶ spX̃ f
! adjÐÐ→ f̃ !s f̃s!spX̃ f

! bc!ÐÐ→ f̃ !s spỸ f! f
! adjÐÐ→ f̃ !s spỸ .

Remark 2.19 1. It follows from what was said in 1.(o) that if f̃ is smooth then bc∗ is an isomor-
phism and if f̃ is étale then bc ! is its inverse. Similarly, if f̃ is proper then bc∗ is an isomorphism
and bc! is its inverse.
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2. It also follows from 1.(o) that the base change morphisms just de�ned are compatible with
composition in the following sense. Suppose we are given an additional li� g̃ ∶ Ỹ → Z̃ of a
morphism g ∶ Y → Z of schemes over k. �en the following diagram commutes:

f̃ ∗s g̃
∗
s spZ̃

bc∗

≅

f ∗s spỸ g
∗ bc∗

spX̃ f
∗g∗

≅

(g̃ f̃ )∗s spZ̃ bc∗
spX̃(g f )∗

Similar diagrams commute in the case of the other base change morphisms.

3. �ere is also a noteworthy compatibility between the di�erent base change morphisms intro-
duced above. Suppose we are given a commutative diagram

Y
g

Z

X

f

g′
W

f ′

and li�s Ỹ
g̃

Z̃

X̃

f̃

g̃′
W̃

f̃ ′

and assume that both g̃ and g̃′ are proper.�en the following diagram commutes:

f̃ ′∗s spZ̃ g!
bc∗

spW̃ f ′∗g!

≅ (1.12)

f̃ ′∗s g̃s!spỸ

bc! ≅

(1.12) ≅

spW̃ g′! f
∗

g̃′s! f̃
∗
s spỸ bc∗

g̃′s!spX̃ f
∗

bc!≅

Indeed, by 1, this is equivalent to the commutativity of

f̃ ′∗s spZ̃ g∗
bc∗

≅bc∗

spW̃ f ′∗g∗

≅ (1.12)

f̃ ′∗s g̃s∗spỸ

(1.12) ≅

spW̃ g′∗ f
∗

bc∗≅

g̃′s∗ f̃
∗
s spỸ bc∗

g̃′s∗spX̃ f
∗

and using the alternative description of bc∗ this becomes a diagram with only one type of base
change morphism, namely bc∗. It is then a straightforward exercise in decomposing diagrams
to reduce the commutativity of it to the commutativity of pentagons as in 2.

A similar diagram commutes if f̃ and f̃ ′ are étale, with bc! and bc∗ replacing bc∗ and bc!,
respectively.
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Now, we can use these constructions to de�ne the specialization of a cohomological correspon-
dence. Notice �rst that if X1, X2 are schemes over k and if we are given li�s (X̃i , φ i), i = 1, 2, then
there is a canonical li� X̃1 ×R X̃2 of X1 × X2. �is follows from the commutativity of the diagram

X̃1η ×η X̃2η
≅

can

φ1η×ηφ2η

(X̃1 ×R X̃2)η
(φ1×Rφ2)η

X1η ×η X2η
≅

can
(X1R ×R X2R)η

and the fact that the le� vertical arrow is an isomorphism by assumption.
Suppose we are given a correspondence c ∶ C → X1 × X2 over k and li�s (C̃ , φC), (X̃i , φ i) of C,

Xi , respectively. We can now say what it means to li� c to a correspondence c̃ ∶ C̃ → X̃1 ×R X̃2 over
R. By de�nition (considering c simply as a morphism in Sch/k), the diagram

CR
cR (X1 × X2)R ≅

X1R ×R X2R

C̃

φC

c̃
X̃1 ×R X̃2

φ1×Rφ2

should be commutative. But this is equivalent to (φC , φ1, φ2) being a morphism of correspondences
over R.�us we could have de�ned a li� of a correspondence c over k to be a correspondence c̃ over
R together with a morphism of correspondences c̃ → cR over R which is an isomorphism over the
generic �ber.

De�nition 2.20 Let c ∶ C → X1×X2 be a correspondence over k, c̃ ∶ C̃ → X̃1×R X̃2 a correspondence
li�ing c. For any Fi ∈ D

b
ctf (Xi), we de�ne the specialization map

spc̃ ∶ Homc(F1 ,F2) ÐÐ→ Homc̃s(spX̃1
F1 , spX̃2

F2)
as follows. Denote, as usual, by c̃s the �ber of c̃ over s. Given u ∈ Homc(F1 ,F2) let spc̃(u) be the
composition

c̃s2! c̃
∗
s1spX̃1

F1
bc∗ÐÐ→ c̃s2!spC̃ c

∗
1 F1

bc!ÐÐ→ spX̃2
c2!c

∗
1 F1

sp X̃2
uÐÐÐ→ spX̃2

F2 .

spc̃(u) is called the specialization of u (with respect to c̃).

Specialization thus provides a means to connect a correspondence c to the correspondence c̃s
via the specialization map on cohomological correspondences li�ing c. It is therefore quite natural
to view a li� c̃ as a morphism from c to c̃s . Under this view, the trivial li� cR clearly corresponds
to the identity morphism. What one gets is then the structure of a digraph, i. e. a category without
composition. We denote the digraph one gets in this way starting from self-correspondences alone
by SCor. We will take up this view in the next section.

Lemma 2.21 Let X be a scheme over k, and let X̃ = XR be the trivial li�. Denote, as in 1.(o), by
j ∶ X

ηh → X
Rh and i ∶ X = Xs → X

Rh the canonical morphisms. �en, for every F ∈ Db
ctf (X), the

map

F
≅ÐÐ→ i∗F

Rh

adjÐÐ→ i∗ j∗ j
∗F

Rh

≅ÐÐ→ spX̃F (2.10)

is an isomorphism.
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�e proof of this lemma will be given in paragraph §7. Here, we can however prove its compatibility
with respect to the base change morphisms introduced above.

Lemma 2.22 Let f ∶ X → Y be a morphism of schemes and let f̃ ∶ XR → YR be the trivial li� of f .
�en all the following four squares commute:

f∗
(2.10)

spYR
f∗

bc∗

f∗
(2.10)

f∗spXR

f!
(2.10)

spYR
f!

f!
(2.10)

f!spXR

bc!

f ∗
(2.10)

spXR
f ∗

f ∗
(2.10)

f ∗spYR

bc∗

f !
(2.10)

spXR
f !

bc!

f !
(2.10)

f !spYR

Proof �e proof is essentially the same in each of the four cases and we will do only one. Denoting
the morphisms X

Rh → X and Y
Rh → Y by b (so that bi = 1), the �rst diagram may be expanded as

follows:

(bi)∗ f∗ ≅

(1.12)

i∗b∗ f∗
adj

(1.12)

i∗ j∗ j
∗b∗ f∗

(1.12)

≅
i∗ j∗(b j)∗ f∗

(1.12)i∗ j∗ j
∗ f

Rh∗b
∗

(1.12)

i∗ f
Rh∗b

∗

(1.12)

adj

adj

i∗ j∗ fηh∗ j
∗b∗

≅

≅ i∗ j∗ fηh∗(b j)∗

(1.12)○≅i∗ f
Rh∗ j∗ j

∗b∗

(1.12)

f∗(bi)∗ ≅
f∗ i
∗b∗

adj
f∗ i
∗ j∗ j

∗b∗
≅

f∗ i
∗ j∗(b j)∗

�e le� half of this diagram commutes by the compatibility of (1.12) with respect to composition, as
does the right upper square. �e triangle commutes by the de�nition of (1.12) (cf. [2, XII, 4]) and
the remaining two trapezoids and the lower right square clearly commute hence so does the whole
diagram. ◻

Notation 2.23 Let X be a scheme over k and X̃ a li� of X over R. Also, let π ∶ X → k and π̃ ∶ X̃ → R
be the structure morphisms. �en the composition

π∗π
!Λk

(2.10)ÐÐ→
≅

spRπ∗π
!Λk

bc∗ÐÐ→ π̃s∗spX̃π
!Λk

bc!ÐÐ→ π̃s∗π̃
!
sspRΛk

(2.10)−1ÐÐÐ→
≅

π̃s∗π̃
!
sΛk

induces a map H0(X ,KX)→ H0(X̃s ,K X̃s
) which we denote by spX̃ .
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Lemma 2.24 Let X be a scheme over k and let X̃ = XR be the trivial li�. �en the map

spX̃ ∶ H
0(X ,KX)ÐÐ→ H0(X̃s ,K X̃s

) = H0(X ,KX)
is the identity.

Proof Consider the following diagram:

π∗π
!Λk

(2.10)
spRπ∗π

!Λk

bc∗

π∗π
!Λk

(2.10)
π∗spXR

π!Λk

bc!

π∗π
!Λk

(2.10)
π∗π

!spRΛk

Both squares commute by 2.22 thus the claim. ◻

We end this paragraph with a result on li�ing compacti�cations of correspondences. First we
need a lemma.

Lemma 2.25 Let X be a scheme over k and (X̃ , φ) a li� of X over R. �en there exists a scheme Ỹ over
R such that

1. Ỹ is a li� of X over R,

2. Ỹ is proper over X̃, and

3. for every compacti�cation X of X, Ỹ embeds as an open subscheme into a scheme Ỹ(X) proper
over R and li�ing X such that the following diagram commutes:

Ỹ Ỹ(X)

X̃

XR XR

(2.11)

Proof We �rst reduce to the case where X̃ is proper over XR . For this, let j ∶ X̃ ↪ X̃′′ be a com-
pacti�cation over R and set X̃′ the scheme-theoretic closure of the image of the open immersion

( j, φ) ∶ X̃ Ð֒→ X̃′′ ×R XR .

Over η, we get a factorization
X̃η Ð֒→ X̃′η ÐÐ→ Xη ,

where the �rst map is a dominant open immersion and the second proper. But since X̃ is a li� of X
the composition is an isomorphism thus proper, hence the �rst map is proper thus surjective. �en
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it must be an isomorphism and consequently so is the second map. �is shows that X̃′ is a li� of X
as well. In addition it is proper over XR by construction.

Suppose we can prove the lemma for X̃′, i. e. we can prove the existence of Ỹ ′ satisfying 1–3 (with
X̃′ and Ỹ ′ replacing X̃ and Ỹ , respectively). We claim that the �ber product Ỹ ∶= Ỹ ′ ×X̃′ X̃ then
satis�es 1–3 (for X̃). Indeed, X̃η → X̃′η is an isomorphism as we have shown above, which implies

that its base change Ỹη → Ỹ ′η is an isomorphism as well. Since Ỹ ′ is a li� of X this implies 1. 2 holds

since Ỹ → X̃ is a base change of the proper Ỹ ′ → X̃′, and �nally for 3, the same scheme Ỹ ′(X)which
works in the case of X̃′ and Ỹ ′ works here too.

�us we may assume that X̃ is proper over XR . Let Z be the scheme-theoretic closure of X̃η in

X̃ and denote by f ∶ Z → XR the induced proper morphism. Applying the next lemma below with
S = XR and U = Xη ⊂ XR yields blow-ups Z′, S′ and an isomorphism Z′ → S′ as in the lemma. Set

Ỹ = S′. By the choice of the center of the blow-up Ỹ is a li� of X, i. e. 1 is satis�ed. Moreover, the
composition

Ỹ
≅ÐÐ→ Z′ ÐÐ→ Z Ð֒→ X̃

of proper maps proves 2. For 3, let X ↪ X be a compacti�cation, and denote by V ⊂ XR the center
of the blow-up Ỹ → XR . Let V be the scheme-theoretic closure of V in XR and set Ỹ(X) to be the
blow-up of XR along V . Clearly, Ỹ(X) is proper over R. Moreover, the center V does not meet Xη

hence Ỹ(X) is a li� of X. Finally, Ỹ embeds as an open subscheme into Ỹ(X), which proves 3. ◻

Lemma 2.26 Let f ∶ Z → S be a proper morphism of schemes, and let U ⊂ S be a dense open subset
such that f −1(U) ⊂ Z is dense and f −1(U) → U an isomorphism. �en there exist blow-ups Z′ → Z
and S′ → S with center away from f −1(U) and U, respectively, and an isomorphism Z′ → S′ rendering
the following diagram commutative:

Z′
≅

S′

Z
f

S

Proof �is is proved (with additional hypotheses which are automatically satis�ed in our noethe-
rian setting) in [5,�eorem 2.11]. ◻

In the following corollary, all correspondences are assumed to be self-correspondences although,
as is clear from the proof, it holds also in the more general context.

Corollary 2.27 Let c be a correspondence and let c̃ be a correspondence li�ing c. �en there exists a
correspondence d̃ over R such that

1. d̃ li�s c,

2. d̃ is proper over c̃, and

3. for every compacti�cation c of c, d̃ embeds with an open immersion into a correspondence d̃(c)
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proper over R and li�ing c such that the following diagram commutes:

d̃ d̃(c)

c̃

cR cR

(2.12)

Proof Let us �x the following notation: c ∶ C → X × X, c̃ ∶ C̃ → X̃ × X̃. (In this proof we abstain
from writing R as the index to the �ber product.) First choose a li� Ỹ of X proper over X̃ as in
Lemma 2.25. �en the scheme C̃ ×X̃×X̃ (Ỹ × Ỹ) is a li� of C hence we may choose another li� D̃
proper over C̃ ×X̃×X̃ (Ỹ × Ỹ) again as in Lemma 2.25. We claim that the correspondence

d̃ ∶ D̃ → C̃ ×X̃×X̃ (Ỹ × Ỹ)→ Ỹ × Ỹ

satis�es the conclusion of the corollary. Indeed, 1 and 2 follow immediately from the de�nition of d̃.
For 3, let c ∶ C → X × X be any compacti�cation of c. Choose Ỹ(X) and D̃(C) as in Lemma 2.25.
�en consider the following diagram:

D̃ C̃ ×X̃×X̃ (Ỹ × Ỹ) Ỹ × Ỹ Ỹ(X) × Ỹ(X)

D̃(C) C̃
c̃

X̃ × X̃

CR
cR

XR × XR

CR

cR
XR × XR

�e trapezoid on the le� as well as the triangle on the right commute by Lemma 2.25: they are in-
stances of (2.11). �e bottom square in the middle is a base change of a commutative diagram and
thus commutative, the middle square commutes because c̃ li�s c, while the top square clearly com-
mutes. Hence the whole diagram is commutative and we deduce an open immersion

D̃ Ð֒→ D̃(C) ×XR×XR
(Ỹ(X) × Ỹ(X)).

Clearly, the target of this morphism is proper over R and li�s C. We deduce from the commutativity
of the diagram above that the correspondence

d̃(c) ∶ D̃(C) ×XR×XR
(Ỹ(X) × Ỹ(X))→ Ỹ(X) × Ỹ(X)

satis�es the conclusion of part 3 of the corollary. ◻

29



§6 Deformation to the normal cone

Let Z be a closed subschemeof a scheme X. Recall that the deformation to the normal cone associated
to the pair (X , Z) usually refers to the construction of a scheme X̃Z and a commutative diagram

Z × P1

pr2

X̃Z

P1

such that overA1 = P1/{∞} the embedding is the canonical embedding Z ×A1 ↪ X ×A1 while over
∞ it can be identi�ed with the zero-section embedding of Z into the normal cone to Z in X (cf. [10,
chapter 5]). We will now explain this construction more precisely when P1 is replaced by a discrete
valuation ring R as in the previous paragraph, A1 by the generic �ber η and∞ by the closed �ber s.
�is will allow us to apply the specialization formalism introduced above.

�roughout this paragraphwe�x a discrete valuation ring R as in the previous paragraph. Denote
by t any uniformizer of R, and consider, for n ≥ 0, the R-submodules Rt−n ⊂ R[1/t] = K of the
fraction �eld of R. Pulling back the associated quasi-coherent sheaves of OR-modules along the
projection map pR ∶ XR → R we get quasi-coherent sheaves of OXR

-modules

OXR
t−n ∶= p⊛R R̃t

−n = p∗R R̃t−n ⊗p∗ROR
OXR
⊂ p∗R R̃[1/t]⊗p∗ROR

OXR
= p⊛R R̃[1/t] =∶ OXR

[1/t].
Let IZR

⊂ OXR
be the ideal sheaf corresponding to ZR . We may de�ne the following sheaf of OXR

-
algebras:

OXR
[IZR

/t] ∶= ∑
n≥0

OXR
t−n ⊗OXR

I n
ZR
, (2.13)

whereI 0
ZR
= OXR

andwhere its algebra structure comes from the natural embeddingOXR
[IZR

/t]↪
OXR
[1/t]. Notice that all the summands in (2.13) are quasi-coherent therefore so is OXR

[IZR
/t].

Locally, e. g. when X = Spec(A) and Z corresponds to an ideal I ⊂ A, OXR
[IZR

/t] corresponds to
the A⊗k R-algebra

∑
n≥0

(I ⊗k R)n ⊗R Rt−n ≅ ∑
n≥0

In ⊗k Rt
−n ⊂ A⊗k R[1/t]. (2.14)

An alternative description of OXR
[IZR

/t] can be given as follows. Denote by u the canonical open
immersion Xη ↪ XR . �en we have an isomorphism of OXR

-algebras OXR
[1/t] ≅ u∗OXη

, and

OXR
[IZR

/t] is the OXR
-subalgebra generated by u♯(IZR

) ⋅ 1/t ⊂ u∗OXη
.

�us we may associate to any X, Z and t as above, a scheme X̃Z = Spec(OXR
[IZR

/t]) to-
gether with an a�ne morphism φ̃ = φ̃X ,Z ∶ X̃Z → XR corresponding to the inclusion φ ∶ OXR

↪
OXR
[IZR

/t] (cf. [11, §1]). Some of the properties of this construction, analogous to the deformation
to the normal cone described above, are given in the following lemma.

Lemma 2.28 Let X, Z, and t be as above. �en:

1. �e isomorphism class of X̃Z does not depend on the choice of t.

2. �e pair (X̃Z , φ̃) is a li� of X.

3. �e �ber of X̃Z over s is isomorphic to the normal cone NZ(X) to Z in X.

4. �ere is a canonical closed embedding ĩ ∶ ZR ↪ X̃Z li�ing i ∶ Z ↪ X which, over s, identi�es Z
with the zero section of NZ(X).
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5. �e two objects (X̃Z)red and (̃Xred)Zred
are canonically identi�ed as schemes over XR .

Proof 1. �is is obvious.

2. First of all, X̃Z is separated and of �nite type over R. Indeed, XR has these properties and X̃Z

is a�ne thus separated over XR . Moreover, X̃Z being of �nite type over XR is equivalent to
OXR
[IZR

/t] being a �nite-type OXR
-algebra ([11, 1.3.7]). But this is true since OXR

[IZR
/t] is

generated by OXR
t−1 ⊗OXR

I 1
ZR
.

Next, we need to show that the le� vertical arrow in the following cartesian square is an iso-
morphism:

(X̃Z)η
φ̃η

X̃Z

φ̃

Xη
ũ

XR

φ̃η corresponds to the morphism

OXR
⊗OXR

ũ∗OXη

φ⊗1ÐÐ→ OXR
[IZR

/t]⊗OXR
ũ∗OXη

(2.15)

(cf. [11, 1.4.6]) and it thus su�ces to show that (2.15) is an isomorphism ([11, 1.2.8]). For this we
may assume X = Spec(A), Z corresponding to an ideal I ⊂ A. Using (2.14) we see that (2.15)
can be identi�ed with the canonical inclusion

A⊗k R[1/t]ÐÐ→ ∑
n≥0

In ⊗k R[1/t] = A⊗k R[1/t].
3. �e quasi-coherent OXR

-algebra corresponding to the scheme (X̃Z)s over XR is

OXR
[IZR

/t]⊗OXR
ṽ∗OXs

,

where ṽ ∶ Xs ↪ XR is the canonical closed embedding. Since NZ(X) = Spec(⊕n≥0I
n
Z /I n+1

Z )
it thus su�ces to give an isomorphism

⊕n≥0I
n
Z /I n+1

Z ÐÐ→ OXR
[IZR

/t]⊗OXR
ṽ∗OXs

of OXR
-algebras. Locally, i. e. when X = Spec(A), Z corresponding to an ideal I ⊂ A, the right

hand side is

(∑
n≥0

In ⊗k Rt
−n)⊗R R/tR ≅ ∑n≥0 I

n
⊗k Rt

−n

∑n≥0 In ⊗k Rt−(n−1)

and we may de�ne the map by ([an])n≥0 ↦ ∑n≥0[an ⊗ t−n], where an ∈ In . �is is clearly
well-de�ned. �e inverse map is given by ∑n≥0[an ⊗ rn t

−n] ↦ ([rnan])n≥0 where an ∈ I
n ,

rn ∈ R and where rn denotes the image of rn under the projection R → R/tR = k. �is is
also easily seen to be well-de�ned. Finally, these isomorphisms extend to the non-a�ne case
which is easy to see because the intersection of two open a�nes is again an open a�ne.

4. �e canonical surjective projection p ∶ OXR
[IZR

/t] → OXR
/IZR

= OZR
induces a closed

immersion ZR ↪ X̃Z ([11, 1.4.10]) which, over s, corresponds to the morphism

⊕n≥0I
n
Z /I n+1

Z
≅ÐÐ→ OXR

[IZR
/t]⊗OXR

ṽ∗OXs

p⊗1ÐÐ→ OXR
/IZR

⊗OXR
ṽ∗OXs

.
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Locally, when X = Spec(A), Z corresponding to an ideal I ⊂ A, this is the morphism

⊕n≥0I
n/In+1 ÐÐ→ ∑n≥0 I

n
⊗k Rt

−n

∑n≥0 In ⊗k Rt−(n−1)
ÐÐ→ A/I

which maps ([an])n≥0 to [a0], thus the identi�cation of Z with the zero section. �e claim
about the so de�ned ĩ li�ing i amounts to saying that the composition

OXR

φÐ֒→ OXR
[IZR

/t] pÐÐ→ OXR
/IZR

corresponds to the inclusion of ZR into XR , which is obvious.

5. Again, we will give the identi�cation only locally. �us assume X = Spec(A), Z corresponding
to the ideal I. Consider the following map:

∑
n≥0

In ⊗k Rt
−n ÐÐ→ ∑

n≥0

(√I
n
+

√
0)/√0⊗k Rt

−n

an ⊗ rn t
−n z→ [an]⊗ rn t

−n .

�is is clearly a well-de�ned surjective A ⊗k R-algebra morphism. To determine its kernel
suppose∑m

i=1[an i
]⊗ ri t

−n i = 0 in A⊗k R[1/t], where an i
∈ In i , ri ∈ R/(t), no two n i ’s equal.

�en the ri t
−n i ’s are k-linearly independent in R[1/t] which implies that [an i

] = 0 for all i.

Let k i ≥ 0 such that ak i
n i
= 0 and set k0 = (maxi=1,... ,m{k i} − 1) ⋅ m + 1. For every k0-tuple(i1 , . . . , ik0) ∈ {1, . . . ,m}k0 we then have∏k0

j=1 an i j
= 0 in Awhich implies that

( m

∑
i=1

an i
⊗ ri t

−n i )k0 = 0
in A, i. e. the kernel of our map is contained in the nilradical of A. Conversely, the image of
the map is a reduced ring ([12, 4.6.1]), hence the nilradical of A is contained in the kernel. �is
yields the isomorphism we were looking for. ◻

Notation 2.29 To investigate the functorial properties of the above construction we introduce the
ad-hoc category ahc whose objects are pairs of schemes (X , Z) over k, Z ⊂ X a closed subscheme,
and whose morphisms f ∶ (X , Z) → (X′ , Z′) are morphisms of schemes f ∶ X → X′ such that Z is
a closed subscheme of f −1(Z′); composition of morphisms and identity morphisms are canonical.
Such a morphism f is called special if in fact f −1(Z′) = Z.
Lemma 2.30 Let f ∶ (X , Z)→ (X′, Z′) be a morphism in ahc.

1. �ere is a unique li� f̃ ∶ X̃Z → X̃′Z′ of f such that the following diagram commutes:

Xη
fη

X′η

X̃Z
f̃

X̃′Z′

(2.16)

Moreover, the association (X , Z)↦ X̃Z , f ↦ f̃ , de�nes a covariant functor from ahc to Sch/R.
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2. �e image f̃s(NZ(X)) is contained set-theoretically in the zero-section Z′ ⊂ NZ′(X′) if and only
if there exists k0 ∈ N such that f ∗(I k0

Z′ ) ⋅OX ⊂ I k0+1
Z .

3. f̃s ∣Z ∶ Z → Z′ is equal to f ∣Z .
4. If f is special then the map ( f̃ , φ̃) ∶ X̃Z → X̃′Z′ ×X′R XR is a closed immersion. It is an open

immersion if f is in addition �at.

Proof 1. To give a li� of f , f̃ ∶ X̃Z → X̃′Z′ , is equivalent to give a morphism of f ∗R OX′R
-algebras

f ∗R OX′R
[IZ′R

/t]→ OXR
[IZR

/t] ([11, 1.5.6]), i. e. tomake the lower half of the following diagram
commutative:

f ∗R OX′R
[1/t] f ♭η

OXR
[1/t]

f ∗R OX′R
[IZ′R

/t] OXR
[IZR

/t]

f ∗R OX′R f ♯R

OXR

(Here, the upper horizontal arrow corresponds to fη .) On the other hand, commutativity of
(2.16) means that the upper half of this diagram commutes thus if there is at least one li� as
speci�ed in the lemma then it is clearly unique.

It remains to check that the generators of f ∗R OX′R
[IZ′R

/t] as an f ∗R OX′R
-algebra are mapped

into OXR
[IZR

/t] under f ♭η . For this notice that the morphism f ∗R OX′R
→ f ∗R u

′
∗OX′η → u∗OXη

can be written as u♯ ○ f ♯R , where u ∶ Xη → XR , hence the image of the generators is contained
in

u♯ ○ f ♯R( f ∗R IZ′R
) ⋅ 1/t ⊂ u♯(IZR

) ⋅ 1/t ⊂ OXR
[IZR

/t],
by our assumption that Z is a closed subschemeof f −1(Z′)hence that ZR is a closed subscheme
of f −1(Z′)R = f −1R (Z′R).
�at the association de�nes a functor follows immediately from the uniqueness statement
proved.

2. First assume there is such a k0 ∈ N. To prove f̃s(NZ(X)) ⊂ Z′ set-theoretically wemay assume
X′ = Spec(A′), Z′ corresponding to an ideal I′ ⊂ A′, X = Spec(A), Z corresponding to an
ideal I ⊂ A. In this case, f ♯η is simply f ♯ ⊗ 1 ∶ A′ ⊗k R[1/t] → A⊗k R[1/t] hence, using the
isomorphisms constructed in 2.28.3, f̃ ♯s can be described as follows:

⊕n≥0 I
′n/I′n+1 ∋ ([an])n≥0 ([ f ♯(an)])n≥0 ∈ ⊕n≥0I

n/In+1

A′⊗kR[I
′⊗1/t]

tR⋅(A′⊗kR[I′⊗1/t])
∋ ∑n≥0[an ⊗ t−n] ∑n≥0[ f ♯(an)⊗ t−n] ∈ A⊗kR[I⊗1/t]

tR⋅(A⊗kR[I⊗1/t])

�us by assumption, for every n ≥ 1 and an ∈ I
′n ,

f̃ ♯s ([an]I′n+1)k0 = f̃ ♯s ([ak0
n ]I′nk0+1) = [ f ♯(ak0

n )]Ink0+1 = 0,
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which implies that, for each prime ideal p ∈ NZ(X),⊕n≥1 I
′n/I′n+1 ⊂ ( f̃ ♯s )−1(p), i. e. f̃s(p) ∈ Z′

(cf. 2.28.4).

Conversely, assume f̃s(NZ(X)) ⊂ Z′ set-theoretically. f ♯( f ∗I k0
Z′ ) ⊂ I k0+1

Z being a local
property on both X and X′, and X being quasi-compact, it su�ces to �nd such a k0 locally,
i. e. when X = Spec(A), Z corresponding to an ideal I ⊂ A, X′ = Spec(A′), Z′ corresponding
to an ideal I′ ⊂ A′. We may then use the description of f̃ ♯s worked out above: ([an])n≥0 ↦([ f ♯(an)])n≥0 . By assumption, f̃ ♯(⊕n≥1I

′n/I′n+1) is contained in every prime ideal of NZ(X)
hence also in the radical

√
⊕n≥0 In/In+1. Choose generators r1 , . . . , rm of I′ and choose k i ∈

N>0 such that f̃ ♯([ri]I′2)k i = 0, i = 1, . . . ,m. Set k0 = (maxi=1,... ,m{k i} − 1) ⋅m + 1. For every
k0-tuple (i1 , . . . , ik0) ∈ {1, . . . ,m}k0 , we then have

0 =
k0

∏
j=1

f̃ ♯([ri j ]I′2) = f̃ ♯( k0∏
j=1

[ri j]I′2) = f̃ ♯([ k0∏
j=1

ri j]Ik0+1) = [ f ♯(
k0

∏
j=1

ri j)]Ik0+1 ,
i. e. f ♯ maps a set of generators of I′k0 into Ik0+1 which proves the claim.

3. �is statement is local on both X and X′. It thus follows from the explicit description of f̃s
given in the proof of part 2 when X and X′ are both a�ne.

4. �e map in the statement of the lemma corresponds to the morphism of OXR
-algebras

f̃ ♭ ⊗ φ̃♯ ∶ f⊛R OX′R
[IZ′R

/t]ÐÐ→ OXR
[IZR

/t], (2.17)

where f̃ ♭ is the restriction of f ♭η as in 1. It su�ces to prove this morphism surjective (resp. �at if
f is �at—since a �at closed immersion is automatically an open immersion). For this we may
assume X = Spec(A), Z corresponding to an ideal I ⊂ A, X′ = Spec(A′), Z′ corresponding to
an ideal I′ ⊂ A′. In this case, as above, f ♯η is simply f ♯ ⊗ 1 ∶ A′ ⊗k R[1/t] → A⊗k R[1/t], and
(2.17) is the A⊗k R-morphism

( f ♯ ⊗ 1)⊗ φ̃♯ ∶ (A′ ⊗k R[I′ ⊗ 1/t])⊗A′⊗kR A⊗k R ÐÐ→ A⊗k R[I ⊗ 1/t], (2.18)

where φ̃♯ ∶ A ⊗k R → A ⊗k R[I ⊗ 1/t] is the canonical inclusion. �is morphism factors
canonically as follows:

(A′ ⊗k R[I′ ⊗ 1/t])⊗A′⊗kR A⊗k R
(2.18)

≅

A⊗k R[I ⊗ 1/t]

(A′ ⊗A′ A)⊗k R[(I′ ⊗A′ A)⊗ 1/t]
≅

,

If f is special then the ideal generated by f ♯(I′) in A equals I, hence the second morphism in
the factorization is surjective. If f is �at, then we have I′ ⊗A′ A ≅ I. ◻

Corollary 2.31 Let f ∶ (X , Z)→ (X′ , Z′) be a special morphism in ahc. �en:

1. f̃ −1s (Z′) = Z ⊂ NZ(X).
2. If f is a closed immersion (resp. proper, smooth) then so is f̃ .
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Proof 1. Consider the commutative diagram

Z′ NZ′(X′) X̃′Z′

f̃ −1s (Z′) NZ(X)
f̃ s

X̃Z

f̃

( f̃ ,φ̃)
X̃′Z′ ×X′R XR

where all horizontal arrows are closed immersions, the last one in the bottom row being so by
the last lemma. We deduce from it a closed immersion f̃ −1s (Z′) into Z′ ×X̃′Z′ X̃

′
Z′ ×X′R

XR =

Z′ ×X′R XR = Z.

On the other hand, the maps f̃s ∣Z ∶ Z → Z′ and Z ↪ NZ(X) de�ne amap Z → f̃ −1s (Z′)whose
composition with the closed immersion f̃ −1s (Z′) ↪ NZ(X) is a closed immersion; thus it is a
closed immersion itself. We have proved Z = f̃ −1s (Z′).

2. Decompose f̃ as X̃Z ↪ X̃′Z′ ×X′R XR → X̃′Z′ . If f is a closed immersion (resp. proper, smooth)
then so is the second map. Taking into account part 4 of the last lemma, the claim follows. ◻

De�nition 2.32 Let c ∶ C → X × X be a correspondence and Z ⊂ X a closed subscheme. By 2.30.1,
c li�s to a correspondence c̃Z ∶ C̃c−1(Z×Z) → X̃Z ×R X̃Z over R. We call it the deformation of c (with
respect to Z and R).

To state ourmain result in this particular situation which follows easily fromwhat we just proved,
let us introduce some notation.

Notation 2.33 Let c ∶ C → X × X be a correspondence. We de�ne the scheme of �xed points of c to be
the �ber product of ∆ = ∆X and c,

Fix(c) ∶= X ×X×X C .

�e closed immersion Fix(c) ↪ C will be denoted ∆′ and the restriction of c to Fix(c) will be
denoted c′ ∶ Fix(c)→ X.

Corollary 2.34 Let c ∶ C → X×X be a correspondence and let Z ⊂ X be a closed subscheme. �en there

is a unique closed immersion F̃ix(c)c′−1(Z) ↪ Fix(c̃Z)making the following diagram commutative:

F̃ix(c)c′−1(Z)
∆̃′ c̃′

C̃c−1(Z×Z) Fix(c̃Z)
(∆̃)′ (c̃Z)

′ X̃Z

(2.19)

Proof Notice �rst that the li� ∆̃′ in (2.19) really exists since

∆′−1(c−1(Z × Z)) = c′−1(∆−1(Z × Z)) = c′−1(Z).
Moreover, ∆̃′ is, by 2.31.2, a closed immersion. By the functoriality proved in 2.30.1, we have

∆̃ ○ c̃′ = ∆̃ ○ c′ = c̃ ○ ∆′ = c̃Z ○ ∆̃′ ,
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hence the universal property of �ber products yields a unique morphism F̃ix(c)c′−1(Z) → Fix(c̃Z)
making (2.19) commutative. Since its composition with the closed immersion (∆̃)′ is a closed im-
mersion, it has to be one itself. ◻

§7 Restriction to the summit

In this paragraph we will prove a property of the specialization functor analogous to (SP5) in [20],
called “restriction au sommet” there: Let X, Z, R be as in the previous paragraph, i. e. X a scheme,
Z ⊂ X a closed subscheme and R a discrete valuation ring over k with residue �eld k. We have
de�ned in 2.28.4 a canonical embedding ĩ ∶ ZR ↪ X̃Z li�ing i ∶ Z ↪ X, to which thus corresponds a
base change morphism bc∗ ∶ ĩ∗s spX̃Z

→ spZR
i∗ (cf. 2.§5).

Proposition 2.35 For every F ∈Db
ctf (X) the morphism

(spX̃Z
F)∣Z bc∗ÐÐ→ spZR

(F ∣Z) (2.10)−1ÐÐÐ→F ∣Z (2.20)

is an isomorphism.

Remark 2.36 Notice that for this statement to make sense at all we have to show (2.10) an isomor-
phism. �is will be done below and we will pay attention not to use any circular argument, i. e. such
that the proof of 2.21 given below is independent of 2.35.

Set U ∶= X/Z and denote by j the inclusion U ↪ X. Moreover let CX ,Z(F) denote the cone of the
morphism (2.20). Note the following useful fact.

Lemma 2.37 Fix X and Z as above. Let F1 →F2 →F3 →+ be a distinguished triangle inDb
ctf (X).

1. If CX ,Z(Fi) = CX ,Z(F j) = 0, some i , j ∈ {1, 2, 3}, i ≠ j, then CX ,Z(Fi) = 0 for all i ∈ {1, 2, 3}.
2. Let ξ ∈ Z be a point and assume CX ,Z(F2)ξ = 0. If Hm−1(CX ,Z(F3))ξ vanishes then so does

Hm(CX ,Z(F1))ξ.
Proof 1. By rotating the triangle we may assume {i , j} = {2, 3}. Applying part 2 for all m ∈ Z

and all points ξ ∈ Z, the claim follows.

2. From the distinguished triangle given we deduce a commutative diagram inDb
ctf (Z) (the dot-

ted arrows exist by the axioms for a triangulated category):

(spX̃Z
F1)∣Z (2.20)

F1 ∣Z CX ,Z(F1) (spX̃Z
F1)∣Z[1]

(spX̃Z
F2)∣Z (2.20)

F2 ∣Z CX ,Z(F2) (spX̃Z
F2)∣Z[1]

(spX̃Z
F3)∣Z (2.20)

F3∣Z CX ,Z(F3) (spX̃Z
F3)∣Z[1]

(spX̃Z
F1)∣Z[1] (2.20)

F1∣Z[1] CX ,Z(F1)[1] (spX̃Z
F1)∣Z[2]
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Notice that all rows, and all columns except possibly the third are distinguished triangles.
Hence applying a suitable cohomology functor followed by the stalk functor (−)

ξ
yields the

following two commutative diagrams with exact columns:

Hm−1((spX̃Z
F3)∣Z)ξ Hm−1(F3 ∣Z)ξ

Hm((spX̃Z
F1)∣Z)ξ Hm(F1 ∣Z)ξ

Hm((spX̃Z
F2)∣Z)ξ Hm(F2 ∣Z)ξ

Hm((spX̃Z
F3)∣Z)ξ Hm(F3 ∣Z)ξ

Hm((spX̃Z
F2)∣Z)ξ Hm(F2 ∣Z)ξ

Hm((spX̃Z
F3)∣Z)ξ Hm(F3∣Z)ξ

Hm+1((spX̃Z
F1)∣Z)ξ Hm+1(F1 ∣Z)ξ

Hm+1((spX̃Z
F2)∣Z)ξ Hm+1(F2 ∣Z)ξ

Using the four lemma (or an easy diagram chase) shows that the second rowof the �rst diagram
is surjective and the third row in the second diagram is injective. �is implies the claim. ◻

We thus have to prove CX ,Z(F) = 0 ∈ Db
ctf (Z) for any X,Z, and F . We start with a result

concerning the behavior of the specialization functor under base change.

Lemma 2.38 Let f ∶ X → X′ be a morphism of schemes, let Z′ ⊂ X′ be a closed subscheme and denote
by fZ ∶ Z → Z′ the restriction of f to Z = f −1(Z′).

1. Let F ∈Db
ctf (X) and assume f is proper. �en we have

CX′ ,Z′( f!F) ≅ fZ !CX ,Z(F).
2. Let F ′ ∈ Db

ctf (X′) and assume f is smooth. �en we have

CX ,Z( f ∗F ′) ≅ f ∗Z CX′ ,Z′(F ′).
(Cf. the properties (SP2), (SP3) (and (SP0)) respectively, in [20].)

Proof 1. Denote the inclusions Z ↪ X and Z′ ↪ X′ by i and i′, respectively. Let ĩ and ĩ′ be the
corresponding li�s de�ned in 2.28.4 and let f̃ ∶ X̃Z → X̃′Z′ and f̃Z ∶ ZR → Z′R be the li�s of f
and fZ , respectively, as in 2.30.1. By 2.31.2, f̃ and f̃Z are also proper.

Now consider the following diagram:

ĩ′∗s spX̃′
Z′
f!

bc∗ spZ′R
i′∗ f!

(2.10)−1

≅(1.12)

i′∗ f!

(1.12)≅

ĩ′∗s f̃s!spX̃Z

(1.12) ≅

bc! ≅

spZ′R
fZ ! i

∗ (2.10)−1

fZ ! i
∗

fZ ! ĩ
∗
s spX̃Z bc∗

fZ !spZR
i∗

(2.10)−1

≅bc!

fZ ! i
∗
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(Here we have identi�ed ( f̃Z)s with fZ .) By 2.19.3, the le� half of this diagram commutes,
as does the right lower square by 2.22, while the right upper square is clearly commutative.
Applying the whole diagram to F ∈ Db

ctf (X) and taking the cone of the top and bottom row
yields the claim.

2. �e smooth case is proved in exactly the same way. ◻

�e proof of 2.35 is by reducing to the special case X = Spec(k[T]) = A1 , Z = Spec(k[T]/(T r)),
some r ∈ N, and F = ΛX . We will deduce this from the fact that X is “contractible to Z”.

De�nition 2.39 Let X be a scheme and Z a closed subscheme of X. X is said to be contractible to Z
if there exists a morphism H ∶ X ×A1 → X (called a contraction) such that

1. H∣X×{1} = 1X ;
2. the image of X × {0} and Z ×A1 under H is scheme-theoretically contained in Z;

3. H∣Zred×A1 is the projection Zred ×A
1 → Zred.

Example 2.40 Let X = Spec(k[T]) and Z = Spec(k[T]/(T r)) as above. Clearly, the map H ∶ X ×
A1 → X de�ned by T ↦ T ⋅S, where the second factor in the source,A1 , is identi�edwith Spec(k[S]),
is a contraction of X to Z.

Lemma 2.41 CX ,Z(F) = 0 if X is contractible to Z and F = ΛX .

Proof Let H ∶ X × A1 → X be a contraction of X to Z. For each a ∈ k, denote the inclusion
X ≅ X × {a} ↪ X ×A1 by ia, and set Ha = H ○ ia ∶ X → X. �en H1 = 1X and H0 factors through
j ∶ Z ↪ X.

Fix some a ∈ k. Notice that the morphism Ha ∶ (X , Z) → (X , Z) may be considered as a
morphism of the category ahc introduced in 2.29 hence, by 2.30.1, there is a li� H̃a ∶ X̃Z → X̃Z . Since
over the s-�ber H̃as ∣Zred

= Ha ∣Zred
= 1Zred

(cf. 2.30.3), (H̃as ∣Z)∗ is also the identity. �e base-change
morphism bc∗ corresponding to Ha thus induces a map

φa ∶ spX̃Z
(ΛX)∣Z = (H̃as ∣Z)∗ (spX̃Z

(ΛX)∣Z) ≅ÐÐ→ (H̃∗asspX̃Z
(ΛX)) ∣Z

bc∗ÐÐ→spX̃Z
(H∗aΛX)∣Z ≅Ð→ spX̃Z

(ΛX)∣Z .
φ1 is the identity morphism and φ0 factors through (2.20)∶ spX̃Z

(ΛX)∣Z → ΛZ . Indeed, the decom-
position of H0 in ahc,

H0 ∶ (X , Z) h0ÐÐ→ (Z , Z) jÐÐ→ (X , Z),
induces a decomposition H̃0 ∶ X̃Z

h̃0→ ZR
j̃→ X̃Z . Since the base change morphisms are compatible

with composition (cf. 2.19.2), the following diagram commutes:

(H̃∗0sspX̃Z
(ΛX)) ∣Z bc∗ spX̃Z

(ΛX)∣Z

h̃∗0s (spX̃Z
(ΛX)∣Z) ∣Z bc∗ h̃∗0sspZR

(ΛZ)∣Z
bc∗

spX̃Z
(ΛX)∣Z bc∗ spZR

(ΛZ)

38



Now the top horizontal arrow is φ0 and the bottom horizontal arrow is (2.10) ○ (2.20) hence we have
the claimed factorization of φ0.

Suppose we can prove that φ0 is the identity morphism. �en we see from its factorization just
proved that (2.20) is injective. But Λ being �nite, surjectivity is then immediate. Hence it su�ces to
prove that φa is independent of a. To this end, consider the morphism

φ ∶ π∗Z(spX̃Z
(ΛX)∣Z) = (H̃∗s spX̃Z

(ΛX)) ∣Z×A1

bc∗ÐÐ→
spX̃×A1

Z×A1
(ΛX×A1)∣Z×A1

(bc∗)−1ÐÐÐÐ→
≅
(π̃∗s spX̃Z

(ΛX)) ∣Z×A1 ≅ π∗Z(spX̃Z
(ΛX)∣Z),

where π ∶ (X × A1 , Z × A1) → (X , Z) is the canonical projection and πZ ∶ Z × A1 → Z its re-
striction, and where the base change morphism corresponding to π is an isomorphism because π is
smooth (2.19.1). As the notation suggests, the �ber of φ over a ∈ k is φa. Indeed, the top row in the
following diagram is the �ber of φ over a, the bottom row is φa:

j∗aπ
∗
Z j̃
∗
s sp(Λ)

≅

≅ j∗a ĩ
∗
s H̃
∗
s sp(Λ)
≅

bc∗

j∗a ĩ
∗
s sp(Λ)
≅

(bc∗)−1

≅
j∗a ĩ
∗
s π̃
∗
s sp(Λ)
≅

≅
j∗aπ
∗
Z j̃
∗
s sp(Λ)

≅j̃∗s ĩ
∗
as H̃

∗
s sp(Λ) bc∗

≅

j̃∗s ĩ
∗
assp(Λ)

bc∗

(bc∗)−1

≅
j̃∗s ĩ
∗
as π̃
∗
s sp(Λ)
≅

j̃∗s sp(Λ) ≅ j̃∗s H̃
∗
assp(Λ)

bc∗
j̃∗s sp(Λ) j̃∗s sp(Λ)

(Here we have written i and ja for the inclusions Z × A1 ↪ X × A1 and Z × {a} ↪ Z × A1 , re-
spectively.) �e trapezoid commutes by the compatibility of the base change morphism bc∗ with
composition (2.19.2) and the triangle commutes because the base change morphism corresponding
to 1X×A1 decomposes as

sp(Λ) = ĩ∗as π̃∗s sp(Λ) bc∗ÐÐ→ ĩ∗assp(Λ) bc∗ÐÐ→ sp(Λ),
again by the compatibility of the base change morphism with composition. All the inner squares
clearly commute hence so does the whole diagram.

Now the claim follows from the next lemma. ◻

Lemma 2.42 Let X and Y be two schemes and assume that X is connected. Fix A , B ∈ Db
ctf (Y)

and φ ∈ Hom(ΛX ⊠A , ΛX ⊠B). For every section j ∶ k → X there is an induced morphism φ j ∈
Hom(A ,B) over k × Y ≅ Y. �e claim is that φ j is independent of j.

Proof Let’s �x our notation as follows: p ∶ X × Y → X, q ∶ X × Y → Y , i ∶ Y ≅ k × Y ↪ X × Y .
Moreover, we denote (in this proof only) the bifunctor RHom(−,−) by [−,−].

φ j is the image of φ under the composition

Hom(Λ⊠A , Λ⊠B) i∗ÐÐ→ Hom(i∗(Λ⊠A ), i∗(Λ⊠B)) ≅ÐÐ→ Hom(A ,B),
which is clearly induced by the composition

πX×Y∗[Λ⊠A , Λ⊠B] adjÐÐ→ πX×Y∗ i∗i
∗[Λ⊠A , Λ⊠B] ÐÐ→

πY∗[i∗(Λ⊠A ), i∗(Λ⊠B)] ≅ÐÐ→ πY∗[A ,B] (2.21)
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by applying H0
○RΓ. Now consider the following diagram where (2.21) appears as the le�most col-

umn:

πX×Y∗[Λ⊠A , Λ⊠B]
adj

πX×Y∗(Λ⊠[A ,B])
2©

≅

adj

πX∗Λ⊗ πY∗[A ,B]
adj⊗ 1

≅

πX×Y∗ i∗i
∗[Λ⊠A , Λ⊠B] πX×Y∗ i∗ i

∗(Λ⊠[A ,B])

3©

≅
πX∗ j∗ j

∗Λ⊗ πY∗[A ,B]
≅

≅

πY∗[i∗(Λ⊠A ), i∗(Λ⊠B)]
≅

πY∗(Λ⊗[A ,B])
≅

Λ⊗ πY∗[A ,B]
≅

πY∗[A ,B]
1©

πY∗[A ,B] πY∗[A ,B]
Here the twoupper horizontal arrows on the le� are induced by (1.21) and the canonical isomorphism
RHom(Λ, Λ) ≅ Λ. Clearly, the le� upper square is commutative. �e two upper horizontal arrows
on the right are induced by the isomorphism in [6, �. �nitude, 1.11] which we will make explicit
below. All the unlabeled vertical arrows are the canonical ones.

We will show below the commutativity of 1©, 2© and 3©. From this it will follow that the map
φ ↦ φ j is induced by the composition

RΓ(X , Λ) adjÐÐ→ RΓ(k , Λ) = Λ
which is clearly independent of j since X is connected. Hence the commutativity of the diagram
implies the claim of the lemma.

1© We decompose 1© as follows (where we abstain from writing πY∗):

i∗[Λ⊠A ,Λ⊠B]

a©

i∗([p∗Λ,p∗Λ]⊗[q∗A ,q∗B])

d©

(1.20)

t i∗≅

i∗(Λ⊠[A ,B])

t i∗ ≅

[i∗(Λ⊠A ),i∗(Λ⊠B)]

t i∗≅

i∗[p∗Λ,p∗Λ]⊗ i∗[q∗A ,q∗B]

e©

i∗ p∗Λ⊗ i∗q∗[A ,B]

≅

[i∗ p∗Λ⊗ i∗q∗A ,i∗ p∗Λ⊗ i∗q∗B]

b©≅

[i∗ p∗Λ,i∗ p∗Λ]⊗[i∗q∗A ,i∗q∗B]
(1.20)

≅

i∗ p∗Λ⊗[A ,B]

≅

[Λ⊗A ,Λ⊗B]

c©≅

[Λ,Λ]⊗[A ,B]
(1.20) ev⊗ 1

≅
Λ⊗[A ,B]

≅

[A ,B] [A ,B]

Here the two top horizontal arrows on the right are induced by the canonical isomorphism Λ ≅
RHom(Λ, Λ) followed by (1.19)⊗ (1.19) as in the de�nition of (1.21). Clearly then, d© is commutative.
�e commutativity of a© is proved in [14, p. 85], the commutativity of b© follows from the naturality
of (1.20) while c© is obviously commutative. Finally, the commutativity of e© may be checked on
each tensor factor separately, which is easy.

40



2© Let us abbreviate RHom(A ,B) by R. �en 2©may be expanded as follows:

πY∗q∗(p
∗Λ⊗ q∗R)

adj

πY∗(q∗ p
∗Λ⊗R)

proj

≅

adj

πY∗(π
∗
Y πX∗Λ⊗R)

bc (1.12)

adj

πX∗Λ⊗ πY∗R
≅

proj

adj

πY∗q∗ i∗ i
∗(p∗Λ⊗ q∗R) πY∗(q∗ i∗ i

∗ p∗Λ⊗R)
α

πY∗(π
∗
Y πX∗ j∗ j

∗Λ⊗R)
β

πX∗ j∗ j
∗Λ⊗ πY∗R

proj

≅

(Wehave implicitlymade use of the isomorphism πX×Y∗ ≅ πY∗q∗.)�e right inner square commutes
by the naturality of proj (i. e. (1.3)). To de�ne α consider the following diagram (F ∶= p∗Λ):

q∗(F ⊗ q∗R)
adj

adj

q∗F ⊗R
≅

proj

adj

q∗ i∗ i
∗(F ⊗ q∗R) q∗ i∗(i∗F ⊗ i∗q∗R)≅

t i∗
q∗(i∗i∗F ⊗ q∗R)≅

proj
q∗ i∗ i

∗F ⊗R
proj

≅

�e trapezoid on the right commutes by the naturality of proj while the le� triangle commutes by
the de�nition of proj. �erefore we may de�ne α to be the composition of the horizontal arrows in
the bottom row. Since proj is compatible with composition, a simpler description of α is possible,
namely as the morphism induced by the following composition:

q∗ i∗ i
∗F ⊗R

≅ÐÐ→ i∗F ⊗ i∗q∗R
t i∗ÐÐ→
≅

i∗(F ⊗ q∗R) ≅ÐÐ→ q∗ i∗ i
∗(F ⊗ q∗R) (2.22)

(using the fact that qi = 1Y ).

To de�ne β we proceed similarly. Consider the following diagram:

q∗p
∗

adj
adj

π∗YπX∗
bc (1.12)

adj

q∗ i∗i
∗p∗ q∗ i∗π

∗
Y j
∗

≅
q∗p

∗ j∗ j
∗

bc (1.12)
π∗YπX∗ j∗ j

∗
bc (1.12)

Again, the trapezoid on the right commutes by the naturality of (1.12) while the triangle on the le�
commutes by the de�nition of (1.12). And again, since (1.12) is compatible with composition, β (de-
�ned as the bottom row) can also be described as the morphism induced by the following composi-
tion:

π∗YπX∗ j∗ j
∗ ≅ÐÐ→ π∗Y j

∗ ≅ÐÐ→ i∗p∗
≅ÐÐ→ q∗ i∗ i

∗p∗ . (2.23)

3© Finally, we expand 3© as follows:

πY∗q∗ i∗ i
∗(p∗Λ⊗ q∗R)

t i∗≅

πY∗(q∗ i∗ i
∗ p∗Λ⊗R)

α

≅

πY∗(π
∗
Y πX∗ j∗ j

∗Λ⊗R)
β

≅

πX∗ j∗ j
∗Λ⊗ πY∗R

proj

≅

≅

πY∗(i
∗ p∗Λ⊗ i∗q∗R)

≅

πY∗(i
∗ p∗Λ⊗R)

≅
πY∗(π

∗
Y j
∗Λ⊗R)

≅

≅
j∗Λ⊗ πY∗R

proj

≅

≅

πY∗(Λ⊗R)

≅

πY∗(π
∗
YΛ⊗R)

≅

Λ⊗ πY∗R

≅

proj

≅

πY∗R πY∗R πY∗R
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It will be noted that the le�most column coincides with the rightmost column of 2© so that 2© and 3©

really “�t together”. By the alternative descriptions of α and β given in (2.22) and (2.23), respectively,
it is clear that the two top squares on the le� and in the middle commute, while the commutativity of
the big rectangle below is obvious. �e top andmiddle square on the right commute by the naturality
of proj thus it remains to prove the commutativity of the bottom right square. �is is decomposed
as follows:

πY∗(π∗YΛ⊗R)
≅

πY∗(π∗YΛ⊗ π∗YπY∗R)tπ∗
Y

adj

≅

πY∗π
∗
Y(Λ⊗ πY∗R)≅

≅

Λ⊗ πY∗R
adj

≅

πY∗R πY∗π
∗
YπY∗R

adj
πY∗π

∗
YπY∗R πY∗Radj

�e two outer squares commute by the naturality of the vertical isomorphisms, while the commu-
tativity of the middle square has been remarked in 1.(i). Of course, the composition of the lower
horizontal arrows is the identity. ◻

We now start with the reduction steps in the proof of 2.35.

Step 1 We may assume F ∣Z = 0.
Proof Notice �rst that in the case X = Z the base change morphism bc∗ is just the identity mor-
phism from spXR

to itself. By 2.21, themorphism (2.20) is thus an isomorphism in this case. Applying
2.38.1 to the closed embedding i yields

CX ,Z(i! i∗F) ≅ 1Z !CZ ,Z(i∗F) = 0.
In view of the distinguished triangle j! j

∗F →F → i! i
∗F →+ the claim follows from 2.37.1. ◻

Step 2 We may assume that Z is de�ned by an invertible sheaf and F ∣Z = 0.
Proof Let f ∶ X′ → X be the blow-up of X along Z. Since fU ∶= f ∣X′/ f −1(Z) ∶ X′/ f −1(Z) → U is
an isomorphism and since F ∣Z = 0 (by step 1), we have (denoting by i′ (resp. j′) the inclusion of
f −1(Z) (resp. X′/ f −1(Z)) into X′, and by fZ the restriction f ∣ f −1(Z)):

i∗ f! f
∗F ≅ fZ ! i

′∗ f ∗F ≅ fZ ! f
∗
Z i
∗F = 0,

where the second isomorphism comes from (1.13). We deduce

f! f
∗F ≅ j! j

∗ f! f
∗F ≅ j! fU ! j

′∗ f ∗F ≅ j! fU ! f
∗
U j∗F ≅ j! j

∗F ≅F ,

the second isomorphism again coming from (1.13). Applying 2.38.1 to f provides us with the isomor-
phism

CX ,Z(F) ≅ CX ,Z( f! f ∗F) ≅ fZ !CX′ , f −1(Z)( f ∗F).
�erefore it su�ces to prove CX′ , f −1(Z)( f ∗F) = 0. ◻

Step 3 We may assume X = An , Z = An−1
× {0}, some n ≥ 1, and F ∣Z = 0.

Proof Since the assertion of 2.35 is local on X and Z (use 2.38.2) we may assume X to be a�ne and
Z de�ned by a principal ideal (by step 2), say X = Spec(A), Z = (z), z ∈ A. Choose an epimorphism
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k[T1 , . . . , Tn−1]↠ A and extend it to an epimorphism k[T1 , . . . , Tn]↠ A by Tn ↦ z. �is de�nes a
closed embedding f ∶ X ↪ An such that

f −1(An−1
× {0}) = f −1(Var(Tn)) = Var(Tn ⋅ A) = Var((z)) = Z .

Applying 2.38.1 to this closed embedding gives

CAn ,An−1×{0}( f!F) ≅ fZ !CX ,Z(F),
where fZ = f ∣Z ∶ Z ↪ An−1

× {0}. If the le� hand side is 0 then so is CX ,Z(F) since fZ is a closed
immersion. ◻

Step 4 2.35 is implied by the following statement: CAn ,An−1×{0}(F) vanishes at the generic point of
An−1

× {0} for all n ≥ 1 and for all F such that F ∣Z = 0.
Proof By the previous step, we have to prove 2.35 for X = An , Z = An−1

× {0} and F ∣Z = 0. We do
this by induction on n. In case n = 1, Z is a point, thus the claim follows from the assumption that
CX ,Z(F) vanishes generically.

For the induction step let Y ⊂ Z be the closure of the support of CX ,Z(F). By the assumption
that CX ,Z(F) vanishes generically, we have Y ≠ Z, hence the Noether normalization lemma ensures
the existence of a line τ ⊂ Z ⊂ X such that the projection q ∶ X → X/τ restricts to a �nite morphism
q∣Y . Set X′ = X/τ ≅ An−1 , Z′ = Z/τ ≅ An−2

× {0}, and think of X as a line bundle over X′. �en q
extends to the projective closure X of X (de�ned as in [11, 8.4]); i. e. we get a compacti�cation

X
eÐ→ X

qÐ→ X′

of q. Set Z = q−1(Z′). Furthermore, let F ∈ Db
ctf (X) be the extension of F by zero, i. e. F = e!F .

�en the triple (X′, Z′, q!F ) satis�es the induction hypothesis, thus together with 2.38.1 we get

(q∣Z)!CX ,Z(F ) ≅ CX′ ,Z′(q!F) = 0.
Now, CX,Z(F ) has support on Y ∶= Y ∪ (Z/Z). Indeed, for any x ∈ Z/Y ⊂ Z we have

CX,Z(F)x ≅ (e∗ZCX ,Z(F ))x ≅ CX ,Z(e∗e!F)x ≅ CX ,Z(F)x = 0, (2.24)

where the second isomorphism exists by 2.38.2 (as before, eZ = e∣Z ∶ Z ↪ Z). Moreover, q∣Y is still

�nite. Indeed, it is quasi-�nite over Y by construction, and proper. But Z/Z lies in X/X which is
mapped isomorphically to X′ hence q is quasi-�nite on Z/Z as well. �is clearly implies CX ,Z(F ) =
0 hence also CX ,Z(F) = 0 by the same isomorphisms as in (2.24). ◻

Step 5 We may further reduce to the following statement: Assume that X is normal, Z is de�ned by a
locally principal sheaf of ideals and F = j!H , some constant (�nite) sheaf H on U. �en CX ,Z(F)
vanishes at each generic point of Z.

Proof In fact, we will prove that this statement implies the same statement with no conditions on
F (except F ∣Z = 0). Clearly this su�ces by step 4.

�us let X be normal, Z a locally principal closed subscheme, and F ∣Z = 0. We may clearly
assume X to be connected (2.38.2) and thus irreducible (since X is normal). Also we may assume Z
to be irreducible. Using 2.37.1, a standard homological algebra argument reduces us to the case where
F is a complex concentrated in degree d ∈ Z, i. e. where F is a sheaf. Since F is constructible and
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X irreducible, there exists a non-empty open subset V ′ ⊂ U such that F ∣V ′ is locally constant.
�e lemma below (2.43.2) implies that replacing X by an open neighborhood in X of the generic
point of Z, we may assume F = j!G , some locally constant constructible sheaf G on U . (Apply the
lemma to an open a�ne neighborhood Spec(A) in X of the generic point of Z such that Z∩Spec(A)
corresponds to (z), and V = V ′ ∩ Spec(A). �e sought-a�er open subset is then Spec(Ax).)

We now claim that the cohomology sheaf Hm(CX ,Z(F)) vanishes generically for all m ∈ Z and
all F of the form above. �is is obviously true ifm < d. Suppose it is true for all r < m, somem ∈ Z.
Let f ∶ U ′ → U be a �nite étale map such that f ∗G is constant (we may assume U ′ connected), and
let U ′ ↪ X′′ → X be a compacti�cation of j f with X′′ → X �nite. Notice that U ′ is normal hence
irreducible hence so is X′′. Moreover U ′ factors uniquely through X′′red ↪ X′′ and then also through
the normalization X′ → X′′red as in the following commutative diagram:

X′ X′′red X′′ X

U ′
j′

f
U

j

Denote the composition of the arrows in the top row by f ′ ∶ X′ → X.�is is a �nitemap. Also, j′ is an
open immersion which implies that the square f ′ j′ = j f is cartesian. Hence f ′∗F = f ′∗ j!G ≅ j′! f

∗G
by the base change isomorphism (1.13). Notice also that Z′ ∶= f ′−1(Z) ⊂ X′ is again de�ned by a
locally principal sheaf of ideals hence by our assumption CX′ ,Z′( f ′∗F) vanishes generically. But the
generic point of Z is hit only by generic points of Z′ and consequently Lemma 2.38.1 implies that
also CX ,Z( f ′! f ′∗F) vanishes generically.

Set G ′ to be the cokernel of the injective morphism adj ∶ G ↪ f! f
∗G . G ′ is again a local system

and j!G
′ is isomorphic to the cokernel of the injective morphism F = j!G ↪ j! f! f

∗G ≅ f ′! j
′
! f
∗G ≅

f ′! f
′∗F . �e associated distinguished triangle satis�es the hypotheses of 2.37.1 with ξ the generic

point of Z by induction hypothesis. Hence Hm(CX ,Z(F)) vanishes generically. ◻

Lemma 2.43 Let A be a normal noetherian domain and let z ∈ A such that
√(z) ⊂ A is a prime ideal.

�en:

1. �ere exist w, t ∈ A, and r ∈ N such that, in Aw , (z) = (tr) and (t) ⊂ Aw is a prime ideal.

2. Given any non-empty open subset V ⊂ Spec(Az) there exists x ∈ A/√(z) such that Spec(Axz) ⊂
V.

Proof If z = 0 then both claims are obvious. Hence we may assume z ∈ A/{0}. Set p =√(z).
1. By Krull’s Hauptidealsatz, p is a prime ideal of height 1. Let p1 , . . . , pn be a set of generators for

p. �e normality of A implies that Ap is a discrete valuation ring with uniformizer, say, t ∈ p.
For each i = 1, . . . , n there exist ri ∈ N, ui , v i ∈ A/p such that piui = t

r i v i . Similarly, there exist
r ∈ N, u, v ∈ A/p such that zu = trv. Set w = uv∏n

i=1 ui ∈ A/p.
2. Choose w, t, r as in part 1 and let g ∈ A such that ∅ ≠ Spec(Ag) ⊂ V . In particular,

Spec(Awg) ⊂ Spec(Awt) hence, as above, there exist s ≥ 1, u, v ∈ A/p such that gu = tsvwn in
Aw , some n ∈ Z. Set x = uvw ∈ A/p. ◻

We are now ready to �nish the proof of 2.35.

Step 6 Assume that X is normal, Z is de�ned by a locally principal sheaf of ideals and F = j!G , some
constant (�nite) sheaf G on U. �en CX ,Z(F) vanishes at each generic point of Z. Hence 2.35 is true.
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Proof Doing induction as in the previous step and using a short exact sequence K ↪ Λn
U ↠ G of

sheaves on U (some n, K is necessarily constant), one easily reduces to the case G = ΛU .
Also as in the previous step, we may assume X and Z to be irreducible. Let ξ be the generic point

of Z (which we may assume to be di�erent from the generic point of X—otherwise the claim being
trivial) and let V ⊂ X be the set of regular points of X. V is an open subset since X is an excellent
scheme ([12, 7.8.6]), and contains ξ sinceOX ,ξ is normal and has dimension 1. Replacing X by V and
Z by Z ∩ V we may thus assume X to be smooth over k.

Similarly, Zred is an integral excellent scheme hence there is an open subset V ⊂ X containing ξ
such that both V and Zred ∩ V are smooth over k. Replace X by V and Z by Z ∩ V .

By the lemma below (2.44), there exist an open neighborhood V of ξ in X, a natural number
n ≥ 1, and an étale morphism V → An such that the inverse image ofAn−1

×{0} is equal to Zred ∩V .
Composing with the (smooth) projection An → A1 onto the last component and replacing X by V ,
Z by Z ∩ V , we get a smooth morphism f ∶ X → A1 such that f −1(0) = Zred.

Next, we may assume X = Spec(A) to be a�ne, A a normal integral k-algebra, such that Z cor-
responds to the principal ideal (z) generated by some z ∈ A. Let a = f ♯(T), where we identify
A1 with Spec(k[T]). �us we have

√(z) = (a), and a is prime. �e lemma above (2.43.1) im-

plies that, replacing A by a suitable localization Aw , w ∈ A/√(z), we may assume (z) = (ar), i. e.
f −1(Var(T r)) = Z. We conclude that

CX ,Z(F)ξ = CX ,Z( j!ΛU)ξ
≅ CX ,Z(ΛX)ξ since CX ,Z(i∗ΛZ) = 0
≅ CX ,Z( f ∗ΛA1)

ξ

≅ ( f ∗CA1 ,Var(T r)(ΛA1))
ξ

by 2.38.2

≅ CA1 ,Var(T r)(ΛA1)0
= 0 by 2.41 and 2.40. ◻

Lemma 2.44 Let Z be a closed subscheme of a scheme X, and x ∈ X such that both Z and X are smooth
over k at x. Moreover, let r be the minimal number of generators for the idealIZ ,x ⊂ OX ,x . �en there
exist an open neighborhood V of x in X, a natural number n ≥ r, and an étale morphism V → An

(over k, as usual) such that the inverse image of An−r
× {0} is equal to Z ∩ V.

Proof �is is part of the more general statement in [13, 17.12.2]. We provide it here for convenience
only. ◻

We can now give a proof of 2.21 as promised:

Proof (2.21) �e proof is similar to the one just given. Denote by CX(F) the cone of (2.10) ∶F →
spX(F). As in Lemma 2.38 one proves that, for a morphism f ∶ X → Y , f!CX(F) ≅ CY( f!F) if
f is proper, and f ∗CY(F) ≅ CX( f ∗F) if f is smooth. It follows, as in step 3, that the question is
local and we may reduce to the case X = An , some n. Also, we may assume that F is a sheaf.

We will now prove that CX(F) vanishes generically. For this, we may replace X by an open
subset on which F is locally constant. Replacing X by a suitable étale cover, we may assume that F
is constant, and then reduce to F = ΛX as in step 6. As πX is smooth, it is su�cient to treat the case
X = k, F = Λk .

Going back to the de�nition of (2.10) we see that our task is to prove

(Λ
Rh)s adjÐ→ ( j∗ j∗ΛRh)s
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an isomorphism. But since j∗λ
Rh ≅ Ληh is a �ask sheaf (recall that ηh is separably closed, see 1.§4),

j∗Ληh can be computed on the level of complexes where it is easily seen to coincide with Λ
Rh (Rh

being henselian, see again 1.§4). �us we have to prove an isomorphism the �rst map in

( j∗Ληh)s adjÐ→ ( j∗ j∗ j∗Ληh)s adjÐ→ ( j∗Ληh)s .
j∗ (on the level of sheaves) being fully faithful, the second map is an isomorphism, while the com-
position of the two maps is the identity. �us the claim. ◻
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3 �e trace map

From now on, if not otherwise mentioned, we will be working in the category sCor(k) of self-cor-
respondences.

§1 De�nition

To each self-correspondence c ∶ C → X × X, to each complex of sheaves F ∈ Db
ctf (X) and to each

open subset β ⊂ Fix(c), we will associate a trace map

trc ,F ,β ∶ Homc(F ,F) ÐÐ→ H0(β,Kβ).
In the case c = ck and β = Fix(c) the target of this map can be identi�ed with Λ,F can be identi�ed
with a bounded complex of �nitely generated projective Λ-modules and the trace map will then
be seen to coincide with the “usual trace map” Hom(F ,F) → Λ. For general correspondences,
however, the de�nition of the trace map is somewhat involved.

De�nition 3.1 1. We de�ne the global trace morphism (associated to c and F ),

trc ,F ∶ RHom(c∗1 F , c !2F) ÐÐ→ ∆′∗KFix(c) ,

as the following composition:

RHom(c∗1 F , c !2F) (1.6)ÐÐ→
≅

c ! RHom(p∗1 F , p!2F) (1.18)ÐÐ→
≅

c !(DF ⊠F) adjÐÐ→
c !∆∗∆

∗(DF ⊠F) ÐÐ→
≅

c !∆∗(DF ⊗F) evÐÐ→ c !∆∗KX
(1.14)ÐÐ→
≅

∆′∗c
′!KX = ∆

′
∗KFix(c) .

2. �e above morphism induces the global trace map (associated to c and F ) on cohomology,

trc ,F ∶= H
0(C , trc ,F ) ∶ Homc(F ,F) ÐÐ→ H0(Fix(c),KFix(c)),

where we used the identi�cations

H0(C ,RHom(c∗1 F , c !2F)) ≅ Hom(c∗1 F , c !2F) ≅ Hom(c2!c∗1 F ,F).
3. If j ∶ β ↪ Fix(c) is an open subset as before, we denote by

trc ,F ,β ∶ Homc(F ,F) ÐÐ→ H0(β,Kβ)
the composition of trc ,F with the restriction map

resβ ∶ H
0(Fix(c),KFix(c))→ H0(Fix(c), j∗ j∗KFix(c)) ≅ H0(β,Kβ)

induced by adj. �is map is called the trace map with respect to β (associated to c and F ).

4. Finally, if β is in addition proper over k, we may consider the composition

∫
β
trc ,F ,β ∶ Homc(F ,F) trc ,F ,βÐÐÐ→ H0(β,Kβ) ∫βÐÐ→ Λ,

where the second map is (1.9). If β is also a connected component of Fix(c) then ∫β trc ,F ,β is

denoted ltc ,F ,β and called the local term at β.
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If there is no risk of confusion we will suppress c, F , or β in the notation introduced above, thus
simply writing trc or ltβ etc.

Example 3.2 Let us compute the local term of a cohomological correspondence in a particularly sim-
ple situation, namely when c = ck ∶ k → k × k is the trivial correspondence. In this case, Fix(c) = k
and F can be identi�ed with a bounded complex of �nitely generated projective Λ-modules (Fi)i
(cf. 1.(d)). Most of the maps in the de�nition of tr collapse to the identity and we end up with the
following trace map

tr ∶ Hom(F ,F) (1.18)ÐÐ→ Hom(F , Λ)⊗F
evÐÐ→ Λ,

which is thus equal to the one de�ned in [3, I, 8.1] (cf. [14, III, p. 89]). It follows ([3, I, 8.1.2]) that if
the cohomological correspondence u ∶F →F has components ui ∶ Fi → Fi then

tr(u) =∑
i

(−1)iTr(ui) ∈ Λ,
where Tr is the usual trace of an endomorphism of projective �nite type modules.

Notation 3.3 If u ∈ Homck (F ,F) is a cohomological correspondence li�ing the trivial correspon-
dence ck we will write

Tr(u) =∑
i

(−1)iTr(ui) ∈ Λ
for the usual trace of an endomorphism of complexes as in the example. �us we have proved above:
tr(u) = Tr(u).

Having de�ned the trace map, we now proceed to study its behavior with respect to the various
operations on cohomological correspondences discussed in the previous section, i. e. with respect to
pushforward, pullback and specialization. Suppose e. g. that c ∶ C → X × X is a correspondence and
F ∈ Db

ctf (X) a complex of sheaves. In 2.§4 we de�ned the restriction map

[ jW ]∗ ∶ Homc(F ,F) ÐÐ→ Homc∣W (F ,F) (3.1)

associated to an open subset W ⊂ C. On the other hand, the trace maps trc and trc∣W map the le�
and right hand side of (3.1) into H0(Fix(c),KFix(c)) and H0(β,Kβ) (β = W ∩ Fix(c) = Fix(c∣W)),
respectively. What is then the operation

H0(Fix(c),KFix(c))ÐÐ→ H0(β,Kβ)
corresponding to [ jW ]∗? It would be nice if it was just the restriction map on cohomology, resβ , i. e.
if the following diagram commuted:

Homc(F ,F) tr

[ jW]
∗

H0(Fix(c),KFix(c))
resβ

Homc∣W (F ,F)
tr

H0(β,Kβ)
�is turns out to be indeed true and will be proved below (3.22) Speaking informally, we might say
that “the trace map is natural with respect to restriction”.

Similar questions could be asked in the case of specialization or pushforward, and here also we
hope that the trace map is “natural” with respect to these operations. But instead of answering these
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questions separately we prefer to generalize the setting until all these questions become instantiations
of one general question. Having answered this general question we will then be le� with interpreting
the answer, a general “naturality property” of the trace map, in the three contexts mentioned above.
�is is, roughly, the outline of the next three paragraphs.

§2 Cohomological morphisms

Our �rst goal is to de�ne a category cor′ in which the proof of the naturality property is going to
take place. It will be an arti�cial category, designed for this speci�c proof only.

Let c ∶ C → X × X be a self-correspondence. It gives rise to a diagram in the category of schemes
as follows:

Fix(c) c′

∆′

X

∆

C c X × X
p1

p2
X

πX
k

�is diagram generates a subcategory D(c) of Sch whose objects and morphisms will be denoted
Ob(c) and Mor(c), respectively. Given a second correspondence c there is a canonical functor

D(c) → D(c) which will usually be denoted (⋅). We say that a commutative square g4g1 = g2g3
inMor(c) is universally cartesian if for every correspondence c, g4 g1 = g2 g3 is cartesian as a square
in Sch/k (e. g. the square c∆′ = ∆c′ above is universally cartesian).
De�nition 3.4 Let c and c be two self-correspondences. A cohomological premorphism from c to c
is a triple ({ fZ , tZ}Z∈Ob(c) , {bc∗g , bc!g}g∈Mor(c) , ι),
where

• fZ is a functorDb
ctf (Z)→Db

ctf (Z);
• tZ is a morphism fZA ⊗ fZB → fZ(A ⊗B), natural in A and B;

• bc∗g is a morphism of functors g∗ fZ2
→ fZ1

g∗, if g ∶ Z1 → Z2;

• bc!g is a morphism of functors fZ1
g ! → g ! fZ2

, if g ∶ Z1 → Z2;

• ι is an isomorphism fkΛk → Λk .

Two such cohomological premorphisms

({ fZ , tZ}, {bc∗g , bc!g}, ι), ({ f ′Z , t′Z}, {bc′∗g , bc′!g }, ι′)
from c to c will be identi�ed if there is, for each Z ∈ Ob(c), a natural isomorphism of functors

fZ
≅Ð→ f ′Z ,

compatible with all the data in an obvious way. �e category cor′ has as objects self-correspon-
dences over k, and equivalence classes of cohomological premorphisms as morphisms. Given two
cohomological premorphisms

({ fZ , tZ}, {bc∗g , bc!g}, ι) ∶ c → c, ({ fZ , tZ}, {bc∗g , bc!g}, ι) ∶ c → c,
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the triple ({ fZ ○ fZ , tZ ○ tZ}, {bc∗g ○bc∗g , bc!g ○bc!g}, ι○ ι) clearly de�nes a cohomological premorphism

from c to c compatiblewith the above identi�cations, and ({1, 1}, {1, 1}, 1) is the identitywith respect
to this operation, thus de�ning an identity morphism.

In the sequel we will not distinguish between cohomological premorphisms and equivalence
classes thereof, and speak of cohomological premorphisms in both cases. �e careful reader will
convince herself that all these statements remain meaningful and true when translated in order to
take into account the identi�cations.

Notation 3.5 Let F = ({ fZ , tZ}, {bc∗g , bc!g}, ι) be a cohomological premorphism from c to c. For
each Z ∈ Ob(c) and each g ∶ Z1 → Z2 inMor(c), F gives rise to the following morphisms:

π̃Z ∶ fZKZ = fZπ
!
ZΛk

bc!πZÐÐ→ π!
Z
fkΛk

ιÐÐ→
≅

π!
Z
Λk = KZ ,

rZ ∶ fZ RHom(A ,B) ÐÐ→ RHom( fZA , fZB)
adjoint to

fZ RHom(A ,B)⊗ fZA
tZÐÐ→ fZ(RHom(A ,B)⊗A ) evÐÐ→ fZB,

dZ ∶ fZDA
rZÐÐ→ RHom( fZA , fZKZ) π̃ZÐÐ→ D fZA ,

bc∗g ∶ fZ2
g∗

adjÐÐ→ g∗g
∗ fZ2

g∗
bc∗gÐÐ→ g∗ fZ1

g∗g∗
adjÐÐ→ g∗ fZ1

,

bc!g ∶g ! fZ1

adjÐÐ→ g ! fZ1
g !g!

bc!gÐÐ→ g !g
! fZ2

g!
adjÐÐ→ fZ2

g! ,

ιZ ∶ΛZ

≅ÐÐ→ π∗
Z
Λk

ι−1ÐÐ→
≅

π∗
Z
fkΛk

bc∗πZÐÐ→ fZπ
∗
ZΛk

≅ÐÐ→ fZΛZ .

In the sequel, we will o�en omit the index Z of fZ and tZ when this causes no confusion.

Example 3.6 In this example, we will show how we intend to apply results about the category cor′

to the situations mentioned at the end of the last paragraph, thus giving a partial justi�cation for
introducing this category.

1. Let R be a discrete valuation ring over k whose residue �eld is also k, and denote by SCor the
corresponding digraph de�ned in 2.§5. We may de�ne a morphism of digraphs

S ∶ SCorÐÐ→ cor′ ,

the specialization functor. S is the identity on objects, and given a li� c̃ of c over R, the coho-
mological premorphism S(c̃) = ({ fZ , tZ}, {bc∗g , bc!g}, ι) from c to c ∶= c̃s is de�ned as follows.

For each Z ∈ Ob(c), c̃ de�nes a li� (Z̃ , φ) over R such that Z̃s = Z, and for each g ∈ Mor(c),
it de�nes a li� g̃ over R such that g̃s = g. We may thus set fZ = spZ̃ , bc

∗
g and bc!g the mor-

phisms bc∗ and bc! , respectively, de�ned in 2.§5, while tZ ∶ spZ̃A ⊗ spZ̃B → spZ̃(A ⊗B) is
the morphism

i∗ j∗b
∗A ⊗ i∗ j∗b

∗B
t i∗ÐÐ→
≅

i∗( j∗b∗A ⊗ j∗b
∗B)

t j∗ÐÐ→ i∗ j∗(b∗A ⊗ b∗B)
tb∗ÐÐ→
≅

i∗ j∗b
∗(A ⊗B)

50



(in the notation of 1.(o) and where b ∶ Z̃
ηh → Z̃η ≅ Zη → Z). Finally, for ι we take the

isomorphism (2.10)−1 ∶ spRΛk → Λk . Alternatively, and sometimes more usefully, it may be
described as

i∗ j∗b
∗Λk

εÐÐ→ i∗ j∗Ληh

ε′−1ÐÐ→ i∗Λ
Rh

εÐÐ→ Λk , (3.2)

as is shown by the commutativity of the following diagram (cf. (1.7)):

i∗ j∗b
∗Λ

ε ≅

i∗ j∗ j
∗c∗Λ

≅

ε ≅

i∗c∗Λ
adj

≅

ε ≅

≅ b∗Λ

ε ≅

i∗ j∗Λ i∗ j∗ j
∗Λ

ε

≅
i∗Λ

≅

adj ε

≅
Λ

(Here c ∶ Rh → k is the structure morphism so that c j = b.)

2. Let PCor = PCor(k) denote the subcategory of sCor(k) whose morphisms are proper. We
may then de�ne a functor

P ∶ PCorÐÐ→ cor′,

the proper pushforward functor. P is the identity on objects, while given a proper morphism[ f ] ∶ c → c of correspondences, we de�ne P([ f ]) = ({ fZ , tZ}, {bc∗g , bc!g}, ι) as follows. For
each Z ∈ Ob(c), [ f ] de�nes a proper morphism of schemes [ f ]Z ∶ Z → Z such that g[ f ]Z1

=[ f ]Z2
g for every g ∶ Z1 → Z2 inMor(c). We may thus set fZ = [ f ]Z∗ = [ f ]Z ! , ι the identity, tZ

to be t[ f ]Z∗ as de�ned in (1.2), and bc
∗
g and bc

!
g are the usual base change morphisms (1.12) and

(1.11), respectively. Functoriality of P follows from the fact that the base change morphisms
and (1.2) are compatible with composition.

3. Finally, let RCor = RCor(k) denote the subcategory of sCor(k) whose morphisms are open
immersions. We will de�ne a functor

Q ∶ RCor0 ÐÐ→ cor′ ,

the restriction functor. It is the identity on objects, and given an open immersion [ f ] ∶ c → c
of correspondences, the cohomological premorphism Q([ f ]) = ({ fZ , tZ}, {bc∗ , bc!}, ι) is
de�ned as follows. For each Z ∈ Ob(c), [ f ] de�nes an open immersion of schemes [ f ]Z ∶ Z →
Z such that [ f ]Z2

g = g[ f ]Z1
for every g ∶ Z1 → Z2 in Mor(c). We may thus set fZ = [ f ]∗Z =[ f ]!Z , ι the identity, tZ the canonical morphism t[ f ]∗Z of (1.1), while bc

∗
g and bc!g are the usual

transitivity morphisms. Again, functoriality of Q follows from the fact that the transitivity
morphisms and (1.1) are compatible with composition.

Now we have seen how cor′ “generalizes” the contexts discussed at the end of the previous para-
graph, and the natural thing to do would be to prove functoriality of the trace map with respect to
cor′. However, the conditions imposed on the morphisms in cor′ are too weak for that. We will thus
pick out a class of morphisms (“cohomological morphisms”) for which functoriality can be proved.
Of course we then have to make sure the “functors” P, Q and S all land in this restricted class of
morphisms.

Let ({ fZ , tZ}, {bc∗g , bc!g}, ι) be a cohomological premorphism from c to c. �e following axioms
will be of interest in the sequel:
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(M1) Each tZ is commutative and associative, i. e. the following two diagrams commute for every
Z ∈ Ob(c) and every A , B and C ∈Db

ctf (Z):
fA ⊗ fB

t

≅

f (A ⊗B)
≅

fB⊗ fA
t

f (B ⊗A )

fA ⊗ fB⊗ fC
t

t

fA ⊗ f (B⊗C )
t

f (A ⊗B)⊗ fC
t

f (A ⊗B⊗C )

(3.3)

(M2) For A ∈ Db
ctf (Z), Z ∈ Ob(c), the composition

φ ∶ fZA
≅ÐÐ→ fZA ⊗ΛZ

ιZÐÐ→ fZA ⊗ fZΛZ
tZÐÐ→ fZ(A ⊗ΛZ) ≅ÐÐ→ fZA

is the identity morphism.

(M3) For every Z ∈ Ob(c), bc∗1Z is the identity morphism, and for every g1 ∶ Z1 → Z2, g2 ∶ Z2 → Z3

inMor(c), bc∗g2 g1 decomposes as

bc∗g2 g1 ∶ (g2g1)∗ fZ3

≅ÐÐ→ g∗1 g
∗
2 fZ3

bc∗g2ÐÐ→ g∗1 fZ2
g∗2

bc∗g1ÐÐ→ fZ1
g∗1 g

∗
2
≅ÐÐ→ fZ1

(g2g1)∗ .
(M4) For every g ∶ Z1 → Z2 in Mor(c) and every A , B ∈ Db

ctf (Z2), the following diagram com-
mutes:

g∗ fA ⊗ g∗ fB

bc∗g ⊗ bc∗g

t g∗

≅
g∗( fA ⊗ fB) t

g∗ f (A ⊗B)
bc∗g

f g∗A ⊗ f g∗B
t

f (g∗A ⊗ g∗B) t g∗

≅
f g∗(A ⊗B)

(3.4)

(M5) For every Z ∈ Ob(c), dZ is an isomorphism.

(M6) For every g ∈Mor(c)with g and g proper, both bc∗g and bc!g are isomorphisms, and inverses
to each other.

(M7) For every Z ∈ Ob(c), bc!1Z is the identity morphism, and for every g1 ∶ Z1 → Z2, g2 ∶ Z2 → Z3

inMor(c), bc!g2 g1 decomposes as

bc!g2 g1 ∶ (g2g1)! fZ3

≅ÐÐ→ g !1g
!
2 fZ3

bc!g2ÐÐ→ g !1 fZ2
g !2

bc!g1ÐÐ→ fZ1
g !1g

!
2
≅ÐÐ→ fZ1

(g2g1)! .
(M8) Let g4g1 = g2g3 be a universally cartesian square in Mor(c). �en the following diagram

commutes:

g∗2 g4! f
bc (1.13)

bc∗g2○bc!g4

g3!g
∗
1 f

bc!g3○bc
∗
g1

f g∗2 g4!
bc (1.13)

f g3!g
∗
1

(3.5)
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(M9) Let g ∶ Z1 → Z2 be inMor(c). �en the following diagram commutes for any A ∈ Db
ctf (Z1),

B ∈Db
ctf (Z2):

g !( fA ⊗ g∗ fB) tZ1○bc
∗
g

g ! f (A ⊗ g∗B)
bc!g

g ! fA ⊗ fB

proj (1.4)

bc!g

f g!(A ⊗ g∗B)

f g!A ⊗ fB
tZ2

f (g!A ⊗B)
proj (1.4)

(3.6)

Example 3.7 Let us check which of these axioms are satis�ed by the cohomological premorphisms
considered in the previous example. More speci�cally, we will prove that any cohomological pre-
morphism in the image of S or P satis�es Axioms (M1–6), while any cohomological premorphism
in the image of Q satis�es Axioms (M1–5, 7–9).

(M1) In the restriction case, the two squares in (3.3) commute since they do so already on the level
of complexes. �is is true for any morphism of schemes (not only for open immersions) hence
the proper case follows by adjointness. Finally, the specialization case follows, in view of the
de�nition of tZ , from the two cases just considered.

(M2) Let f ∶ X → Y be an arbitrary morphism of schemes. It has been remarked in 1.(i) that for any
A ∈Db

ctf (X) and B ∈Db
ctf (Y), the following two squares commute:

f ∗B f ∗B⊗ΛX
≅

f ∗(B⊗ΛY)
≅

f ∗B⊗ f ∗ΛYt f∗

≅

≅ ε

f∗A f∗A ⊗Λ
≅

ε′

f∗(A ⊗Λ)
≅

f∗A ⊗ f∗Λt f∗

(3.7)

Now, it follows from (1.7) that in the restriction case ιZ = ε
−1 hence the commutativity of the

le� diagram in (3.7) implies the axiom in this case. Similarly, ιZ = ε
′ in the proper case hence

the commutativity of the right square in (3.7) implies the axiom in this case.

For the specialization case we take up the notation of 3.6. In addition let q ∶ Z̃
ηh → ηh and

r ∶ Z̃
Rh → Rh denote the canonical morphisms. Consider then the following diagram:

i∗ j∗ΛZ̃
ηh

i∗ j∗b
∗ΛZ

ε
i∗ j∗b

∗π∗ZΛk
ε

i∗ΛZ̃
Rh

ε

ε′

i∗ j∗q
∗Λ

ηh

ε

i∗ j∗q
∗b∗Λk

≅

ε

ΛZ̃s
i∗r∗Λ

Rh

ε

ε′ i∗r∗ j∗Ληh

bc (1.12)

i∗r∗ j∗b
∗Λk

bc (1.12)

ε

π∗
Z̃s
Λk

ε

π∗
Z̃s
i∗Λ

Rhε

≅

ε′ π∗
Z̃s
i∗ j∗Ληh

≅

π∗
Z̃s
i∗ j∗b

∗Λk

≅

ε
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�e commutativity of the two trapezoids follows immediately from the commutativity of (1.7),
while the commutativity of the three squares in the lower right part of the diagram is clear by
the naturality of the morphisms involved. Replacing the base change morphism (1.12) by

r∗ j∗
adjÐÐ→ r∗ j∗q∗q

∗ ≅ÐÐ→ r∗r∗ j∗q
∗ adjÐÐ→ j∗q

∗ ,

and ε′ by Λ
adjÐÐ→ j∗ j

∗Λ
εÐÐ→ j∗Λ, the commutativity of the pentagon becomes obvious. Notice

that this diagram provides us with an alternative description of ιZ ∶ ΛZ̃s
→ spZ̃ΛZ (cf. (3.2)).

We use it in the following diagram (it appears as the le�most column):

spZ̃A ⊗ i∗ j∗b
∗Λ

t i∗

1⊗ ε

i∗( j∗b
∗
A ⊗ j∗b

∗Λ)
t j∗

1⊗ ε

i∗ j∗(b
∗
A ⊗ b∗Λ)

1⊗ ε

tb∗
i∗ j∗b

∗(A ⊗Λ)

≅

spZ̃A ⊗ i∗ j∗Λ
t i∗

i∗( j∗b
∗
A ⊗ j∗Λ)

t j∗
i∗ j∗(b

∗
A ⊗Λ)

≅
spZ̃A

spZ̃A ⊗ i∗Λ

1⊗ ε′

t i∗

1⊗ ε

i∗( j∗b
∗
A ⊗Λ)

1⊗ ε′

≅

spZ̃A ⊗Λ
≅

spZ̃A

=

�e bottom le� square and the top right square are instances of the le�, while the triangle is
an instance of the right diagram in (3.7). �e other squares are clearly commutative hence so
is the whole diagram. By what we said above, the composition of the le�most column and the
top row is tZ ○ ιZ hence the axiom holds in the specialization case as well.

(M3) �e �rst statement is clear. For the second one, see 1.(k) in the proper and the restriction case
and 2.19.2 in the specialization case.

(M4) In the restriction case, the diagram commutes already on the level of complexes, and (this again
not being speci�c to open immersions) the proper case follows from this one by adjointness.
Finally, the specialization case follows from these two.

(M5) To prove that dZ is an isomorphism, we claim, in the proper case, that it coincides with the
local Verdier duality isomorphism

f∗RHom(A , f !K) ≅ÐÐ→ RHom( f!A ,K)
(see [2, XVIII, 3.1.10]). Indeed, the latter is de�ned as the composition

f∗ RHom(A , f !K)ÐÐ→ RHom( f!A , f! f
!K) adjÐÐ→ RHom( f!A ,K),

where the �rst map is just rZ . Hence the claim follows from the fact that π̃Z coincides with the
morphism adj above, i. e. that the following diagram commutes (which is obvious):

f! f
!π!

adj

≅
f!π

!

bc (1.11)

π!
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In the restriction case, both rZ and π̃Z are clearly isomorphisms hence so is dZ .

In the specialization case, let Z ∈ Ob(c) and let (Z̃ , φ) be its corresponding li� over R. Denote
by b the composition

Z̃ηh ÐÐ→ Z̃η

φηÐÐ→
≅

Zη ÐÐ→ Z ,

by p the canonicalmap Z̃ηh → ηh , and consider the following diagram (F ∈Db
ctf (Z) arbitrary,[−,−] abbreviates RHom(−,−)):

Ψb∗[F ,KZ]⊗Ψb∗F Ψ(b∗[F ,KZ]⊗ b∗F) ≅

tb∗
Ψb∗([F ,KZ]⊗F)

ev

Ψ[b∗F , b∗KZ]⊗Ψb∗F

bc (1.15)

Ψ([b∗F , b∗KZ]⊗ b∗F)
bc (1.15)

ev
Ψb∗KZ

bc (1.15)

Ψ[b∗F , p!Λ]⊗Ψb∗F Ψ([b∗F , p!Λ]⊗ b∗F) ev Ψp!Λ

Here the horizontal arrows in the le� part of the diagram are induced by t j∗ as in the de�nition
of tZ . In particular the top row is precisely tZ . �e unlabeled vertical arrows are induced by
the canonical morphism b∗RHom(F ,KZ)→ RHom(b∗F , b∗KZ) adjoint to

b∗RHom(F ,KZ)⊗ b∗F tb∗ÐÐ→
≅

b∗(RHom(F ,KZ)⊗F) evÐÐ→ b∗KZ . (3.8)

Hence the two upper squares are commutative. Finally, the vertical arrows in the lower half
are all induced by

b∗π!
ZΛk → p!c∗Λk

εÐÐ→
≅

p!Ληh , (3.9)

where c ∶ ηh → k. �us the lower half and hence the whole diagram is commutative.

Now, the composition of the top row tZ and the right column followed by the base change
morphism

Ψp!Ληh

(1.25)ÐÐ→ π!
Z̃s
ΨΛηh = π!

Z̃s
i∗ j∗Ληh

ε′−1ÐÐ→
≅

π!
Z̃s
i∗Λ

Rh

εÐÐ→
≅

KZ̃s

(notation as in 1.§4) is adjoint to dZ hence we have shown that dZ factors as follows:

Ψb∗RHom(F ,KZ)→ ΨRHom(b∗F , p!Λ)→ RHom(Ψb∗F ,KZ̃s
).

�e second map of this factorization is an isomorphism by [16, 4.2]. To prove that dZ is an iso-
morphism we thus have to show that the �rst map in the factorization is. In fact, we will prove
the stronger assertion that both (3.9) and the morphism adjoint to (3.8) are isomorphisms.

For this notice the following fact. Given anymorphism f ∶ Y → Z and the associated cartesian
square

Y ′
b′

f ′

Y

f

Z̃ηh
b

Z

(3.10)
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with b as above, the base change morphism (1.12) ∶ b∗ f∗ → f ′∗b
′∗ is an isomorphism. Indeed,

the �eld extension ηh ⊃ k is the direct limit of its smooth k-subalgebras (kµ)µ . By base change
with respect to πZ and πZ f we deduce inverse systems of schemes (Zµ)µ and (Yµ)µ with
morphisms denoted as in the diagram (of cartesian squares)

Y ′
b′∞→µ

f ′

Yµ
b′µ

fµ

Y

f

Z̃ηh
b∞→µ

Zµ
bµ

Z

decomposing (3.10), Z̃ηh and Y ′ being the inverse limits, respectively. Consider the following
diagram where the unlabeled arrows are the canonical morphisms:

limÐ→µ
b∗∞→µ fµ∗b

′∗
µ

bc (1.12) limÐ→µ
f ′∗b
′∗
∞→µb

′∗
µ

≅
f ′∗b
′∗

limÐ→µ
b∗∞→µb

∗
µ f∗

≅

bc (1.12)

b∗ f∗

bc (1.12)

By the compatibility of (1.12) with respect to composition (cf. 1.(k)), this diagram commutes.
By [1, VII, 5.11], the top row is an isomorphism, while the le� vertical arrow is an isomorphism
since bµ is smooth. Hence so is the right vertical arrow.

Using the fact just established, the adjoint of (3.8) is shown to be an isomorphism exactly as
in the proof of [14, I, 4.3]. For (3.9), we note that the claim is local on Z hence we may assume
that πZ factors into gh, h a closed immersion and g a smooth morphism. By the compatibility
of the base change morphism (1.15) with respect to composition and since the claim is clear in
the case of πZ = g smooth we are reduced to show that h! commutes with the pullback along
ηh → k. Let U be the complement of the image of h ∶ V ↪ X and let f ∶ U ↪ X be the
associated open immersion. Furthermore, let’s �x our notation as in the following diagram of
cartesian squares:

V ′
e′′

h′

V

h

X′
e′

X

U ′

f ′

e
U

f

Here, e′ denotes the base change of ηh → k with respect to πX . Moreover, let I⋅ be a bounded
below complex of injective sheaves on X, and let α ∶ e′∗I⋅ → J ⋅ be an injective resolution of
e′∗I⋅. Fix some n ∈ Z. Applying the functor Hom(−, In) to the canonical short exact sequence
of sheaves on X

0 ÐÐ→ f! f
∗ΛX

adjÐ→ ΛX
adjÐ→ h∗h

∗ΛX ÐÐ→ 0

results in another short exact sequence of sheaves,

0 ÐÐ→ h∗h
!In

adjÐ→ In
adjÐ→ f∗ f

∗In ÐÐ→ 0.

56



Letting n vary and applying the exact functor h∗ weobtain a short exact sequence of complexes

0 ÐÐ→ h!I⋅
βÐ→ h∗I⋅

adjÐ→ h∗ f∗ f
∗I⋅ ÐÐ→ 0,

where β is induced by the composition

h!
adj←Ð
≅

h∗h∗h
! = h∗h!h

! adjÐ→ h∗ .

Similar remarks apply to J ⋅ and the morphisms h′ and f ′. We are now going to construct a
morphism of distinguished triangles associated to such short exact sequences.

Still on the level of complexes, consider the following diagram:

e′′∗h!I⋅
e′′∗β I⋅

bc

e′′∗h∗I⋅

≅

h′!e′∗I⋅
βe′∗ I⋅

α

h′∗e′∗I⋅

α

h′! J ⋅
β J⋅

h′∗J ⋅

(3.11)

Here, the base change morphism bc is induced by the composition

e′′∗h!
adjÐ→ h′!h′!e

′′∗h!
adj←Ð
≅

h′!e′∗h!h
! adjÐ→ h′!e′∗,

the second arrow being the proper base change isomorphism (for sheaves). It is then easy to
see that the upper half of (3.11) commutes while the lower half commutes by the naturality of
β. Denote by γ (resp. δ) the composition of the vertical morphisms on the le� (resp. right) of
(3.11). We will de�ne below an isomorphism e′′∗h∗ j∗ j

∗I⋅ → h′∗ j′∗ j
′∗ J ⋅ in the derived category

rendering commutative the following diagram:

e′′∗h!I⋅
e′′∗β I⋅

γ

e′′∗h∗I⋅

δ

adj
e′′∗h∗ j∗ j

∗I⋅

≅

C(e′′∗βI⋅)
δ⊕γ[1]

e′′∗h∗I⋅[1]
γ[1]

h′! J ⋅
β J⋅

h′∗J ⋅
adj

h′∗ j′∗ j
′∗ J ⋅ C(βJ⋅) h∗J ⋅[1]

Here C( f ) denotes the mapping cone of f and the unlabeled morphisms are the canonical
ones. �us we obtain a morphism of distinguished triangles in the derived category. Since δ
is an isomorphism we conclude that γ is an isomorphism too. But modulo the identi�cation
of the functor h! (on complexes of sheaves) and h! (its derived counterpart) when applied
to complexes of injective sheaves, γ is just bc (1.15). Applying this to the case where I⋅ is an
injective resolution of g !Λk , we see that (3.9) must be an isomorphism.

As for the dotted arrow above we may choose the following composition of morphisms in
the derived category (again, modulo the identi�cation of j∗ (on complexes of sheaves) and its
derived counterpart when applied to complexes of injective sheaves):

e′′∗h∗ j∗ j
∗I⋅

≅Ð→ h′∗e′∗ j∗ j
∗I⋅

bc (1.12)ÐÐÐÐ→ h′∗ j′∗e
∗ j∗I⋅

≅Ð→ h′∗ j′∗ j
′∗e′∗I⋅

αÐ→
≅

h′∗ j′∗ j
′∗ J ⋅.
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It is easily seen to make the above diagram commutative. Moreover, by the fact established
above, the second arrow in the composition is an isomorphism, thus the claim.

(M6) Notice that in the proper case bc∗g and bc!g are the usual transitivity morphisms [ f ]Z2∗g∗ →
g∗[ f ]Z1∗ and g ![ f ]Z1 !

→ [ f ]Z2 !
g! hence the axiom is clearly satis�ed.

�e specialization case was treated in 2.19.1.

(M7) �is is obvious in the restriction case (1.(k)).

(M8) In the restriction case, the diagram may be expanded as follows, where all unlabeled arrows
are transitivity isomorphisms:

g∗2 g4! f
! bc (1.13)

adj

g3!g
∗
1 f

! ≅

adj

g3! f
! g∗1

adj

adj
g∗2 g4! f

! g !4g4!
bc (1.13)

≅

g3!g
∗
1 f

! g !4g4!

≅

≅ g3! f
! g∗1 g

!
4g4!

bc (1.15)

g∗2 g4! g
!
4 f

! g4!
bc (1.13)

adj

g3! g
∗
1 g

!
4 f

! g4!

bc (1.15)

g3! f
! g !3g

∗
2 g4!

≅

bc (1.13)
g3! f

! g !3g3!g
∗
1

≅

g∗2 f
! g4!

≅

g3!g
!
3g
∗
2 f

! g4! ≅

adj
g3!g

!
3 f

! g∗2 g4! bc (1.13)

adj

g3! g
!
3 f

! g3!g
∗
1

adj

f ! g∗2 g4! bc (1.13)
f ! g3!g

∗
1

�e big square in the middle of the diagram is easily seen to commute by the compatibility of
(1.15) with respect to composition, the rest of the diagram is clearly commutative.

(M9) In the restriction case we are given a commutative square f g = g f ′ with f and f ′ open im-
mersions. �en the diagram (3.6) extends by adjointness as follows:

f! g !( f
′∗

A ⊗ g∗ f ∗B)
≅

f! g !( f
′∗

A ⊗ f ′∗g∗B)
≅

g! f
′

! ( f
′∗

A ⊗ f ′∗ g∗B)
t f ′∗

≅
g! f
′

! f
′∗(A ⊗ g∗B)

adj

f!(g ! f
′∗

A ⊗ f ∗B)

proj

bc (1.13)−1 ≅

f! g ! f
′∗

A ⊗B

≅

proj

bc (1.13)−1 ≅

1©

g!( f
′

! f
′∗

A ⊗ g∗B)

proj

adj
g!(A ⊗ g∗B)

f!( f
∗g!A ⊗ f ∗B)

t f∗ ≅

f! f
∗g!A ⊗B

proj

adj

g! f
′

! f
′∗

A ⊗B

proj

adj

f! f
∗(g!A ⊗B)

adj
g!A ⊗B

proj

1© commutes by the compatibility of proj with respect to composition. �e commutativity of
the bottom le� and the top right inner square can be checked on the level of complexes where
it is obvious. �e rest of the diagram clearly commutes.
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De�nition 3.8 1. Let c0 and c0 be open subcorrespondences of c and c, respectively. Denote
the canonical functors D(c)→ D(c0) and D(c) → D(c0) by (⋅)0. We say that a cohomolog-
ical premorphism ({ fZ , tZ}, {bc∗g , bc!g}) from c to c extends a cohomological premorphism

({ fZ0 , tZ0}, {bc∗g0 , bc!g0}) from c0 to c0 if it comes equipped, for each Z ∈ Ob(c) and each

A ∈Db
ctf (Z), with an isomorphism

χZ ,A ∶ fZ0(A ∣Z0) ≅Ð→ fZ(A )∣Z0 ,

natural inA , such that the following three diagrams commute (for any Z,A ,B, and g ∶ Z1 →
Z2):

fZ0(A ∣Z0)⊗ fZ0(B∣Z0)
tZ0

χ
≅ fZ(A )∣Z0 ⊗ fZ(B)∣Z ≅ ( fZ(A )⊗ fZ(B))∣Z0

tZ

fZ0(A ∣Z0 ⊗B∣Z0) ≅
fZ0((A ⊗B)∣Z0)

χ

≅ fZ(A ⊗B)∣Z0

(3.12a)

g0∗ fZ0
2
(A ∣Z0

2
)

bc∗g0

χ

≅ g0∗( fZ2
(A )∣Z2

0) ≅ (g∗ fZ2
A )∣Z1

0

bc∗g

fZ0
1
g0∗(A ∣Z0

2
) ≅ fZ0

1
(g∗(A )∣Z0

1
) ≅

χ
( fZ1

g∗A )∣Z1
0

(3.12b)

( fZ1
g !A )∣Z1

0

bc!g

fZ0
1
((g !A )∣Z0

1
)

χ

≅ bc (1.15)
fZ0

1
g0!(A ∣Z0

2
)

bc!g0

(g ! fZ2
A )∣Z1

0
bc (1.15)

g !(( fZ2
A )∣Z2

0) g0! fZ0
2
(A ∣Z0

2
)≅

χ

(3.12c)

In other words, we require that this isomorphism identi�es tZ0 , bc∗g0 and bc!g0 with tZ ∣Z0 ,

bc∗g ∣Z1
0 and bc!g ∣Z1

0 , respectively.

2. A cohomological premorphism f from c to c is called a good cohomological morphism (of type
(C1), (C2), respectively) if the following condition holds, respectively:

(C1) f satis�esAxioms (M1–6) above and it can be extended to a cohomological premorphism
between compacti�cations of c and c which also satis�es Axioms (M1–6).

(C2) f satis�es Axioms (M1–5, 7–9).

3. A cohomological morphism is a cohomological premorphism which decomposes into �nitely
many good cohomological morphisms.

Clearly, the self-correspondences together with the cohomological morphisms de�ne a subcate-
gory of cor′, denoted cor.

Example 3.9 Our next task is to check that the functors S, Q and P factor through cor ↪ cor′. We
have already proved in the previous example that any morphism in the image of Q is actually a good
cohomological morphism (of type (C2)).

For P, let [ f ] ∶ c → b be a proper morphism of self-correspondences. By 2.5.2, there exist com-

pacti�cations [i] ∶ c ↪ c and [ j] ∶ b ↪ b and a morphism [ f ] ∶ c → b extending [ f ]. We have
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proved in the previous example that both P([ f ]) and P([ f ]) satisfy Axioms (M1–6). To prove that

P([ f ]) is a good cohomological morphism (of type (C1)) it thus su�ces to show that P([ f ]) extends
P([ f ]). If Z is in Ob(c) and if Z′ is the corresponding element of Ob(b) then, in the notation of

3.6, there is a canonical identi�cation of functors [ f ]Z∗[i]∗Z ≅ [ j]∗Z ′[ f ]Z∗ coming from the natural

identi�cation of the corresponding functors of sheaves since the restriction functors are exact and
preserve injectives. It is then clear that this isomorphism of functors satis�es the properties needed

for P([ f ]) to extend P([ f ]).
We now turn to S, the specialization functor. Let c be a correspondence and let c̃ be a li� of c

over R, de�ning a morphism c → c̃s in SCor. By 2.5.1, there exists a compacti�cation c ↪ c of c. Let
d̃ and d̃(c) be correspondences over R as in 2.27, thus [ f ] ∶ d̃ → c̃ is proper, d̃ li�s c, and embeds as
an open immersion into the correspondence d̃(c) which is proper over R and li�s c. Moreover, the
diagram (2.12) commutes. We then arrive at the situation depicted in the following diagram in cor′:

c

S(c̃)

S(d̃)
d̃s

P([ f s])

c̃s

c
S(d̃(c))

d̃(c)s

(3.13)

(Here, the components of [ fs] arise from the components of [ f ] by the base change k → R.) As-
sume for the moment that the triangle commutes, i. e. assume that we have a factorization of S(c̃) as
P([ fs]) ○ S(d̃). By what we showed above, P([ fs]) is a good cohomological morphism. Moreover,
the diagram already suggests a candidate, S(d̃(c)), for extending S(d̃) to a compacti�cation. Since
we have proved in the previous example that all premorphisms in the image of S satisfy Axioms (M1–
6), this would show that S(d̃) is a good cohomological morphism as well, and thus imply that S(c̃)
indeed is a morphism of cor.

It thus remains to show the commutativity of the diagram and the fact that the arrow at the
bottom, S(d̃(c)), extends the arrow at the top, S(d̃). Let us check the latter �rst. Clearly, c is an open
subcorrespondence of c, and d̃s is an open subcorrespondence of d̃(c)s . Taking up the notation of
3.6, let Z ∈ Ob(c), and denote by j ∶ Z ↪ Z and j̃ ∶ Z̃ → Z̃′ the open immersions induced by c ↪ c
and d̃ ↪ d̃(c), respectively. �en, the commutativity of (2.12) implies that j̃ li�s j. Hence there is a
base change morphism

spZ̃ j
! bc!ÐÐ→ j̃!sspZ̃′ ,

which is an isomorphism (2.19.1). We take this as χ (in the notation of 3.8). We still have to prove

that the diagrams (3.12) in the de�nition commute. For this note that χ = bc! is the inverse of bc∗

(again, by 2.19.1). �us the diagrams (3.12b) and (3.12c) simply express the compatibility of the base
change morphisms with respect to composition which has already been proved (2.19.2). Finally, the
diagram (3.12a) is equal to the diagram (3.4) of Axiom (M4) and is thus commutative. (In the proof of
this axiom in the previous example we didn’t use the fact that g ∶ Z1 → Z2 is an element ofMor(c).)

We now turn to the commutativity of the triangle in (3.13). Let Z ∈ Ob(c) and denote by Z̃ and
Z̃′ its li�s de�ned by c̃ and d̃, respectively. Also, denote by f̃ ∶ Z̃′ → Z̃ the morphism de�ned by[ f ] ∶ d̃ → c̃. By the choice of d̃, f̃ is a li� of the identity morphism 1Z . Hence there is a base change
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morphism

spZ̃ = spZ̃1Z∗
bc∗ÐÐ→ f̃s∗spZ̃′ ,

which is an isomorphism since f̃ is proper (2.19.1). �is provides an identi�cation of the functors
Db

ctf (Z) → Db
ctf (Z̃s) de�ned by S(c̃) and P([ fs]) ○ S(d̃). We have to check that this identi�cation

is “compatible” with the other data making up these two cohomological premorphisms, i. e. that
it identi�es the morphisms tZ , bc

∗
g , bc

!
g , ιZ of the two premorphisms (Z ∈ Ob(c), g ∈ Mor(c)).

Let us check this �rst with respect to tZ . Here, the compatibility means that the following diagram
commutes for any A ,B ∈Db

ctf (Z):
spZ̃1Z∗A ⊗ spZ̃1Z∗B

t Z̃

bc∗

spZ̃(1Z∗A ⊗ 1Z∗B) =

t1Z∗
spZ̃1Z∗(A ⊗B)

bc∗

f̃s∗spZ̃′A ⊗ f̃s∗spZ̃′B t f̃ s∗
f̃s∗(spZ̃′A ⊗ spZ̃′B) t Z̃′

f̃s∗spZ̃′(A ⊗B)
By adjointness, this diagram translates to the following one:

f̃ ∗s (spZ̃1Z∗A ⊗ spZ̃1Z∗B) t Z̃

≅

f̃ ∗s spZ̃(1Z∗A ⊗ 1Z∗B)
bc∗

=

t1Z∗
f̃ ∗s spZ̃1Z∗(A ⊗B)

bc∗

f̃s∗spZ̃′1Z∗A ⊗ f̃s∗spZ̃′1Z∗B

bc∗

spZ̃′1
∗
Z(1Z∗A ⊗ 1Z∗B)

=

t1Z∗
= spZ̃′1

∗
Z1Z∗(A ⊗B)

adj

spZ̃′1
∗
Z1Z∗A ⊗ spZ̃′1

∗
Z1Z∗B t Z̃′

spZ̃′(1∗Z1Z∗A ⊗ 1∗Z1Z∗B) adj
spZ̃′(A ⊗B)

�e right upper square commutes by the naturality of bc∗, the right lower square clearly commutes,
while the le� half of the diagram is again the same as (3.4) of Axiom (M4), thus is commutative for
the same reasons.

In the case of the base changemorphismswhich are part of the datamaking up the premorphisms
S(c̃) and P([ f ]) ○ S(d̃), the compatibility is easy to check. E. g. in the case of bc∗g , g ∶ Z1 → Z2 in
Mor(c):

g̃∗s spZ̃2
1Z2∗

bc∗g

bc∗

spZ̃1
g∗1Z2∗

bc (1.12)

=
spZ̃1

1Z1∗g
∗

bc∗

g̃∗s f̃2s∗spZ̃′2 bc (1.12)
f̃1s∗ g̃

′∗
s spZ̃′2 bc∗g

f̃1s∗spZ̃1
g∗

(Here, g̃ ∶ Z̃1 → Z̃2, g̃
′
∶ Z̃′1 → Z̃′2, f̃i ∶ Z̃

′
i → Z̃ i , i = 1, 2.) �e commutativity of this diagram

follows from the description of bc∗ in terms of bc∗ (by adjointness), and from the compatibility of
bc∗ with respect to composition (2.19.2). �e case of bc!g is treated in the same way, using the fact

that bc∗ = bc
−1
! (2.19.1).

Finally, ι ∶ spRΛk → Λk is exactly the same for both cohomological premorphisms S(c̃) and
P([ f ]) ○ S(d̃), while the identifying base-change morphism spR1∗ΛR → 1∗spR is the identity. �is
concludes the proof of the fact that the functor S also factors through cor↪ cor′.
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§3 Properties of good cohomological morphisms

�roughout this paragraph we �x a good cohomological morphism F = ({ fZ , tZ}, {bc∗g , bc!g}, ι)
from c ∶ C → X × X to c.

Lemma 3.10 1. F satis�es Axiom (M7).

2. For each g ∶ Z1 → Z2 in Mor(c), the morphism π̃Z1
admits a decomposition

fZ1
KZ1

≅ÐÐ→ fZ1
g !KZ2

bc!gÐÐ→ g ! fZ2
KZ2

π̃Z2ÐÐ→ g !KZ2

≅ÐÐ→ KZ2
.

3. For each commutative square g4g1 = g2g3 in Mor(c), the following two diagrams commute:

f g∗2 g4∗

bc (1.12)

g∗2 f g4∗
bc∗g4bc∗g2 g∗2 g4∗ f

bc (1.12)

f g3∗g
∗
1

bc∗g3

g3∗ f g
∗
1 g3∗g

∗
1 f

bc∗g1

(3.14a)

f g3!g
!
1

bc (1.11)

g3! f g
!
1

bc!g1
bc!g3

g3!g
!
1 f

bc (1.11)

f g !2g4!
bc!g2

g !2 f g4! g !2g4! fbc!g4

(3.14b)

Proof 1. If F is of type (C2) then Axiom (M7) holds by de�nition. If F is of type (C1) we may
replace c and c by their compacti�cations since both statements are local. �us wemay assume
that the g i and g i , i = 1, 2, are all proper. By Axiom (M3), both statements are true for bc∗,
hence also for bc∗. But then Axiom (M6) implies that they are true for bc! hence also for bc

! .

2. �is follows immediately from part 1.

3. �e proof of the commutativity is similar for the two diagrams and we will give it only for the
second one.

By adjointness, (3.14b) may be expanded as follows (g ∶= g4g1 = g2g3):

g2! f g3!g
!
1

1©

bc (1.11)

bc!g2

g2! g3! f g
!
1

bc!g3 ≅
g ! f g

!
1

≅

≅

bc!g

g2! g3! f g
!
1

≅

bc!g1
g2! g3! g

!
1 f

≅

f g2!g3!g
!
1

≅

2©

bc (1.11)

f g!g
!
1

3©≅

g4! g1! f g
!
1

bc!g1

bc!g1
g4! g1! g

!
1 f

adjf g4! g1!g
!
1

adj

g4! f g1!g
!
1

bc!g4

adj

4©

g2! f g
!
2 g4! bc!g2

f g2! g
!
2g4! adj

f g4! g4! fbc!g4

g4! f

62



�e subdiagrams 1© and 3© commute by part 1, 2© commutes by the de�nition of (1.11), and
4© commutes by the de�nition of bc! . �e rest of the diagram commutes by the naturality of
the corresponding morphisms. ◻

Lemma 3.11 F satis�es Axioms (M8) and (M9).

Proof If F is of type (C2) then these axioms are satis�ed by de�nition. If F is of type (C1) then
we may replace c and c by their compacti�cations since the statements in both axioms are local.
�us we may assume the g, g, g i and g i , i = 1, . . . , 4, to be proper. Now, Axiom (M6) implies that
bc! = bc

−1
∗ hence turning the diagram (3.5) clockwise by ninety degrees yields exactly (3.14a) which

is commutative as we have shown.
For (3.6), we replace bc! by bc

−1
∗ and use the decomposition of proj in 1.§3 to get the following

diagram (via the adjointness relation g∗ ⊣ g∗ = g !):

f g !A ⊗ g∗ fB
bc∗g

f g !A ⊗ f g∗B
t

f (g !A ⊗ g∗B)

f g∗g∗g
!A ⊗ g∗ fB

bc∗g

adj

f g∗g∗g
!A ⊗ f g∗B

adj

t
f (g∗g∗g !A ⊗ g∗B)

≅

adj

g∗ f g∗g
!A ⊗ g∗ fB

bc∗g
bc∗g ⊗ bc∗g

g∗( f g∗g !A ⊗ fB)
t≅

g∗ f (g∗g !A ⊗B)
bc∗g

f g∗(g∗g !A ⊗B)
�e upper half commutes by the naturality of the horizontal morphisms, the trapezoid in the lower
half commutes by Axiom (M4), while the triangle on the le� clearly commutes. Hence the whole
diagram is commutative as claimed. ◻

Lemma 3.12 For each g ∶ Z1 → Z2 in Mor(c) and A ,B ∈ Db
ctf (Z2), the following diagrams are

commutative:

f g !A ⊗ g∗ fB
bc∗g

bc!g

f g !A ⊗ f g∗B
t g !○t

f g !(A ⊗B)
bc!g

g ! fA ⊗ g∗ fB
t g!

g !( fA ⊗ fB)
t

g ! f (A ⊗B)

(3.15a)

f g ! RHom(A ,B) bc!g

≅ind

g ! f RHom(A ,B) rZ2
g ! RHom( fA , fB)

≅ ind

f RHom(g∗A , g !B) rZ1
RHom( f g∗A , f g !B)

bc∗g ×bc
!
g

RHom(g∗ fA , g ! fB)

(3.15b)
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Proof By adjointness, (3.15a) may be expanded as follows:

g !( f g !A ⊗ g∗ fB)
bc!g

t○bc∗g
g ! f (g !A ⊗ g∗B)

bc!g

t g !

g !(g ! fA ⊗ g∗ fB) g ! f g
!A ⊗ fB

proj

bc!g
bc!g

f g!(g !A ⊗ g∗B)
t g !

g ! f g
!(A ⊗B)

bc!g

g ! g
! fA ⊗ fB

proj

adj

f g! g
!A ⊗ fB

t

adj

f (g!g !A ⊗B)
proj

adj

f g! g
!(A ⊗B)

adj

fA ⊗ fB
t

f (A ⊗B)
�e square in the upper half commutes by Axiom (M9), while the rest of the diagram is clearly
commutative.

For diagram (3.15b), notice that the two following diagrams commute by the de�nition of the
morphisms involved (we abbreviate RHom(−,−) by [−,−]):

f g !([A ,B]⊗ g∗ fA
t○bc∗g

ind

f (g ![A ,B]⊗ g∗A ) bc!g○t g !

ind

g ! f ([A ,B]⊗A )
ev

f [g∗A , g !B]⊗ g∗ fA
t○bc∗g

r

f ([g∗A , g !B]⊗ g∗A )
ev

bc!g○ev
g ! fB

[ f g∗A , f g !B]⊗ g ! fA
ev○bc∗g

f g !B
bc!g

g ! fB

f g ![A ,B]⊗ g∗ fA

bc!

g ! f [A ,B]⊗ g∗ fA
t g!

r

g !( f [A ,B]⊗ fA ) t

r

g ! f ([A ,B]⊗A )
ev

g ![ fA , fB]⊗ g∗ fA
t g!

ind

g !([ fA , fB]⊗ fA ) ev

ev

g ! fB

[g∗ fA , g ! fB]⊗ g∗ fA ev g ! fB

Now, following the le� vertical column and the bottom row in the two diagrams gives, by adjointness,
the two maps

f g ! RHom(A ,B) ÐÐ→ RHom(g∗ fA , g ! fB)
of (3.15b), respectively. On the other hand, we know that the dotted paths are equal by the commu-
tativity of (3.15a). �erefore (3.15b) must commute also. ◻

We need more notation.
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Notation 3.13 1. For Z ∈ Ob(c) and A ∈Db
ctf (Z), we denote by h0Z ∶ H0(Z ,A )→ H0(Z , fZA )

the composition

Hom(ΛZ ,A ) fZÐÐ→ Hom( fZΛZ , fZA ) ιZÐÐ→ Hom(ΛZ , fZA ).
2. GivenA ,B ∈ Db

ctf (X), we denote by∏A ,B ∶ fXA ⊠ fXB → fX×X(A ⊠B) the composition

p∗1 fXA ⊗ p∗2 fXB
bc∗p1 ⊗ bc∗p2ÐÐÐÐÐ→ fX×X p

∗
1 A ⊗ fX×X p

∗
2B

tX×XÐÐ→ fX×X(p∗1 A ⊗ p∗2B).

Lemma 3.14 1. For g ∶ Z1 → Z2 in Mor(c), ιZ1
∶ ΛZ 1

→ fZ1
ΛZ1

decomposes as follows:

g∗ΛZ2

ιZ2ÐÐ→ g∗ fZ2
ΛZ2

bc∗gÐÐ→ fZ1
g∗ΛZ2

.

2. For Z ∈ Ob(c) and A ,B ∈Db
ctf (Z), the composition

H0(Z ,RHom(A ,B)) h0
ZÐÐ→ H0(Z , fZ RHom(A ,B)) rZÐÐ→ H0(Z ,RHom( fZA , fZB))

may be identi�ed with fZ ∶ Hom(A ,B)→ Hom( fZA , fZB).
Proof 1. �is follows immediately from Axiom (M3).

2. Let ζ ∈ Hom(A ,B) and denote by ζ ′ ∈ Hom(Λ,RHom(A ,B)) the morphism correspond-
ing to ζ .�en rZ ○h

0
Z(ζ ′) ∈ Hom(ΛZ ,RHom( fZA , fZB)) corresponds by adjointness to the

dotted path in the following diagram:

ΛZ ⊗ fZA
ιZ fZΛZ ⊗ fZA

fZ ζ
′ ⊗ 1

tZ

fZ RHom(A ,B)⊗ fZA

tZ

fZ(ΛZ ⊗A ) fZ(ζ
′ ⊗ 1)

≅

fZ(RHom(A ,B)⊗A )
ev

fZA
fZ ζ

fZB

�e upper square commutes by the naturality of tZ while the lower square commutes by the
de�nition of ζ ′ therefore the whole diagram is commutative. With Axiom (M2) we conclude
that fZ ζ and rZ ○h

0
Z(ζ ′) correspond by adjointness to the samemorphismhence they are equal

themselves as claimed. ◻

Lemma 3.15 1. For g ∶ Z1 → Z2 in Mor(c) and A ∈Db
ctf (Z1), the composition

H0(Z2 , g∗A ) h0
Z2ÐÐ→ H0(Z2 , fZ2

g∗A ) bc∗gÐÐ→ H0(Z2 , g∗ fZ1
A )

may be identi�ed with h0Z1
∶ H0(Z1 ,A )→ H0(Z1 , fZ1

A ).
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2. For A ,B ∈Db
ctf (X), the composition

∆
∗( fXA ⊠ fXB) ∏A ,BÐÐÐ→ ∆

∗
fX×X(A ⊠B) bc∗∆ÐÐ→ fX∆

∗(A ⊠B)
may be identi�ed with tX ∶ fXA ⊗ fXB → fX(A ⊗B).

Proof 1. Let ζ ∈ Hom(ΛZ2
, g∗A ) and denote by ζ ′ ∈ Hom(ΛZ1

,A ) the morphism corre-
sponding to ζ . �en bc∗g ○ h

0
Z2
(ζ) ∈ Hom(ΛZ2

, g∗ fZ1
A ) corresponds by adjointness to the

dotted path in the following diagram:

g∗ΛZ2

ιZ2

≅

g∗ fZ2
ΛZ2

g∗ fZ2 ζ

bc∗g

g∗ fZ2
g∗A

bc∗g

fZ1
g∗ΛZ2 fZ1 g

∗ ζ

≅

fZ1
g∗g∗A

adj

ΛZ1 ιZ1
fZ1

ΛZ1 fZ1 ζ
′

fZ1
A

�e le� half of the diagram is commutative by 3.14.1, the upper right square by the naturality
of bc∗g , and the lower right square by the de�nition of ζ ′. Hence the whole diagram commutes
which is exactly what the lemma asserts.

2. Consider the following diagram:

fA ⊗ fB

≅

fA ⊗ fB

≅

∆
∗
p∗1 fA ⊗∆

∗
p∗2 fB

bc∗p1 ⊗ bc∗p2

≅

∆
∗
f p∗1 A ⊗∆

∗
f p∗2B

≅

bc∗∆ ⊗ bc∗∆ f∆∗p∗1 A ⊗ f∆∗p∗2B

t

∆
∗(p∗1 fA ⊗ p∗2 fB) bc∗p1 ⊗ bc∗p2

∆
∗( f p∗1 A ⊗ f p∗2B)

t

f (∆∗p∗1 A ⊗∆∗p∗2B)
≅

∆
∗( fA ⊠ fB)

∏A ,B
∆
∗
f (A ⊠B)

bc∗∆
f∆∗(A ⊠B)

�e top square of this diagram commutes by Axiom (M3), and the lower right square by Ax-
iom (M4). �e bottom le� square is commutative by the de�nition of∏A ,B, while the square
above it commutes by the naturality of the vertical isomorphisms (1.1).�us thewhole diagram
is commutative. ◻

Lemma 3.16 1. Denote by α and β, respectively, the following two base change morphisms:

α ∶p∗1 KX = p
∗
1 π

!
X
Λk

bc (1.15)ÐÐÐÐ→ p!2π
∗
X
Λk

≅ÐÐ→ p!2ΛX ,

β ∶p∗1 KX = p
∗
1 π

!
XΛk

bc (1.15)ÐÐÐÐ→ p!2π
∗
XΛk

≅ÐÐ→ p!2ΛX .
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With this notation, the following diagram commutes:

p∗1 fXKX
π̃X

bc∗p1

p∗1 KX
α

p!2ΛX

ιX

fX×X p
∗
1 KX

β
fX×X p

!
2ΛX

bc!p2

p!2 fXΛX

(3.16)

2. For A ∈Db
ctf (X), the following diagram commutes:

fX×X p
∗
1 KX ⊗ fX×X p

∗
2A

(1.17)○tX×X
fX×X p

!
2A

bc!p2

p∗1 fXKX ⊗ p∗2 fXA

bc∗p1 ⊗ bc∗p2

(1.17)○π̃X
p!2 fXA

Proof 1. Consider �rst the following diagram:

p2!p
∗
1 f π

!
XΛk

π̃X p2!p
∗
1 π

!

X
Λk

bc (1.15)

≅
p2!p

!
2π

!

X
Λk

adj

π∗
X
π
X!
f π!

XΛk
π̃X

bc!πX

≅bc (1.13)

π∗
X
π
X!
π!
X
Λk

≅bc (1.13)

adj
π∗
X
Λk

ι−1

π∗
X
f πX!π

!
XΛk

adj
π∗
X
fΛk

�e upper le� square commutes by the naturality of (1.13), the right upper square by the de�-
nition of (1.15), while the commutativity of the lower square follows easily from 3.10.2. Hence
the whole diagram is commutative which allows us to replace the (morphism adjoint to the)
composition ιX ○ α ○ π̃X in (3.16) by the dotted path in the following diagram:

p2!p
∗
1 f π

!
XΛk

bc (1.13)−1

≅

bc!p2 ○bc
∗

p1

π∗
X
π
X!
f π!

XΛk

bc!πX

π∗
X
f πX!π

!
XΛk

adj

bc∗πX

π∗
X
fΛk

bc∗πX

f p2!p
∗
1 π

!
XΛk

bc (1.13)−1
f π∗XπX!π

!
XΛk adj

f π∗XΛk

�e right square commutes by the naturality of bc∗πX
while the le� square commutes by Ax-

iom (M8) (cf. 3.11). A similar argument shows that the solid path p2!p
∗
1 f π

!
XΛk → f π∗XΛk in

this diagram corresponds by adjointness to the composition bc!p2 ○ β ○ bc
∗
p1 in (3.16), which

completes the proof.
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2. �e diagram extends to the following one:

p∗1 f KX ⊗ p∗2 fA

bc∗p1

α○π̃X
p!2ΛX ⊗ p∗2 fA

ιX

t
p!2

p!2(Λk ⊗ fA )
ιX

≅
p!2 fA

p!2 fΛX ⊗ p∗2 fA
t
p!2

p!2( fΛX ⊗ fA ) tX
p!2 f (ΛX ⊗A )

≅

f p∗1 KX ⊗ p∗2 fA
β

bc∗p2

f p!2ΛX ⊗ p∗2 fA

bc!p2

bc∗p2

f p!2(ΛX ⊗A )
bc!p2

f p∗1 KX ⊗ f p∗2A
β

f p!2ΛX ⊗ f p∗2A tp!2
○tX×X

f p!2(ΛX ⊗A )

bc!p2

≅
f p!2A

≅

�e upper le� square commutes by part 1, while the lower le� and the upper middle square
commute by the naturality of the morphisms involved. Next, the top right square commutes
by Axiom (M2), the triangle in the right bottom corner is clearly commutative, while the re-
maining trapezoid commutes by 3.12. �us the whole diagram is commutative. ◻

§4 Naturality of the trace map

With all these compatibilities proved in the last paragraph we may now proceed to the general state-
ment concerning the naturality of the trace morphism with respect to cohomological morphisms.

Proposition 3.17 Let F = ({ fZ , tZ}, {bc∗g , bc!g}, ι) be a cohomological morphism from c ∶ C → X ×X

to c and let F ∈ Db
ctf (X). �en the following diagram commutes:

fC RHom(c∗1 F , c !2F) fc trc

(bc∗c1×bc
!
c2
)○rC

fC∆
′
∗KFix(c)

π̃Fix(c)○bc∗∆′

RHom(c∗1 fXF , c!2 fXF)
trc

∆
′
∗KFix(c)

(3.17)

�e proof of this proposition will be given in three steps.

Step 1 We may assume that F is a good cohomological morphism.

Proof We have to check that the vertical morphisms in (3.17) are compatible with composition.
To this end, let ({ fZ , tZ}, {bc∗g , bc!g}, ι) ∶ c → c be another cohomological morphism. For the le�
vertical morphism the compatibility with respect to composition follows from the commutativity
of the following diagram, i. e. from the naturality of rC and from the fact that r is compatible with
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composition.

fC fC[c∗1 F , c !2F ] rC

rC

fC[ fC c∗1 F , fC c
!
2F ] bc∗c1×bc

!
c2

rC

fC[c∗1 fXF , c!2 fXF ]
rC

(bc∗c1
×bc!c2 )○rC

[ fC fC c∗1 F , fC fC c
!
2F ]

bc∗c1×bc
!
c2

[ fC c∗1 fXF , fC c
!
2 fXF ]

bc∗c1
×bc!c2

[c∗1 fX fXF , c
!

2 fX fXF ]
(Here, as before, [−,−] abbreviates RHom(−,−).) Similarly, for the right vertical morphism, the
claim follows from the naturality of bc∗

∆
′ and from the fact that π̃ is compatible with composition.◻

Hence, from now on we will only consider good cohomological morphisms F and may thus apply
the results of the previous paragraph.

Step 2 �e proposition holds in the case c = 1X×X and c = 1X×X .

Proof �is choice of c and c makes the global trace morphism somewhat easier to handle. �us
the diagram (3.17) decomposes as follows:

fX×X RHom(p∗1 F , p!2F)
(bc∗p1×bc

!
p2
)○rX×X

fX×X(DF ⊠F)
≅

(1.18) ev○adj
fX×X∆∗KX

π̃X○bc∗∆

RHom(p∗1 fXF , p!2 fXF) fXDF ⊠ fXF
≅

(1.18)○dX

∏DF ,F

ev○dX○adj
∆∗KX

(3.18)

Notice that we have inserted dX twice in the bottom row which we are allowed to do since it is an
isomorphism byAxiom (M5). Wewill now in turn prove the commutativity of the two inner squares.

We expand the le� (adjoint) square as follows:

f p!2F f (p∗1 KX ⊗ p∗2F)(1.17)
f p∗1 F ⊗ f (p∗1 DF ⊗ p∗2F)ev○tp∗1 ○t

f p!2F

bc!p2

f p∗1 KX ⊗ f p∗2F

t

(1.17)○t
f p∗1 F ⊗ f p∗1 DF ⊗ f p∗2F

ev○tp∗1 ○t

t

p!2 fF p∗1 f KX ⊗ p∗2 fF

bc∗p1 ⊗ bc∗p2

(1.17)○π̃X
p∗1 fF ⊗ p∗1 fDF ⊗ p∗2 fF

ev○t○tp∗1

bc∗p1 ⊗ bc∗p1 ⊗ bc∗p2

�e upper le� square is clearly commutative. �e commutativity of the upper (resp. lower) right
square follows immediately fromAxiom (M1) (resp. (M4)), while the lower le� square commutes by
3.16.2.

Using the de�nition of bc∗ the right (adjoint) square of (3.18) may be expanded as follows:

∆
∗
f (DF ⊠F) bc∗∆

f∆∗(DF ⊠F) ev f KX

fDF ⊗ fF

∆
∗

∏DF ,F

t
f (DF ⊗F)

ev
f KX

π̃X

fDF ⊗ fF
dX

D fF ⊗ fF
ev

KX
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�e upper right square is clearly commutative. �e upper le� square is commutative by 3.15.2, while
the commutativity of the lower half follows from the de�nition of dX . ◻

Step 3 Proposition 3.17 is true (the general case).

Proof �e following decomposition of (3.17) allows us to apply the previous step ([−,−] abbreviates
RHom(−,−)):

f [c∗1 F , c !2F ]
(bc∗c1×bc

!
c2
)○rC

f c ![p∗1 F , p!2F ]
α○bc!c

f c ! tr
1X×Xind

≅
f c !∆∗KX

β○bc!c

f∆′∗KFix(c)
bc (1.14)

≅

π̃Fix(c)○bc∗∆′

[c∗1 fF , c!2 fF ] c![p∗1 fF , p!2 fF ]ind

≅

c ! tr
1
X×X

c!∆∗KX ∆
′
∗KFix(c)bc (1.14)

≅

(3.19)
Here, α and β are the le� and right vertical arrows of (3.18), respectively. Hence the commutativity
of the middle square follows from that of (3.18). It thus remains to prove the commutativity of the
le� and right squares of (3.19).

�e le� square may be expanded as follows:

f RHom(c∗p∗1 F , c !p!2F)
(bc∗c ×bc

!
c)○rC

f c ! RHom(p∗1 F , p!2F)ind

≅

rX×X○bc
!
c

RHom(c∗ f p∗1 F , c! f p!2F)
bc∗p1×bc

!
p2

c! RHom( f p∗1 F , f p!2F)≅

ind

bc∗p1×bc
!
p2

RHom(c∗p∗1 fF , c!p!2 fF) c! RHom(p∗1 fF , p!2 fF)ind

≅

(3.20)

Here, we have used Axioms (M3) and (M7) (cf. 3.10.1), i. e. the fact that bc∗c1 factors as bc
∗
c ○ bc

∗
p1

and bc!c2 factors as bc
!
p2 ○ bc

!
c . �e upper square of (3.20) commutes by 3.12, while the lower square

commutes by the naturality of ind. Hence the le� square of (3.19) is commutative.
�e right square of (3.19) may be expanded as follows:

f c !∆∗KX

bc∗∆○bc
!
c

f∆′∗c
′!KX

bc!c′○bc∗∆′

bc (1.14)
f∆′∗KFix(c)

bc
∗∆′

c!∆∗ f KX

π̃X

∆
′
∗c
′! f KXbc (1.14)

π̃X

∆
′
∗ f KFix(c)

π̃Fix(c)

bc!c′

c!∆∗KX ∆
′
∗c
′!KXbc (1.14)

∆
′
∗KFix(c)

�e lower le� square commutes by the naturality of (1.14), while the lower right square does so by
3.10.2. In the upper half the commutativity of the le� square follows easily fromAxiom (M8) (cf. 3.11),
while the right square obviously commutes. �us (3.19) and consequently (3.17) are commutative. ◻

We shall now interpret this general result in the context in which it is most useful to us. Fix a
cohomological morphism F ∶ c → c as in the proposition, and �x also F ∈ Db

ctf (X). We associate
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with these data two maps

LF = LF ,F ∶ Homc(F ,F) ÐÐ→ Homc( fXF , fXF),
RF = RF ,F ∶ H

0(Fix(c),KFix(c))ÐÐ→ H0(Fix(c),KFix(c)),
de�ned by

LF ∶ Hom(c2!c∗1 F ,F) bc∗c1○bc!c2○ fXÐÐÐÐÐÐÐ→ Hom(c2!c∗1 fXF , fXF),
RF = π̃Fix(c) ○ h

0
Fix(c) .

Corollary 3.18 Let F = ({ fZ , tZ}, {bc∗g , bc!g}, ι) be a cohomological morphism from c ∶ C → X × X

to c and let F ∈ Db
ctf (X). �en the following diagram commutes:

Homc(F ,F) trc

LF

H0(Fix(c),KFix(c))
RF

Homc( fXF , fXF)
trc

H0(Fix(c),KFix(c))
Proof Consider the following diagram:

H0(C ,RHom(c∗1 F , c !2F)) trc

h0
C

H0(C , ∆′∗KFix(c))
h0
C

H0(C, fC RHom(c∗1 F , c !2F))
(bc∗c1×bc

!
c2
)○rC

fC trc
H0(C, fC∆′∗KFix(c))

π̃Fix(c)○bc∗∆′

H0(C ,RHom(c∗1 fXF , c!2 fXF))
trc

H0(C , ∆′∗KFix(c))

(3.21)

�e upper square commutes by the naturality of h0C , while the lower square commutes by the last
Proposition 3.17. Hence, to prove the corollary, it su�ces to prove that the vertical maps of (3.21)
may be identi�ed with LF and RF , respectively, i. e. that the two diagrams (3.22) and (3.23) below
commute:

Hom(c2!c∗1 F ,F) ≅

f

Hom(c∗1 F , c !2F)
f

≅
H0(C ,RHom(c∗1 F , c !2F))

rC○h
0
C

Hom( f c2!c∗1 F , fF)
bc∗c2○bc!c2

Hom( f c∗1 F , f c !2F) ≅

bc∗c1×bc
!
c2

H0(C,RHom( f c∗1 F , f c !2F))
bc∗c1×bc

!
c2

Hom(c2!c∗1 fF , fF)
≅ Hom(c∗1 fF , c !2 fF) ≅ H0(C ,RHom(c∗1 fF , c !2 fF))

(3.22)

�e upper right square commutes by 3.14.2, the lower right square commutes by the naturality of the
horizontal arrows, while the commutativity of the le� square follows easily from the de�nition of
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bc!c2 .

H0(C , ∆′∗KFix(c)) ≅

bc
∗∆′○h

0
C

H0(Fix(c),KFix(c))
h0
Fix(c)

H0(C, ∆′∗ f KFix(c)) ≅

π̃Fix(c)

H0(Fix(c), f KFix(c))
π̃Fix(c)

H0(C , ∆′∗KFix(c)) ≅
H0(Fix(c),KFix(c))

(3.23)

Here, the lower half commutes by the naturality of the horizontal arrows, while the upper half is
commutative by 3.15.1. ◻

§5 Applications

We come now back to the questions raised at the end of §1, and propose to answer them by inter-
preting the result 3.18 of the last paragraph in the contexts considered in §1 (and in 3.6).

�e following statement expresses the naturality of the trace map with respect to proper push-
forward.

Corollary 3.19 Let [ f ] = ( f , f ♮ , f ) ∶ c → c be a morphism in PCor. �en the following identities
hold:

LP([ f ]) = [ f ]! , RP([ f ]) = ∫
f ′
, (3.24)

where f ′ = f ♮∣Fix(c) ∶ Fix(c) → Fix(c). In particular, the following square commutes for any F ∈

Db
ctf (X) (if c ∶ C → X × X):

Homc(F ,F)
[ f ]!

trc
H0(Fix(c),KFix(c))

∫f ′

Homc( f!F , f!F) trc
H0(Fix(c),KFix(c))

Proof In view of 3.18 and 3.9 it su�ces to prove the identities (3.24). �e �rst identity LP([ f ]) = [ f ]!
is obvious by the de�nition of the two maps. For the second identity, let u ∈ Hom(ΛFix(c) ,KFix(c)).
We will prove RP([ f ])(u) = ∫f ′ u:

π∗Fix(c)1∗Λk
bc (1.12)

f ′! π
∗
Fix(c)Λk

f ′! u f ′! π
!
Fix(c)Λk

bc (1.11)
π!
Fix(c)Λk

π∗Fix(c)Λk
adj

f ′! f
′∗π∗Fix(c)Λk

f ′! u

≅

f ′! f
′!π!

Fix(c)Λk

≅

adj
π!
Fix(c)Λk

�e top row is RP([ f ])(u), while the bottom row is ∫f ′(u). �e middle square clearly commutes,

while the outer squares commute because the base change morphisms are compatible with compo-
sition. ◻

We deduce the following well-known result.
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Corollary 3.20 (Lefschetz-Verdier trace formula) Let c ∶ C → X × X be a proper correspondence,
F ∈ Db

ctf (X) and u ∈ Homc(F ,F). �en we have the following equality:

Tr(RΓc(u)) = ∫
Fix(c)

tr(u) = ∑
β∈π0(Fix(c))

ltβ(u),
where β runs over all connected components of Fix(c).
Proof By 3.2, the le� hand side equals tr(RΓc(u)). And by 3.19, this is equal to tr ○ [π]c!(u) =
∫Fix(c) tr(u), hence the �rst equality. For the second equality, denote by jβ ∶ β ↪ Fix(c) the canon-
ical inclusion of β ∈ π0(Fix(c)) and by resβ ∶ H

0(Fix(c),KFix(c)) → H0(β,Kβ) the canonical re-
striction morphism induced by rβ ∶ KFix(c) → jβ∗ j

∗
βKFix(c). �en we have ∫πFix(c) ∫ jβ = ∫πβ

since the

composition of two adjunctions yields an adjunction. Hence the two inner squares of the following
diagram commute:

Homc(F ,F)
⊕trc ,F ,β

Homc(F ,F)
trc ,F

⊕β H
0(β,Kβ)

⊕∫πβ

⊕∫ jβ

H0(Fix(c),KFix(c))
⊕resβ

∫πFix(c)

Λ Λ

By [2, XVII, 6.2.3], ∫ jβ is induced by Tr jβ ∶ jβ! j
∗
βKFix(c) → KFix(c) from which we deduce with [2,

XVII, 6.2.3.1] that

1H0(Fix(c),KFix(c)) = H
0(Fix(c), Tr1Fix(c))

= H0(Fix(c),⊕βTr jβ ○ rβ)
= ⊕β H

0(Fix(c), Tr jβ) ○H0(Fix(c), rβ)
= ⊕β ∫

jβ

resβ .

Hence:

∫
Fix(c)

tr = ∫
πFix(c)

trc ,F = ∫
πFix(c)

⎛⎜⎝⊕β ∫
jβ

resβ
⎞⎟⎠ trc ,F =∑β ∫πβ

trc ,F ,β =∑
β

ltβ . ◻

Next, we turn to specializations.

Corollary 3.21 Let c̃ ∶ c → c̃s be a morphism in SCor. �en the following identities hold:

LS(c̃) = spc̃ , RS(c̃) = spFix(c̃) .

In particular, the following square commutes for any F ∈ Db
ctf (X) (if c ∶ C → X × X, c̃ ∶ C̃ → X̃ × X̃):

Homc(F ,F)
sp c̃

trc
H0(Fix(c),KFix(c))

spFix(c̃)

Homc̃s(spX̃F , spX̃F)
tr c̃ s

H0(Fix(c̃s),KFix(c̃s))
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Proof �e �rst identity is clear. For the second identity, consider the following diagram, where the
vertical morphisms are the canonical ones:

H0(Fix(c),KFix(c)) h0
Fix(c)

≅

H0(Fix(c̃s), spFix(c̃)KFix(c)) π̃Fix(c)

≅

H0(Fix(c̃s),KFix(c̃s))
≅

H0(k , πFix(c)∗KFix(c))
bc∗○(2.10)

H0(k , φs∗spFix(c̃)KFix(c))
(2.10)−1○bc!

H0(k , φs∗KFix(c̃s))
Here, φ ∶ Fix(c̃) → R denotes the structure morphism of Fix(c̃), thus the bottom row is spFix(c̃)
(cf. 2.23). Since the top row is RS(c̃) and since the right square obviously commutes, we are le� to
prove the commutativity of the le� square.

Let u ∈ Hom(ΛFix(c) ,KFix(c)). �en h0Fix(c)(u) and bc∗ ○ (2.10)(u) are the two outer paths

Λk → φs∗spFix(c̃)KFix(c) in the following diagram:

Λk

adj

(2.10)○adj
φs∗φ

∗
s spRΛk

ε○bc∗ φs∗spFix(c̃)ΛFix(c)
u φs∗spFix(c̃)KFix(c)

πFix(c)∗π
∗
Fix(c)Λk ε

≅ πFix(c)∗ΛFix(c)

bc∗○(2.10)

u
πFix(c)∗KFix(c)

bc∗○(2.10)

�e parallelogramon the right is commutative by the naturality of the slanted arrows. Expressing bc∗
in terms of bc∗ (by adjointness, cf. page 23) renders the proof of the commutativity of the trapezoid
on the le� an easy matter. �e second statement of the corollary follows from 3.18 and 3.9. ◻

Finally, we may also prove that the trace map is natural with respect to restriction.

Corollary 3.22 Let c ∶ C → X × X be a correspondence, let W ↪ C be an open subset, and set
β =W ∩ Fix(c). �en the following identities hold:

LQ([ jW]) = [ jW ]∗ , RQ([ jW]) = resβ .

In particular, the following diagram commutes for every F ∈Db
ctf (X):

Homc(F ,F) tr

[ jW]
∗

H0(Fix(c),KFix(c))
resβ

Homc∣W (F ,F)
tr

H0(β,Kβ)
Proof As in 3.19, the identities are easily checked, and the second statement then follows from 3.18
and 3.9. ◻

§6 Additivity

Let c ∶ C → X × X be a correspondence, F ∈ Db
ctf (X), u ∈ Homc(F ,F) a cohomological corre-

spondence and i ∶ Z ↪ X a closed subscheme such that c∣Z (and hence u∣Z = [iZ]∗(u)) exists (2.4.3,
2.13.3). �en [iZ] ∶ c∣Z ↪ c is a closed immersion and satis�es condition (F2) of 2.§3. Hence we may
de�ne the pushforward [iZ]!(u∣Z) ∈ Homc(i! i∗F , i! i

∗F).
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Similarly, let U = X/Z, j ∶ U ↪ X the inclusion. In 2.13.2 we de�ned the pullback [ jU ]∗(u) with
respect to the open immersion [ jU ] ∶ c∣U ↪ c. Now, since c1(c−12 (Z)) ⊂ Z set-theoretically we also
have c−11 (U) ⊂ C/c−12 (Z) = c−12 (U) hence condition (F1) of 2.§3 is satis�ed and we may de�ne the
pushforward [ jU ]!(u∣U) ∈ Homc( j! j∗F , j! j

∗F).
Set FZ ∶= i! i

∗F and FU ∶= j! j
∗F . �e result to be proved in this paragraph gives a simple

relationship between the traces associated to the di�erent cohomological correspondences appearing
above:

Proposition 3.23 In the notation just introduced, the following identity holds inH0(Fix(c),KFix(c)):
trF (u) = trFZ

([iZ]!(u∣Z)) + trFU
([ jU ]!(u∣U)).

We will deduce this identity from the additivity of �ltered trace maps. Recall the notation and de�-
nitions of 1.§5. In particular, �x abelian categories A, B, and C as there.

�e next two lemmas provide a means to transfer properties of functors and natural transforma-
tions from the derived categories to their �ltered counterparts.

Lemma 3.24 1. Let G ∶ D(A) → D(B) (resp. D(A)0 → D(B)) be a functor and (G̃, φG) a
�ltered li� of G. �en there exists, for every i ∈ Z, a natural isomorphism of triangulated

functors χ i ∶ griG̃ → Ggri (resp. χ i ∶ griG̃ → Ggr−i ) such that restricted to Df[i ,i](A) (resp.
Df[−i ,−i](A)) it is canonically identi�ed with φG .

2. Similarly, let G ∶ D(A) × D(B) → D(C) (resp. D(A)0 × D(B) → D(C)) be a bifunctor
and (G̃, φG) a �ltered li� of G. �en there exists, for every i ∈ Z, a natural isomorphism χ i ∶
griG̃ → ⊕r+s=iG(grr × grs) (resp. χ i ∶ griG̃ → ⊕r+s=iG(gr−r × grs)) such that restricted to

Df[r ,r](A)×Df[s ,s](B) (resp.Df[−r ,−r](A)×Df[s ,s](B)) with r+s = i it is canonically identi�ed
with φG .

More explicitly, this identi�cation is given as follows (in the case of a covariant bifunctor): Since G̃

is �ltered it takes Df[r ,r](A) ×Df[s ,s](B) toDf[i ,i](C). Moreover, the functors τ[a ,a] are naturally

isomorphic to the identity functors onDf
[a ,a] hence χ i is naturally identi�ed with a transformation

ωG̃ → G(ω × ω) and we require this transformation to be φG .

Proof We will do only part 2 in the case of a covariant bifunctor (all four cases are obviously simi-
lar). Fix i , r, s ∈ Z such that r + s = i. We �rst construct a natural isomorphism of functors

griG̃(τ≤r × τ≤s) ≅ÐÐ→ G(grr × grs). (3.25)

Since G̃ is �ltered, G̃(τ≤r × τ≤s−1) is a functor with target Df≤i−1(C) hence griG̃(τ≤r × τ≤s−1) is the
zero functor. Composing the distinguished triangle of functors τ≥s → 1 → τ≤s−1 →+ (on Df(B))
with the functor gri G̃(τ≤r × τ≤s) yields another distinguished triangle

gri G̃(τ≤r × τ[s ,s])ÐÐ→ griG̃(τ≤r × τ≤s) ÐÐ→ griG̃(τ≤r × τ≤s−1)ÐÐ→+ ,
from which we deduce a natural isomorphism griG̃(τ≤r × τ[s ,s]) → gri G̃(τ≤r × τ≤s). A similar argu-
ment shows the existence of an isomorphism griG̃(τ[r ,r] × τ[s ,s]) → griG̃(τ≤r × τ[s ,s]). Composing
these two isomorphisms we obtain

gri G̃(τ[r ,r] × τ[s ,s]) ≅ÐÐ→ gri G̃(τ≤r × τ≤s). (3.26)
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Now, (3.25) can be written as

gri G̃(τ≤r × τ≤s) (3.26)−1ÐÐÐ→ gri G̃(τ[r ,r] × τ[s ,s]) ≅ ωG̃(τ[r ,r] × τ[s ,s]) φGÐÐ→ G(grr × grs).
Notice that restricted toDf[r ,r](A)×Df[s ,s](B) this morphism is canonically identi�ed with φG (in
the sense made explicit before the proof).

Composing (3.25) with the canonical morphisms 1 → τ≤r and 1 → τ≤s we get a morphism of
functors:

gri G̃ ÐÐ→ ⊕r+s=igr
i G̃(τ≤r × τ≤s) (3.25)ÐÐ→ ⊕r+s=iG(grr × grs). (3.27)

(Notice that there are only �nitely many pairs (r, s) such that r + s = i and griG̃(τ≤r × τ≤s) doesn’t
vanish hence the �rst morphism really maps into a direct sum.) Since (3.27) is a morphism of tri-
angulated bifunctors, a standard argument in homological algebra shows that to prove it an isomor-

phism it su�ces to consider the case where it is evaluated at (L,M) ∈Df[a ,a](A)×Df[b ,b](B), some(a, b) ∈ Z2 . But then, both sides of (3.27) vanish unless a + b = i in which case the morphism is
canonically identi�ed with φG as has already been observed. ◻

Remark 3.25 Assume for this remark that A has enough injectives thus R̃Hom is de�ned (cf. 1.(s)).
Let L ∈ Df(A),M ∈Df+(A) and u ∈ Hom(L,M). It is then easy to see from the explicit description
of χ0 given in the lemma that the image of u under the map

Hom(L,M) ≅ÐÐ→ H0 ωτ≥0R̃Hom(L,M) pÐÐ→ H0 gr0R̃Hom(L,M) χ0ÐÐ→
≅
⊕i Hom(griL, griM)

is nothing but ⊕igr
iu (here p is induced by the projection ωτ≥0 → gro).

Lemma 3.26 1. Let H ∶ G1 → G2 be a morphism of triangulated functors (resp. contravariant
functors) and let H̃ ∶ G̃1 → G̃2 be a �ltered li� of H. �en the following diagram commutes for
every i ∈ Z:

griG̃1

χ i

gr i H̃
griG̃2

χ i

G1gr
i

Hgr i
G2gr

i

respectively gri G̃1

χ i

gr i H̃
gri G̃2

χ i

G1gr
−i

Hgr−i
G2gr

−i

2. Let H ∶ G1 → G2 be a morphism of triangulated bifunctors (resp. bifunctors contravariant in the
�rst argument) and let H̃ ∶ G̃1 → G̃2 be a �ltered li� of H. �en the following diagram commutes
for every i ∈ Z:

griG̃1

χ i

gr i H̃
griG̃2

χ i

⊕r+s=iG1(grr × grs) ⊕H(grr×gr s) ⊕r+s=iG2(grr × grs)

(3.28)
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respectively

gri G̃1

χ i

gr i H̃
griG̃2

χ i

⊕r+s=iG1(gr−r × grs) ⊕H(gr−r×gr s) ⊕r+s=iG2(gr−r × grs)

(3.29)

3. If H in 1 (resp. 2) is an isomorphism of functors (resp. bifunctors) then so is H̃.

Proof We will again do only the case of a covariant bifunctor.

1, 2. Fix i , r, s ∈ Z such that r + s = i. In (3.28), we may compose the χ i ’s with the projection onto
the (r, s)th factor and thus obtain

gri G̃1

gr i H̃
gri G̃2

G1(grr × grs)
H(grr×gr s)

G2(grr × grs)
It su�ces to prove that this diagram commutes. According to the de�nition of χ i , it is to be
expanded as follows:

gri G̃1

gr i H̃
gri G̃2

griG̃1(τ≤r × τ≤s) gr i H̃(τ≤r×τ≤s)
griG̃2(τ≤r × τ≤s)

griG̃1(τ[r ,r] × τ[s ,s])
(3.26) ≅

gr i H̃(τ[r ,r]×τ[s ,s])
griG̃2(τ[r ,r] × τ[s ,s])

(3.26)≅

ωG̃1(τ[r ,r] × τ[s ,s])
≅

φG1

ωH̃(τ[r ,r]×τ[s ,s])
ωG̃2(τ[r ,r] × τ[s ,s])

≅

φG2

G1(grr × grs)
H(grr×gr s)

G2(grr × grs)
�e �rst two squares commute since gri H̃ is a natural transformation, the third square clearly
commutes, while the last square commutes by the de�nition of a �ltered li� of a natural trans-
formation. �us the whole diagram is commutative.

3. Since H̃ is a morphism of triangulated bifunctors, it su�ces, as before, to prove that it is an

isomorphism when restricted to Df[a ,a](A) ×Df[b ,b](B) for all a, b ∈ Z hence it su�ces to

prove that gri H̃ is an isomorphism on Df[a ,a](A) ×Df[b ,b](B) for i = a + b, and this is, by
2, equivalent to ⊕r+s=iH(grr × grs) being an isomorphism on the same subcategory. And this
last condition is obviously satis�ed. ◻
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De�nition 3.27 Let X be a scheme. We de�ne Db
ctf f(X) to be the full subcategory ofDbf(X) con-

sisting of those objects F̃ such that griF̃ belongs toDb
ctf (X) for all i ∈ Z (see 1.(s) for the notation).

Our next task is to de�ne the six operations in the �ltered context.

Lemma 3.28 Let f ∶ X → Y be a morphism of schemes. �e �ltered li�s of f∗, f
∗, RHom, ⊗ (cf. 1.(s))

de�ne (bi)functors

f̃∗ ∶D
b
ctf f(X)ÐÐ→Db

ctf f(Y),
f̃ ∗ ∶Db

ctf f(Y)ÐÐ→Db
ctf f(X),

R̃Hom ∶Db
ctf f(X)0 ×Db

ctf f(X)ÐÐ→Db
ctf f(X),

⊗̃ ∶Db
ctf f(X) ×Db

ctf f(X)ÐÐ→Db
ctf f(X).

Proof Let F̃ ∈ Db
ctf f(X). By 3.24 we then have for any i ∈ Z,

gri f̃∗(F̃) ≅ f∗gr
i(F̃) ∈ f∗gri(Db

ctf f(X)) ⊂ f∗(Db
ctf (X)) ⊂Db

ctf (Y)
which proves the claim for f̃∗ (since, by the same isomorphism, f̃∗(F̃ ) belongs to Dbf(Y)). �e
argument for the other functors is the same. ◻

De�nition 3.29 1. Let X be a scheme and denote by K̃X the complex KX considered as an object

ofDb
ctf f
[0,0](X). We de�ne the �ltered Verdier duality functor:

D̃ = D̃X = R̃Hom(−, K̃X) ∶Db
ctf f(X)→Db

ctf f(X).
2. Let f ∶ X → Y be a morphism of schemes. We de�ne two functors:

f̃! = D̃Y f̃∗D̃X ∶D
b
ctf f(X)→Db

ctf f(Y),
f̃ ! = D̃X f̃

∗D̃Y ∶D
b
ctf f(Y)→Db

ctf f(X).
Lemma 3.30 1. �e functors D̃, f̃! and f̃ ! are �ltered li�s of D, f! and f ! , respectively.

2. �e natural isomorphism D2 → 1 li�s to an isomorphism of �ltered functors

D̃2 → 1.

3. �ere is a natural isomorphism of �ltered bifunctors

f̃∗R̃Hom(−, f̃ !−) ≅ R̃Hom( f̃!−,−).
In particular, the adjoint relation f̃! ⊣ f̃ ! still holds in the �ltered context.

Proof 1. Being de�ned as a composition of �ltered functors all three functors are clearly �ltered.
Moreover,

ωD̃ = ωR̃Hom(−, K̃X) ≅ RHom(ω−,KX) = Dω,
hence D̃ is a li� of D. �at f̃ ! and f̃! li� the functors f ! and f! , respectively, follows in the same
manner starting from the description of these functors as “dual” to f ∗ and f∗, respectively
(cf. [14, I, 1.12]).
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2. �e isomorphism D2 → 1 is de�ned in terms of the adjunction between ⊗ and RHom (cf. [14,
I, p. 7–8]) thus it has a �ltered li� which is, by 3.26.3, an isomorphism.

3. Let f ∶ X → Y be our morphism of schemes and �x F̃ , G̃ ∈ Db
ctf f(X), H̃ ∈ Db

ctf f(Y). �en
there exists an isomorphism

f̃∗R̃Hom( f̃ ∗H̃ , F̃ ) ≅ R̃Hom(H̃ , f̃∗F̃ ), (3.30)

natural in both F̃ and H̃ (see [15, V, 2.3.5.6]). Next, there is an isomorphism

R̃Hom(F̃ , D̃G̃ ) ≅ R̃Hom(G̃ , D̃F̃ ), (3.31)

also natural in both F̃ and G̃ . Indeed, the latter is obtained as the composition of the natural
isomorphisms

R̃Hom(F̃ , D̃G̃ ) ≅ R̃Hom(F̃ ⊗̃G̃ , K̃X) ≅ R̃Hom(G̃ , D̃F̃ ),
from [15, V, 2.3.1.3].

Now, it’s simply a question of composing these isomorphisms in the correct order:

f̃∗R̃Hom(F̃ , f̃ !H̃ ) = f̃∗R̃Hom(F̃ , D̃ f̃ ∗D̃H̃ )
≅ f̃∗R̃Hom( f̃ ∗D̃H̃ , D̃F̃ ) (3.31)

≅ R̃Hom(D̃H̃ , f̃∗D̃F̃ ) (3.30)

≅ R̃Hom(D̃H̃ , D̃2 f̃∗D̃F̃) by part 2

≅ R̃Hom(D̃ f̃∗D̃F̃ , D̃2H̃ ) (3.31)

≅ R̃Hom(D̃ f̃∗D̃F̃ , H̃ ) by part 2

= R̃Hom( f̃!F̃ , H̃ ).
�e last statement of the lemma is obtained by applying the functor H0(X , ωτ≥0) to this iso-
morphism. ◻

Fix a correspondence c ∶ C → X × X, F̃ ∈ Db
ctf f(X) and a cohomological correspondence

u ∈ Hom(c̃2! c̃∗1 F̃ , F̃). We abbreviate F ∶= ωF̃ . In view of the isomorphisms

ωc̃2! c̃
∗
1 F̃ ≅ c2!c

∗
1 F , gri c̃2! c̃

∗
1 F̃ ≅ c2!c

∗
1 gr

iF̃

(the second one existing by 3.24.1), we may consider ωu and griu as elements of Hom(c2!c∗1 F ,F)
and Hom(c2!c∗1 griF̃ , griF̃ ), respectively (any i ∈ Z). �e next proposition expresses the additivity
of �ltered trace maps.

Proposition 3.31 With the identi�cations just explained, we have an equality

trF (ωu) =∑
i∈Z

trgr iF̃ (griu) (3.32)

inH0(Fix(c),KFix(c)).
�e proof will be divided into three steps.
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Step 1 �e global trace morphism associated to F possesses a natural �ltered li� t̃r
F̃

in the sense that
the following diagram commutes:

RHom(c∗1 F , c !2F) tr
F

≅

∆′∗KFix(c)

≅

ωR̃Hom(c̃∗1 F̃ , c̃ !2F̃) ω t̃r
F̃

ω∆̃′∗K̃Fix(c)

Proof Indeed, the global trace morphism is made up of adjunctions between the six operations,
of canonical (iso)morphisms coming from the level of complexes and inverted such isomorphisms.
As we saw, the adjunction relations still hold in the �ltered context (the units and counits li�ing
their un�ltered counterpart), and the other canonical morphisms can be directly seen to preserve
the �ltrations (see e. g. [15, V, 2.3.2.3, 2.3.4.3, 2.3.5.5]). Finally, 3.26.3 shows that the �ltered li�s of
isomorphisms are still isomorphisms and may thus be inverted in the �ltered context as well. ◻

Composing this �ltered trace morphism with the isomorphism from 3.30.3 yields a map

t̃r
′
F̃
∶ R̃Hom(c̃2! c̃∗1 F̃ , F̃)ÐÐ→ c̃′∗K̃Fix(c)

li�ing the corresponding composition in the un�ltered context (again, in the sense of a commutative
diagram as above),

tr′
F
∶ RHom(c2!c∗1 F ,F) ÐÐ→ c2∗RHom(c∗1 F , c !2F) c2∗trFÐÐÐ→ c′∗KFix(c) .

Step 2 �e following diagram commutes for any i ∈ Z:

gr0R̃Hom(c̃2! c̃∗1 F̃ , F̃) gr0 t̃r′
F̃

ωc̃′∗K̃Fix(c)

⊕i RHom(c2!c∗1 griF̃ , griF̃)
≅

RHom(c2!c∗1 griF̃ , griF̃)
tr′

gr iF̃

c′∗KFix(c)

Proof We decompose the trace morphisms as follows:

gr0R̃Hom(c̃2! c̃∗1 F̃ , F̃) gr0 t̃r′′
F̃

gr0 c̃′∗ c̃′
!(D̃F̃ ⊗̃F̃ ) gr0 c̃′∗ c̃′

!
ẽv

F̃ ωc̃′∗K̃Fix(c)

⊕i RHom(c2!c∗1 griF̃ , griF̃ )
≅

⊕i c
′
∗c
′!(DgriF̃ ⊗ griF̃ )c′∗ c′!gr0 ẽvF̃

≅

c′∗KFix(c)

RHom(c2!c∗1 griF̃ , griF̃ )
tr′′

gr iF̃

c′∗c
′!(DgriF̃ ⊗ griF̃)

c′∗ c
′!evgr iF̃

c′∗KFix(c)
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�e le� inner square commutes by 3.26.2, the top right inner square does so by 3.26.1.
To check the commutativity of the bottom right inner square, consider the following isomor-

phism of bifunctors

φA ,B ∶ RHom(DA ⊗B,KX) ≅ÐÐ→ RHom(B,D2A ) ≅ÐÐ→ RHom(B,A ).
�e �rst arrow comes from an adjunction thus has a �ltered li�, the second one has a �ltered li� by
3.30.2. By 3.26 then, the following diagram commutes:

gr0R̃Hom(D̃F̃ ⊗̃F̃ , K̃X) gr0 φ̃

≅

≅

gr0R̃Hom(F̃ , F̃)
≅

⊕i RHom(DgriF̃ ⊗ griF̃ ,KX) ⊕iφ

≅ ⊕i RHom(griF̃ , griF̃ )
�e claim now follows from the fact that gr0 φ̃(gr0ẽv) = gr01 is mapped to ⊕iφ(gri ẽv) = ⊕i1 under
the vertical isomorphism. ◻

Step 3 End of the proof of 3.31.

Proof Denote by p the projection ωτ≥0 → gr0. �en the following diagram clearly commutes:

ωτ≥0R̃Hom(c̃2! c̃∗1 F̃ , F̃) ωτ≥0 t̃r
F̃

p

ωc̃′∗K̃Fix(c)

gr0R̃Hom(c̃2! c̃∗1 F̃ , F̃) gr0 t̃r
F̃

ωc̃′∗K̃Fix(c)

(3.33)

Hence the le� hand side of (3.32) is equal to

tr′F (ωu) = H0(X , tr′
F
(ωu))

= H0(X , ωτ≥0t̃r′
F̃
(u))

= H0(X , gr0 t̃r′
F̃
(pu)) by (3.33)

= H0(X ,⊕itr
′
gr iF̃
(griu)) by step 2 and 3.25

=∑
i

H0(X , tr′
gr iF̃
(griu))

=∑
i

tr′
gr iF̃
(griu),

which is equal to the right hand side of (3.32). ◻

To apply the proposition to 3.23, let us go back to the situation at the beginning of this paragraph.
�us let i ∶ Z ↪ X be a closed subscheme, let U = X/Z, j ∶ U ↪ X. For any F ∈ Db

ctf (X) we
abbreviate FZ ∶= i! i

∗F and FU ∶= j! j
∗F . Also, let c ∶ C → X × X be a correspondence such that

c∣Z exists. Notice �rst the following simple fact.
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Lemma 3.32 �e following diagram commutes for any u ∈ Homc(F ,F):
c2!c

∗
1 FU

[ jU ]!(u∣
U)

adj

FU

adj

c2!c
∗
1 F

u

adj

F

adj

c2!c
∗
1 FZ

[iZ ]!(u∣
Z)

FZ

Proof Wewill show only that the lower square commutes because the argument for the upper case
is very similar. Denote the inclusion c−12 (Z)red ↪ C by m and set d = c∣Z . We use the de�nition of[iZ]!(u∣Z) to decompose the diagram as follows (we abstain from writing F ):

c2!c
∗
1

1©adj

adj
adj

u

4©

1

adjc2!m∗m
∗c∗1

2© ≅ 3©

c2!c
∗
1 i∗ i

∗
bc (1.13)

c2!m∗d
∗
1 i
∗

≅

≅

i∗d2!d
∗
1 i
∗

≅
i∗d2!m

∗c∗1 bc (2.5)
i∗i
∗c2!c

∗
1 u

i∗i
∗

�e subdiagrams 2© and 4© clearly commute, while 1© and 3© commute by the de�nition of the
base change morphisms. �is is clear in the case of (1.13), and the case (2.5) is easily reduced to the
former. ◻

Lemma 3.33 1. �e forgetful functor ω ∶Db
ctf f
[0,1](X)→Db

ctf (X) admits a natural section F ↦
F̃ satisfying gr0F̃ =FZ and gr1F̃ =FU .

2. �e group morphism ω ∶ Hom(c̃2! c̃∗1 F̃ , F̃) → Hom(c2!c∗1 F ,F) admits a unique section
u ↦ ũ and this section satis�es gr0ũ = [iZ]!(u∣Z) and gr1ũ = [ jU ]!(u∣U).

Proof 1. Let us de�ne this section on the level of complexes �rst. Denote by A the category

of sheaves of Λ-modules for the étale topology on X. �en we de�ne a functor Cb(A) →
Cbf
[0,1](A) as follows. If F is an element of Cb(A) then we cannot but set

F iF̃ ∶=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
F ∶ i ≤ 0

FU ∶ i = 1

0 ∶ i > 1

as the �ltration on F̃ . Since a morphism φ ∶ F → G in Cb(A) maps j! j
∗F into j! j

∗G , we
may (and have to) set φ̃ = φ to get the envisioned section on the level of complexes. Notice
that since both functors j! and j∗ are exact, if φ is an quasi-isomorphism then so are F0φ̃ = φ
and F 1φ̃ = j! j

∗φ hence the section descends to the derived categories as required.
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2. We have to prove ω is an isomorphism. But the following diagram commutes:

Hom(c̃2! c̃∗1 F̃ , F̃) ≅

ω

H0(ωτ≥0R̃Hom(c̃2! c̃∗1 F̃ , F̃ ))
τ≥0→1

Hom(c2!c∗1 F ,F)
≅ H0(ωR̃Hom(c̃2! c̃∗1 F̃ , F̃))

In view of the distinguished triangle τ≥0 → 1 → τ≤−1 →+ it thus su�ces to show the vanish-
ing of τ≤−1R̃Hom(c̃2! c̃∗1 F̃ , F̃). Since R̃Hom(c̃2! c̃∗1 F̃ , F̃) belongs toDb

ctf F [−1,1](X), we are
reduced to showing the vanishing of

gr−1R̃Hom(c̃2! c̃∗1 F̃ , F̃ ) ≅ ⊕i RHom(gri+1 c̃2! c̃∗1 F̃ , griF̃ )
≅ RHom(gr1 c̃2! c̃∗1 F̃ , gr0F̃ )
≅ RHom(c2!c∗1 FU ,FZ)
≅ RHom(i∗c2!c∗1 FU , i

∗F).
Now, c2(c−11 (U)) is contained inU (cf. 2.4.3) hence so is the support of c2!c

∗
1 FU implying that

i∗c2!c
∗
1 FU = 0.

Let u ↦ ũ be de�ned as the inverse map to ω and consider, for a �xed u ∈ Hom(c2!c∗1 F ,F),
the following diagram:

gr1 c̃2! c̃
∗
1 F̃

gr1 ũ
gr1F̃

ωc̃2! c̃
∗
1 F̃

ωũ
ωF̃

gr0 c̃2! c̃
∗
1 F̃ gr0 ũ

gr0F̃

where the vertical arrows are the canonical ones. Clearly, both squares commute. Now, it
follows immediately from the de�nition of χ i that the vertical maps in this diagram corre-
spond to the adjunction maps j! j

! → 1 and 1 → i∗ i
∗, respectively, under the identi�cation

gr1 c̃2! c̃
∗
1 F̃ ≅ c2!c

∗
1 FU and so on; i. e. we have a commutative diagram as in the previous

Lemma (3.32) but where the top and bottom horizontal arrows correspond to gr1ũ and gr0ũ,
respectively. In view of the previous lemma, it thus su�ces to prove that the top and bottom
horizontal arrows of such a commutative diagram are unique. But we have already proved
this. Indeed, the distinguished triangle FU → F → FZ →+ gives rise to isomorphisms
Hom(c2!c∗1 FU ,FU) ≅ Hom(c2!c∗1 FU ,F) and Hom(c2!c∗1 FZ ,FZ) ≅ Hom(c2!c∗1 F ,FZ)
since RHom(c2!c∗1 FU ,FZ) ≅ 0. ◻

Proof (3.23) Choose F̃ and ũ as in the previous lemma. �en:

tr(u) = tr(ωũ)
= trgr0F̃ (gr0ũ) + trgr1F̃ (gr1ũ) by 3.31

= trFZ
([iZ]!(u∣Z)) + trFU

([ jU ]!(u∣U)) by 3.33. ◻
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4 Main results

§1 Invariance

Let c ∶ C → X × X be a correspondence and let Z ⊂ X be a closed subset. �ere are several ways to
make precise the notion of Z being “invariant under c” three of which we will present below.

De�nition 4.1 Let c ∶ C → X ×X be a correspondence and let Z ⊂ X be a closed subset. We say that
Z is c-invariant if c1(c−12 (Z)) ⊂t Z.
Here the subscript t is used to emphasize the fact that this inclusion should hold in the category of
topological spaces (or sets). We will, in similar situations, use s as a subscript if the relation holds
scheme-theoretically.

Remark 4.2 Let c and Z be as above but assume that Z is, in addition, given the structure of a closed
subscheme of X. Notice that the following conditions are equivalent:

1. c1(c−12 (Z)) ⊂t Z, i. e. Z is c-invariant;

2. c−12 (Z) ⊂t c−11 (Z);
3. c−12 (Z)red ⊂s c−11 (Z);
4. Ic−11 (Z) ⊂Ic−12 (Z)red .

For our purposes the notion of invariance introduced above is too strong and we will want to
have at our disposal two (weaker) notions of a more local character.

De�nition 4.3 Let c and Z be as in the previous de�nition.

1. Z is said to be locally c-invariant if each x ∈ Z possesses an open neighborhood U ⊂ X such
that Z ∩U is c∣U-invariant.

2. Z is said to be c-invariant in a neighborhood of �xed points if there is an open neighborhood
W ⊂ C of Fix(c) such that Z is c∣W-invariant.

(c∣U and c∣W were de�ned in 2.4.)

Remark 4.4 Spelling out the �rst condition in the de�nition we see that Z is locally c-invariant if
and only if every x ∈ Z possesses an open neighborhood U satisfying

(c∣U)1((c∣u)−12 (Z ∩U)) ⊂t Z ∩U , i�

c1(c−12 (Z ∩U)) ∩U ⊂t Z ∩U , i�

c1(c−12 (Z ∩U)) ⊂t Z ∪ (X/U).
Notice also that every c-invariant subset is automatically locally c-invariant and c-invariant in a
neighborhood of �xed points.

Example 4.5 Let c ∶ C → X × X be a correspondence and let x ∈ X be a closed point such that
c−12 (x) is �nite. �en {x} is locally c-invariant. Indeed, the space c−12 (x) is automatically discrete.
Let y ∈ c−12 (x) be any (necessarily closed) point and z = c1(y) ∈ X. c1 induces an inclusion of residue
�elds k(z) Ð֒→ k(y) which shows that k(z) is contained in a �nite extension of k hence that z is a
closed point. �is implies that U = X/(c1(c−12 (x))/x) is an open neighborhood of x in X. Clearly,{x} is c∣U -invariant.
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Lemma 4.6 Let c ∶ C → X ×X be a correspondence and let Z ⊂ X be a closed subset. �ere is a largest

open subset W ⊂ C such that Z is c∣W -invariant. Explicitly, W = C/c−12 (Z)/c−11 (Z), where denotes
the Zariski-closure in C.

Proof �is is easy. ◻

Notation 4.7 We will denote this open subset byWc(Z).
Notation 4.8 Let c ∶ C → X × X be a correspondence, u ∈ Homc(F ,F) where F ∈ Db

ctf (X) and
let Z ⊂ X be a closed subset. In the case that Z is c-invariant we have de�ned in 2.13.3 the restriction
u∣Z = [iZ]∗u ∈ Homc∣Z (F ∣Z ,F ∣Z). For general Z, letW =Wc(Z) ⊂ C. We then set c∣∣Z ∶= (c∣W)∣Z
and u∣∣Z ∶= (u∣W)∣Z .
Example 4.9 1. Let c ∶ C → X × X be a correspondence and assume that c2 is quasi-�nite. For

each closed point x ∈ X, we have the following commutative diagram

C
c

X × X

C/(c−12 (x)/c−11 (x))
j

c∣Wc (x)
X × X

(c−12 (x) ∩ c−11 (x))red
i

c∣∣x
{x} × {x}

ix×ix

with Fix(c∣∣x) = (c−11 (x) ∩ c−12 (x))red a �nite scheme.

Now, let F ∈ Db
ctf (X), u ∈ Homc(F ,F), and y ∈ Fix(c∣∣x). �en the restriction of u∣∣x to{y}→ {x} × {x} de�nes a map

u∣∣x ∣y ∶Fx ÐÐ→Fx

and we claim that this map can be identi�ed with the restriction of the stalk map

ux ∶ (c2!c∗1 F)x ≅ ⊕c2(z)=x(c∗1 F)z →Fx

to (c∗1 F)y =Fx . �e latter map will be denoted uy .

To see the identi�cation, set e = c∣Wc(x) hence e−12 (x) = c−12 (x) ∩ c−11 (x). Notice that the
inclusion ⊕z∈c−12 (x)∩c−11 (x)(c∗1 F)z ↪ ⊕z∈c−12 (x)(c∗1 F)z is induced by the morphism

φ ∶ e2!e
∗
1 ≅ c2! j! j

∗c∗1
adjÐÐ→ c2!c

∗
1 ,

while one easily sees that u∣Wc(x) = uφF . �is means that (u∣Wc(x))x factors through ux and
we have a canonical identi�cation of (u∣Wc(x))y with uy :

(c∗1 F)y ⊕z∈c−12 (x)(c∗1 F)z ux
Fx

(c∗1 F)y ⊕z∈c−12 (x)∩c−11 (x)(c∗1 F)z
(φF )x

(u∣Wc(x)
)x

Fx
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Hence we may from now on assume x to be c-invariant.

Set d = c∣∣x = [ix]∗c. �e argument is similar as above: �e map ⊕z∈d−12 (x)(d∗1 F)z →
⊕z∈c−12 (x)(c∗1 F)z is induced by a morphism φ′ ∶ d2!d

∗
1 → c2!c

∗
1 such that u∣∣x = uφ′

F
hence

there is an identi�cation of (u∣∣x)y with uy , i. e. we may assume X = {x}.
Exactly the same argument as before (replacing j by the inclusion y ↪ C and u∣Wc(x) by u∣y)
gives an identi�cation of (u∣y)y with uy hence we may assume C = {y}. But in this case the
claim is obvious.

2. As a slight generalization, suppose c2 is quasi-�nite only on some open neighborhood C′ ⊂ C
of Fix(c∣∣x). �ere is a natural way to de�ne uy for y ∈ Fix(c∣∣x) analogously as above, namely
by uy ∶= (u∣C′)y . We also have an identi�cation

u∣C′ ∣∣x = u∣C′ ∣Wc∣C′
(x)∣x

= u∣Wc∣C′
(x)∣x by 2.12

= u∣Wc(x)∣x ∣Wc(x)∩C′∩c−12 (x)red by 2.14

= u∣∣x sinceWc(x) ∩ c−12 (x)red =Wc(x) ∩ C′ ∩ c−12 (x)red .
�e above argument thus shows again that uy can be identi�ed with u∣∣x ∣y .
Moreover, if C′′ ⊂ C′ is another open neighborhood of Fix(c∣∣x) then (u∣C′′)y is canonically
identi�ed with (u∣C′)y . Hence it makes sense to set uy ∶= (u∣C′)y for any open neighborhood
C′ of Fix(c∣∣x) on which c2 is quasi-�nite, provided that such a neighborhood exists.

Our loose way of speaking about “identifying” certain morphisms should cause no worries since
the only thing we’re interested in is their trace:

De�nition 4.10 In the notation of the previous example, uy ∶ Fx → Fx may be assigned a trace
Tr(uy) (as in 3.3), called the naive local term of u at y.

Remark 4.11 Our argument above shows that lty(u∣∣x) = Tr(uy), i. e. “the naive local term equals
the real local term”. Indeed,

lty(u∣∣x) = resy(tr(u∣∣x)) since πy = 1

= tr([ jy]∗u∣∣x) by 3.22

= tr(uy) by what we just showed

= Tr(uy) by 3.2.

In the generalization discussed in the previous example, i. e. c2 quasi-�nite on an open neighbor-
hood C′ ⊂ C of Fix(c∣∣x), we thus get the identity lty(u∣∣x) = lty(u∣C′ ∣∣x) = Tr(uy).

Let us now give alternative characterizations of local invariance and invariance in a neighbor-
hood of �xed points which will be useful later on.

Lemma 4.12 Let c ∶ C → X × X be a correspondence and let Z ⊂ X be a closed subset. Set B =
c−12 (Z)/c−11 (Z).

1. Z is locally c-invariant if and only if for every irreducible component S of B,

c1(S) ∩ c2(S) = ∅.
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2. Z is c-invariant in a neighborhood of �xed points if and only if B ∩ Fix(c) = ∅.
3. If Z is locally c-invariant, then it is also c-invariant in a neighborhood of �xed points.

Proof 1. For an open subset U ⊂ X, the last condition in 4.4 holds if and only if

B = c−12 (Z)/c−11 (Z) ⊂t c−11 (X/U)∪ c−12 (X/U),
which in turn holds if and only if for every irreducible component S of B, c1(S) ⊂t X/U or
c2(S) ⊂t X/U . �us Z is locally c-invariant if and only if for every x ∈ Z and every S as

above, x ∉ c1(S) or x ∉ c2(S), i. e. if and only if Z ∩ c1(S) ∩ c2(S) = ∅. But since c2(S) ⊂t Z,
Z ∩ c1(S) ∩ c2(S) =t c1(S) ∩ c2(S).

2. �is is clear by 4.6.

3. Assume Z locally c-invariant and let x ∈ B. By part 2, we have to show x ∉ Fix(c). Let S be an
irreducible component of B such that x ∈ S. �en, by part 1,

c1(x) ∈ c1(S) ⊂t c1(S) ⊂t X/c2(S) ⊂t X/c2(S) ⊂t X/c2(x)
hence x ∉ Fix(c). ◻

We end this paragraph with a result concerning the behavior of local invariance with respect to
compacti�cation.

Lemma 4.13 Let c ∶ C → X × X be a correspondence and U ⊂ X an open subset such that c−11 (U) is
dense in C, c1∣c−11 (U) is proper, and X/U is locally c-invariant.

1. Every compacti�cation c ∶ C → X × X of c satis�es c−11 (U) = c−11 (U).
2. �ere exists a compacti�cation c ∶ C → X × X of c such that X/U is locally c-invariant.

Proof 1. Notice that c−11 (U) is a dense open subset of c−11 (U). Moreover, c1∣c−11 (U) = c1∣c−11 (U) is

proper and c1∣c−11 (U) is separated hence the inclusion c−11 (U) ↪ c−11 (U) is proper thus surjec-
tive.

2. Set Z ∶= X/U . We claim there exists a compacti�cation X of X such that for each irreducible
component S of c−12 (Z)/c−11 (Z), the closures of c1(S) and c2(S) in X do not intersect.

Let S1 , . . . , Sn be the irreducible components of c−12 (Z)/c−11 (Z). We deduce an n-tuple of pairs(C1,i ,C2,i) where C j ,i is the scheme-theoretic closure of c j(S i) in X. Each pair satis�es

C1,i ∩ C2,i = ∅ (4.1)

by 4.12.1. We will prove now more generally that given such data, i. e. a scheme X and an n-
tuple of pairs of closed subschemes (C1,i ,C2,i) satisfying (4.1), there exists a compacti�cation
X of X such that the closures of the C j ,i in X still satisfy (4.1).

We prove this by induction on n. If n = 0, we may choose X to be any compacti�cation of X.

So let n ≥ 1 and, using the induction hypothesis, choose a compacti�cation X
′
of X such that

the closures of the �rst n − 1 pairs satisfy (4.1). Possibly, we have C1,n
′
∩ C2,n

′
≠ ∅ ((−)′ being

the closure operation in X
′
). In this case, we let X be the blow-up of X

′
with center

J = IC1,n
′ +IC2,n

′ .
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�is is still a compacti�cation of X. �e closures of C1,n and C2,n in X do not intersect as they

are contained in the strict transforms of C1,n
′
and C1,n

′
, respectively, which do not intersect.

By the lemma below (applied n − 1 times), the closures of the �rst n − 1 pairs still satisfy (4.1),
which concludes the induction step and hence the proof of the more general claim above.

Now, choose a compacti�cation X as in the claim above and extend it to a compacti�cation
c ∶ C → X × X (2.5.1). By part 1, c−11 (U) = c−11 (U), and this implies

c−12 (X/U)/c−11 (X/U) = c−12 (X/U) ∩ c−11 (U)
= c−12 (X/U) ∩ c−11 (U)
= c−12 (X/U)/c−11 (X/U)
= c−12 (Z)/c−11 (Z).

By our choice of X, for every irreducible component S of c−12 (X/U)/c−11 (X/U), the closures
of c1(S) = c1(S) and c2(S) = c2(S) in X do not intersect. 4.12.1 now tells us that X/U is locally
c-invariant. ◻

Lemma 4.14 Let X be a scheme, let Y, Z be two closed disjoint subschemes, and let J ⊂ OX be a
sheaf of ideals. Let X be the blow-up of X with center J and let Y and Z be the strict transforms of Y
and Z, respectively. �en Y ∩ Z = ∅ in X.

Proof Set S = ⊕n≥0J
n so that X = Proj(S ). �e subscheme Y ⊂ X is de�ned by the sheaf of

ideals associated to the graded S -module

KY ∶= ker (⊕n≥0 J n ÐÐ→ ⊕n≥0(IY +J n)/IY) = ⊕n≥0(J n
∩IY)

(see [11, 3.6.2 (i)]). But for each n ≥ 0,

J n
∩IY +J n

∩IZ =J n

by assumption, i. e. K̃Y + K̃Z = S̃ = OX . ◻

§2 Contracting correspondences

De�nition 4.15 Let c ∶ C → X × X be a correspondence and let Z ⊂ X be a closed subscheme.

1. c stabilizes Z if c1(c−12 (Z)) ⊂s Z. (Here the le� hand side denotes the scheme theoretic image
of c1∣c−12 (Z).)

2. c is contracting near Z if c stabilizes Z and if there exists k0 ∈ N such that

(c∗1 (IZ) ⋅OC)k0 ⊂ (c∗2 (IZ) ⋅OC)k0+1 .
3. c is contracting near Z in a neighborhood of �xed points, if there exists an open neighborhood

W ⊂ C of Fix(c) such that c∣W is contracting near Z.

Remark 4.16 Let c and Z be as in the de�nition. �en the following conditions are equivalent:

1. c1(c−12 (Z)) ⊂s Z, i. e. c stabilizes Z;
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2. c−12 (Z) ⊂s c−11 (Z);
3. c−1(Z × Z) =s c−12 (Z);
4. c∗1 IZ ⋅OC ⊂ c

∗
2IZ ⋅OC .

In particular, comparing condition 2 here with condition 3 of 4.2, we see immediately that if c sta-
bilizes Z then Z is automatically c-invariant. Hence if c is contracting near Z in a neighborhood of
�xed points then Z is c-invariant in a neighborhood of �xed points.

Proof �e equivalence of 2 and 4 is obvious (cf. 1.(b)). If 2 holds then c1(c−12 (Z)) ⊂s c1(c−11 (Z)) ⊂s
Z and, conversely, if c stabilizes Z then c1∣c−12 (Z) factors through Z inducing a morphism c−12 (Z) →
C ×X Z = c−11 (Z), thus the closed immersion c−12 (Z) ↪ C factors through c−11 (Z). Finally, the
equivalence of 2 and 3 follows from the fact that c−1(Z × Z) = c−11 (Z) ×C c−12 (Z).
Lemma 4.17 Let c ∶ C → X × X be a correspondence and Z ⊂ X a closed subscheme. c is contracting
near Z if and only if c stabilizes Z and the image of (c̃Z)1s ∶ Nc−1(Z×Z)(C) → NZ(X) is contained
set-theoretically in the zero section Z ⊂ NZ(X).
Proof Consider the following composition of morphisms in ahc (2.29):

c1 ∶ (C , c−1(Z × Z)) cÐÐ→ (X × X , Z × Z) p1ÐÐ→ (X , Z).
By functoriality (2.30.1), (c̃Z)1 = p̃1 ○ c̃Z = p̃1 ○ c = c̃1. By 2.30.2, the image of c̃1s is contained in the
zero section if and only if there exists a k0 ∈ N such that the following inclusion holds:

(c∗1 (IZ) ⋅OC)k0 = c∗1 (I k0
Z ) ⋅OC ⊂ I k0+1

c−1(Z×Z) = I k0+1
c−12 (Z)

= (c∗2 (IZ) ⋅OC)k0+1
In the penultimate equality we used that c stabilizes Z in any case (and 4.16). ◻

�e reason for introducing the notion of contraction is the following result.

�eorem 4.18 Let c ∶ C → X × X be a correspondence contracting near a closed subscheme Z ⊂ X
in a neighborhood of �xed points, let F ∈ Db

ctf (X) and let u ∈ Homc(F ,F) be a cohomological
correspondence. Moreover, let β be an open connected subset of Fix(c) such that c′(β)∩ Z ≠ ∅. �en:

1. β ⊂t c
′−1(Z), i. e. β is an open connected subset of Fix(c∣∣Z).

2. trβ(u) = trβ(u∣∣Z). In particular, if β is proper then ltβ(u) = ltβ(u∣∣Z).
Proof 1. Let us �rst prove that the second statement in 1 follows from the �rst. For this notice

that since Z is c-invariant in a neighborhood of �xed points (4.16), Fix(c) ⊂s Wc(Z) hence
c′ = (c∣Wc(Z))′. �is implies c′−1(Z) ⊂t (c∣Wc(Z))−12 (Z)red and �nally

Fix(c∣Wc(Z)∣Z) = (c∣Wc(Z))−12 (Z)red ×Z×Z Z

= (c∣Wc(Z))−12 (Z)red ×X×X Z

= (c∣Wc(Z))−12 (Z)red ×C c′−1(Z)
=t c

′−1(Z).
�us it su�ces to prove the �rst statement.
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LetW ⊂ C be an open neighborhood of Fix(c) such that c∣W is contracting near Z. �en, as
before, Fix(c) = Fix(c∣W) and c′ = (c∣W)′ so we may replace c by c∣W , assuming from now
on that c is contracting near Z. Also, replacing C by the open subset C/(Fix(c)/β) does not
a�ect c′∣β hence we may assume that Fix(c) = β.
Since c is contracting near Z the previous lemma tells us that the image of the morphism(c̃Z)1s ∶ Nc−1(Z×Z)(C)→ NZ(X) is contained set-theoretically in the zero section Z ⊂ NZ(X).
Moreover, by 2.34, there is a commutative triangle

β̃c′−1(Z)
c̃′

Fix(c̃Z)
(c̃Z)

′
X̃Z

which shows, by passing to the �ber over s, that

Im[c̃′s] ⊂t Im[(c̃Z)′s] ⊂t Im[(c̃Z)1s] ⊂t Z .
Now, we may use 2.30.2 to deduce the existence of k0 ∈ N such that (c′∗(IZ) ⋅ Oβ)k0 ⊂(c′∗(IZ) ⋅ Oβ)k0+1 , i. e. I k0

c′−1(Z) = I k0+1
c′−1(Z). We conclude with the following Lemma 4.19

that I k0
c′−1(Z) = 0 hence β =t c

′−1(Z).
2. It su�ces to prove the �rst statement. We will proceed in several steps.

Step 1 As in part 1, we may choose an open neighborhood W ⊂ C of Fix(c) such that c∣W is
contracting near Z, and again we have Fix(c) = Fix(c∣W). Suppose we can prove trβ(u∣W) =
trβ((u∣W)∣Z). �en we also have

trβ(u) = trβ(u∣W) by 3.22

= trβ(u∣W ∣Z) by hypothesis

= trβ(u∣Wc(Z)∣Z ∣W∩c−12 (Z)red) by 2.14

= trβ(u∣∣Z) by 3.22.

�us we may from now on assume that c is contracting near Z.

Step 2 Let W be the open set C/(Fix(c)/β) and suppose that we can prove trc∣W (u∣W) =
trc∣W ∣Z (u∣W ∣Z). �en we also have

trβ(u) = trc∣W (u∣W) by 3.22

= trc∣W ∣Z (u∣W ∣Z) by hypothesis

= trc∣Z ∣W∩c−12 (Z)red
(u∣Z ∣W∩c−12 (Z)red) by 2.14

= trβ(u∣Z) by 3.22 and part 1.

�us we may from now on assume β = Fix(c).
Step 3 Set U = X/Z. We may apply 3.23 to get the identity

trF (u) = trFZ
([iZ]!(u∣Z)) + trFU

([ jU ]!(u∣U)).
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By 3.19, the �rst summand on the right is equal to ∫(iZ)′ trc∣Z (u∣Z). But since Fix(c) =t Fix(c∣Z)
by part 1, the map ∫(iZ)′ ∶ H

0(Fix(c),KFix(c)) → H0(Fix(c∣Z),KFix(c∣Z)) is the identity map.

Hence the �rst summand is equal to trc∣Z (u∣Z). It su�ces thus to show the vanishing of the
second summand.

Step 4 By the previous step it su�ces to show trc(u) = 0 if F ∣Z = 0. Now, by 3.21, the
following identity holds:

spFix(c̃Z)(trc(u)) = tr(c̃Z)s(spc̃Z (u)). (4.2)

As in part 1 (by 4.17), the image of (c̃Z)1s is contained set-theoretically in Z ⊂ NZ(X). On the
other hand, spX̃Z

(F)∣Z ≅ F ∣Z = 0 by 2.35, hence (c̃Z)∗1sspX̃Z
(F) = 0 as well. Looking at the

de�nition of spc̃Z (2.20), we see that this implies spc̃Z (u) = 0 hence the right hand side of the
above identity (4.2) vanishes.

Step 5 For the proof of the theorem it will su�ce to show that the map

spFix(c̃Z) ∶ H
0(Fix(c),KFix(c)) → H0(Fix((c̃Z)s),KFix((c̃Z)s)) (4.3)

in (4.2) is an isomorphism. By 2.24, this is true for sp(Fix(c)red)R , and it is easy to see that the
same must hold for (4.3) provided that

Fix(c̃Z)red ≅ (Fix(c)red)R (≅ (Fix(c)R)red) (4.4)

as schemes over Fix(c)R (the two maps in question are related to each other by counits of
adjunctions, p!p

! → 1, associated to closed immersions onto, p, i. e. by isomorphisms). In
order to prove (4.4), consider the following canonical isomorphism over Fix(c)R :

(Fix(c)red)R = ̃(Fix(c)red)Fix(c)red
= ̃(Fix(c)red)c′−1(Z)red by part 1

≅ (F̃ix(c)c′−1(Z))red by 2.28.5.

We deduce from 2.34 that (Fix(c)R)red is a closed subscheme of Fix(c̃Z)red, the embedding
being a morphism over Fix(c)R. Passing to the generic �ber of the cartesian square

Fix(c̃Z) X̃Z

∆

C̃c−1(Z×Z) c̃Z
X̃Z ×R X̃Z

we see that Fix(c̃Z)η is isomorphic to Fix(c)η hence the generic �bers of the two schemes(Fix(c)R)red and Fix(c̃Z)red are the same. It remains to prove (4.4) over the special �ber s.

Step 6 �ere is a chain of closed subsets

Fix(c) = (Fix(c)R)s ⊂t Fix(c̃Z)s = Fix((c̃Z)s) ⊂t Nc−1(Z×Z)(C),
and by the last step it su�ces to prove that the �rst inclusion is in fact a (set-theoretical) equal-
ity.

Since the image of Fix((c̃Z)s) under (c̃Z)1s is set-theoretically contained in Z, the same is
true of (c̃Z)2s . On the other hand, 2.31.1 tells us that (c̃Z)−12s (Z) = c−12 (Z) ⊂ Nc−1(Z×Z)(C).
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�erefore we have the inclusion

Fix((c̃Z)s) ⊂ c−12 (Z).
But by 2.30.3, (c̃Z)s ∣c−12 (Z) is equal to c∣Z (at least as maps between topological spaces) from

which we conclude that Fix((c̃Z)s) ⊂t Fix(c∣Z) ⊂t Fix(c). ◻

Lemma 4.19 Let X be a connected noetherian scheme, let k0 ∈ N and let F be a sheaf of ideals satis-
fying: 1. F ≠ OX ; 2. F

k0 =F k0+1. �en F k0 = 0.

Proof Set G =F k0 . We have the equality

{x ∈ X ∣ Gx = 0} = {x ∈ X ∣ OX ,x /Gx ≠ 0}
since, if Gx ≠ OX ,x then we also have Fx ≠ OX ,x and FxGx = Gx hence Nakayama’s lemma (which
may be applied because X is noetherian) implies Gx = 0. Now the �rst space above is open, the
second is closed and non-empty by assumption hence Gx = 0 everywhere. ◻

§3 Correspondences over �nite �elds

We now specialize to the case where k = F is an algebraic closure of a �nite �eld Fq . If X is a scheme

over F we say that it is de�ned over Fq if there exists a scheme X over Fq such that X = X ×Fq F.

Similarly, a morphism of schemes over F, f ∶ X → Y , is said to be de�ned over Fq if there exists a

morphism of schemes over Fq , f ∶ X → Y , such that f = f ×Fq F. We �rst recall the de�nition of
several Frobenius morphisms.

Let X be a scheme over Fq . �e absolute Frobenius of X over Fq , FrX ∶ X → X, is de�ned to
be the identity on the topological space X and locally, for Spec(A) ⊂ X an open a�ne, by the ring
morphism a ↦ aq , a ∈ A, on the sheaves. Let X = X ×Fq F be the extension of scalars. �e geometric

Frobenius of X over Fq , FrX ,g ∶ X → X, is the morphism FrX ×Fq 1F. �e arithmetic Frobenius of X

over Fq on the other hand is FrX ,a = 1X ×Fq FrF ∶ X → X. �e relationship between these various
Frobenius morphisms is

FrX ,a ○ FrX ,g = FrX ,g ○ FrX ,a = FrX . (4.5)

Notice also that FrF is an automorphism of F hence FrX ,a is an automorphism of X.

De�nition 4.20 Let c ∶ C → X1 × X2 be a correspondence de�ned over Fq and let n ∈ N. �e
correspondence

c(n) ∶= (c(n)1 , c2) ∶= (FrnX1 ,g
○ c1 , c2) ∶ C → X1 × X2

is called the nth twist of c by the Frobenius.

Remark 4.21 It is clear that the association X ↦ FrX de�nes a natural endomorphism of the identity
functor on the Sch/Fq . �is simply means that for a morphism f ∶ X → Y of schemes over Fq we
have FrY ○ f = f ○ FrX . From this it follows that

FrY ,g ○ f = (FrY × 1F) ○ ( f × 1F)
= (FrY ○ f ) × 1F
= ( f ○ FrX) × 1F
= f ○ FrX ,g ,
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i. e. the association X ↦ FrX ,g de�nes a natural endomorphism of the functor −×Fq F. In particular,

we see that the nth twist of a correspondence c ∶ C → X1 × X2 de�ned over Fq can also be described

as c(n) = (c1 ○ FrnC ,g , c2).
De�nition 4.22 Let f ∶ X → Y be a morphism of schemes and let Z be a closed subscheme of Y .
�en I f −1(Z)red =

√
I f −1(Z) hence there exists n ∈ N such that I n

f −1(Z)red
⊂ I f −1(Z) (since X is

noetherian). �e smallest such n is called the rami�cation of f at Z and is denoted ram( f , Z).
Lemma 4.23 Let f ∶ X → Y be a quasi-�nite morphism of schemes. �en, for every closed point y ∈ Y,
f −1(y) is a�ne, corresponding to a �nite F-algebra A, and we have the inequality

ram( f , y) ≤ dimF A.

Moreover, the set {ram( f , y) ∣ y ∈ Y closed} is bounded above.
De�nition 4.24 For f quasi-�nite as in the lemma we set

ram( f ) ∶= max{ram( f , y) ∣ y ∈ Y closed}
and call this number the rami�cation degree of f .

Proof (4.23) Fix a closed point y ∈ Y . It is clear that f −1(y) is the spectrum of a �nite k(y) = F-
algebra, say A. For the inequality set d ∶= dimF A. We then have to prove I d

f −1(y)red
⊂ I f −1(y). �is

is a local statement on both source and target and we may assume that X = Spec(B), Y = Spec(C),
y corresponding to a maximal ideal m ⊂ C. �en A = B/mB is of F = C/m-dimension d. We get a
decreasing sequence of F-vector spaces

B/mB ⊃√mB/mB ⊃ (√mB/mB)2 ⊃⋯,
which, byNakayama’s lemma, decreases strictly as long as the spaces are non-trivial. Hence the space

(√mB/mB)d vanishes, which is equivalent to
√
mB

d ⊂ mB.
For the last statement, it su�ces to prove that the k(y)-dimension of any �ber Xy over a closed

point y ∈ Y is uniformly bounded. Since this is obviously true if f is an open immersion we may
assume f �nite (by Zariski’s main theorem). Also, since X is quasi-compact, we may assume X =
Spec(B), Y = Spec(A) are both a�ne. Now, B being a �nite A-module, there is a surjective A-
morphism An ↠ B, some n ∈ N. Tensoring with k(p) over A (p ⊂ A a prime ideal) shows that n
bounds the dimensions of the �bers uniformly. ◻

Lemma 4.25 Let c ∶ C → X × X be a correspondence de�ned over Fq , let Z ⊂ X be a closed subscheme

and n ∈ N such that qn > ram(c2 , Z) and Z is c(n)-invariant. �en c(n) is contracting near Z.

Proof Set d = ram(c2 , Z). We will prove more generally that for any coherent sheaf of OC -ideals
J satisfying

(a) c(n)∗1 (IZ) ⋅OC ⊂
√

J and

(b)
√

J
d
⊂J ,
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the following two inclusions hold:

1. c(n)∗1 (IZ) ⋅OC ⊂J ;

2. (c(n)∗1 (IZ) ⋅OC)d ⊂J d+1 .

(To obtain the lemma, apply this statement to J = c∗2 (IZ) ⋅OC .)
To prove the more general claim we may assume C = Spec(B), J corresponding to an ideal

J ⊂ B, X = Spec(A), and Z corresponding to an ideal I ⊂ A. �en we have

c(n) ♯1 (I) ⋅ B = Frn ♯C ,g ○ c♯1(I) ⋅ B
= Frn ♯C ○ Fr

−n ♯
C ,a ○ c

♯
1(I) ⋅ B by (4.5)

= Fr−n ♯C ,a ○ c
♯
1(I)qn ⋅ B

= (Fr−n ♯C ,a ○ c
♯
1(I) ⋅ B)qn .

By (a), we thus have (Fr−n ♯C ,a ○ c
♯
1(I) ⋅ B)qn ⊂√J which implies Fr−n ♯C ,a ○ c

♯
1(I) ⋅ B ⊂√J. We conclude:

c(n) ♯1 (I) ⋅ B = (Fr−n ♯C ,a ○ c
♯
1(I) ⋅ B)qn

⊂
√
J
qn

⊂
√
J
d+1

since qn ≥ d + 1

⊂ J by (b).

�e second inclusion is also easily obtained:

(c(n) ♯1 (I) ⋅ B)d ⊂√J
d(d+1)

as above

⊂ Jd+1 by (b). ◻

Corollary 4.26 Let c ∶ C → X × X be a correspondence de�ned over Fq .

1. Let Z ⊂ X be a closed subscheme de�ned over Fq which is locally c-invariant. �en, for each

n ∈ N with qn > ram(c2 , Z), c(n) is contracting near Z in a neighborhood of �xed points.

2. If c2 is quasi-�nite then, for each n ∈ N with qn > ram(c2), c(n) is contracting near every closed
point of X in a neighborhood of �xed points.

Proof 1. First notice that Z is locally c(n)-invariant. Indeed, let x ∈ Z. By assumption there
exists an open neighborhood U ⊂ X of x such that Z ∩U is c∣U-invariant. Replacing c by c∣U
wemay thus assume that Z is c-invariant. Shrinking X further wemay assume X = Spec(A⊗Fq

F) for some Fq-algebra A, Z corresponding to I ⊗Fq
F for some ideal I ⊂ A. We will now

prove that Z is c(n)-invariant, i. e. c−12 (Z)red ⊂s (c(n)1 )−1(Z) (cf. 4.2). For this we may assume
C = Spec(B ⊗Fq

F) for some Fq-algebra B, and c = b ⊗Fq
1F. Since Z is c-invariant we have

b♯1(I) ⋅ B ⊗ F ⊂
√
b♯2(I) ⋅ B ⊗ F hence also b♯1(I)qn ⋅ B ⊗ F ⊂

√
b♯2(I) ⋅ B ⊗ F. �is proves local

c(n)-invariance of Z.

By 4.12.3, Z is also c(n)-invariant in a neighborhood of �xed points hence, by 4.12.2, the open
subset W ∶= Wc(n)(Z) ⊂ C contains Fix(c(n)) and Z is c(n)∣W -invariant. Clearly, c(n)∣W =(c∣W)(n) and ram(c2∣W , Z) ≤ ram(c2 , Z) hence 4.25 (applied to the correspondence c∣W ) im-
plies the claim.
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2. As c2 is quasi-�nite every closed point of X is locally c(n)-invariant by 4.5. Now, the claimmay
be deduced from 4.25 exactly as in part 1. ◻

§4 A generalization of Deligne’s conjecture

Recall that in the construction of RΓc(u) for a correspondence c and a cohomological correspon-
dence u we required that c1 be proper (cf. 2.9). We now want to generalize this slightly in order to
formulate the main result.

De�nition 4.27 Let c ∶ C → X1×X2 be a correspondence,Fi ∈ D
b
ctf (Xi), i = 1, 2, and let j ∶ U1 ↪ X1

be an open subscheme such that c1∣c−11 (U1) ∶ c
−1
1 (U1) → U1 is proper and F1 ∣X1/U1

= 0. Given a
cohomological correspondence u ∈ Homc(F1 ,F2) we de�ne a morphism

RΓc
U1(u) ∶ RΓc(X1 ,F1) ÐÐ→ RΓc(X2 ,F2)

as follows.
�e map adj ∶ RΓc(U1 ,F1 ∣U1

) → RΓc(X1 ,F1) induced by the adjunction j! j
∗ → 1X1

is an iso-

morphism by assumption. Hence we may set RΓc
U1(u) to be the composition

RΓc(X1 ,F1) adj−1ÐÐ→
≅

RΓc(U1 ,F1∣U1
) RΓc(u∣

U1 ,X2)ÐÐÐÐÐÐ→ RΓc(X2 ,F2)
(cf. 2.13.2).

In the situation of the de�nition, suppose there exists U1 ⊂ V1 ⊂ X open such that c1∣c−11 (V1) ∶

c−11 (V1)→ V1 is still proper. We might wonder whether we then have RΓc
U1(u) = RΓcV1(u). It turns

out that this is indeed the case.

Lemma 4.28 Let c ∶ C → X1×X2 be a correspondencewith c1 proper, letFi ∈ D
b
ctf (Xi) and letU1 ⊂ X1

be an open subset such that F∣X1/U1
= 0. �en RΓc

U1(u) = RΓc(u) for every u ∈ Homc(F1 ,F2).
Proof Set [ j] = [ jU1 ,X2 ]. It will su�ce to prove that the following diagram commutes:

RΓc(U1 , j
∗
1 F1)

RΓc([ j]
∗u)

≅

RΓc(X1 , j1! j
∗
1 F1) RΓc([ j]![ j]

∗u)

≅adj

RΓc(X2 ,F2)

RΓc(X1 ,F1)
RΓc(u)

By 2.10, the upper half commutes. For the lower half we have to compare [ j]! ○ [ j]∗(u) and u. �e
former equals the composition of the dotted arrows in the following diagram (d = [ j]∗c):

c2!c
∗
1 j1! j

∗
1 F1

(2.3)
c2! j
♮
! d
∗
1 j
∗
1 F1

≅

(1.13)

≅
c2!c

∗
1 j1! j

∗
1 F1

adj

d2! j♮
∗c∗1 F1 (1.11)

c2!c
∗
1 F1 u

F2
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�e �rst thing to note is that the morphism (1.11) appearing in the diagram is induced by the adjunc-
tion morphism adj ∶ j♮! j

♮ ∗ → 1. Next, this as well as the other morphism denoted adj are equal to
the trace morphism de�ned in [2, XVII, 6.2.3]. Hence, by [2, XVII, 6.2.3, (Var 2)], the square above
commutes.

Furthermore, since j♮ and j1 are open immersions, the morphism (2.3) is easily seen to be the
inverse of (1.13). We conclude that [ j]! ○ [ j]∗(u) = u ○ adj. Applying RΓc on both sides, the claimed
commutativity follows immediately. ◻

Returning to the situation before the lemma, we have

RΓc
U1(u) = RΓc(u∣U1 ,X2) ○ adj−1U1↪X1

= RΓc((u∣V1 ,X2)∣U1 ,X2) ○ adj−1U1↪V1
○ adj−1V1↪X1

by 2.12

= RΓc
U1(u∣V1 ,X2) ○ adj−1V1↪X1

= RΓc(u∣V1 ,X2) ○ adj−1V1↪X1
by 4.28

= RΓc
V1(u).

�is equality (together with the fact that if (c∣c−11 (U1))1 and (c∣c−11 (U
′
1))1 are both proper then so is(c∣c−11 (U1∪U ′1))1) justi�es the following notational convention.

Notation 4.29 Let c ∶ C → X1 × X2 be a correspondence, Fi ∈ D
b
ctf (Xi), and u ∈ Homc(F1 ,F2).

We set RΓc(u) to beRΓcU1(u) for any openU1 ⊂ X1 such that c1∣c−11 (U1) ∶ c
−1
1 (U1)→ U1 is proper and

F1 ∣X1/U1
= 0, provided such a U1 exists.

We are now ready to formulate and prove our main theorem.

�eorem 4.30 Let c ∶ C → X × X be a correspondence de�ned over Fq .

1. Assume that c2 is quasi-�nite. �en for every n ∈ N with qn > ram(c2), the space Fix(c(n)) is
�nite and discrete.

2. Let U ⊂ X be an open subset de�ned over Fq such that c1∣c−11 (U) is proper, c2∣c−1(U×U) is quasi-
�nite, and Z ∶= X/U is locally c-invariant. Endow Z with any closed subscheme structure. �en
there exists a d ∈ N with the following property:

For every F ∈ Db
ctf (X) with F ∣X/U = 0, every n ∈ N with qn > d and every cohomological

correspondence u ∈ Homc(n)(F ,F), we have an equality

Tr(RΓc(u)) = ∑
y∈Fix(c(n))∩c−1(U×U)

Tr(uy). (4.6)

3. In the notation of 2, assume that X and C are both proper. �en

d ∶= max{ram(c2∣c−1(U×U)), ram(c2 , Z)}
satis�es the conclusion of 2.

4. In the notation of 2, let c ∶ C → X × X be a compacti�cation of c∣c−11 (U) such that Z ∶= X/U is

locally c-invariant (cf. 4.13). Endow Z with any closed subscheme structure. �en

d ∶= max{ram(c2∣c−1(U×U)), ram(c2 , Z)}
satis�es the conclusion of 2.
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Proof 1. Let β be a connected component of Fix(c(n)). We shall prove that β is a point. Our
general assumptions on schemes ensure the existence of a closed point x ∈ (c(n))′(β). By
4.26.2, c(n) is contracting near x in a neighborhood of �xed points. By 4.18.1, β is an open
connected subscheme of (c(n))′−1(x) ⊂ c−12 (x) which is a �nite scheme hence β is a point.

3. �us assume X and C (hence also c) proper. Let F ∈ Db
ctf (X), n ∈ N such that qn > d and

u ∈ Homc(n)(F ,F). We will deduce equality (4.6) from the Lefschetz-Verdier trace formula
(3.20). �e latter yields an equality

Tr(RΓc(u)) = ∑
β∈π0(Fix(c(n)))

ltβ(u).
By 4.28, the le� hand side equals the le� hand side of (4.6). For the right hand side let β ∈
π0(Fix(c(n))). �ere are two cases to consider.

Case 1 First assume c(β) /⊂ U × U , let x ∈ β such that c(x) ∉ U × U . By 4.26.1, c(n) is
contracting near Z in a neighborhood of �xed points. Also, (c(n))′(x) = c′(x) ∈ Z hence(c(n))′(β)∩Z ≠ ∅ and c(n) satis�es the hypotheses of 4.18. Hence β is a connected component
of Fix(c(n)∣∣Z) and ltβ(u) = ltβ(u∣∣Z). But F ∣Z = 0 hence u∣∣Z = 0 which implies ltβ(u) = 0.
Case 2 On the other hand, assume c(β) ⊂ U×U . Denote by d the correspondence c∣c−1(U×U).
�en d2 = c2∣c−1(U×U) is quasi-�nite and qn > d ≥ ram(d2) hence, by part 1, the set Fix(d(n))
is �nite. Since d(n) = c(n)∣c−1(U×U), we have β ⊂ Fix(c(n)) ∩ c−1(U × U) = Fix(d(n)) from
which it follows that β = y is a closed point and that the sum on the right hand side of (4.6) is
�nite. We are done if we can prove lty(u) = Tr(uy).
Set x = c2(y) = d2(y) ∈ X. By 4.26.2, d(n) is contracting near x in a neighborhood of �xed
points (that x is closed may be proved as in 4.5), hence 4.18.2 tells us that lty(u∣c−1(U×U)) =
lty(u∣c−1(U×U)∣∣x). We conclude:

lty(u) = lty(u∣c−1(U×U)) by 3.22

= lty(u∣c−1(U×U)∣∣x)
= Tr(uy) by 4.11.

2. If we replace c and u by its restrictions c∣c−11 (U) and u∣c−11 (U), respectively, then the hypotheses
of 2 are still satis�ed. Moreover, if we can prove the existence of such a d ∈ N with respect
to c∣c−11 (U) and u∣c−11 (U) then the same d also works for c and u since (4.6) remains the same.
Indeed, for the le� hand side we have:

Tr(RΓcU(u)) = Tr(RΓc(u∣U ,X) ○ adj−1)
= Tr(RΓc((u∣c−11 (U))∣U ,X) ○ adj−1) by 2.12

= Tr(RΓcU(u∣c−11 (U))).
For each y on the right hand side the equality

Tr(uy) = Tr((u∣c−1(U×U))y) by de�nition, cf. 4.9.2

= Tr((u∣c−11 (U)∣c−1(U×U))y) by 2.12

= Tr((u∣c−11 (U))y) by de�nition, cf. 4.9.2,

shows that the sum remains the same as well. Hence we may assume without loss of generality
that c−11 (U) = C. We will deduce part 2 from 3.
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4.13 ensures the existence of a compacti�cation c ∶ C → X × X of c such that X/U is locally c-
invariant. Denote by [ j] the inclusion of c∣U ,X into c. Since c∣U ,X

1 is proper, [ j] satis�es (F3) of
2.§3 hence we may set u = [ j]!(u∣U ,X) ∈ Homc( j2!F , j2!F), where we used the identi�cation
F ∶= j1!F ∣U ≅ j2!F sinceFX/U = 0. By 4.13.1, c

−1
1 (U) = c−11 (U) ⊂ C hence also c−1(U×U) =

c−1(U × U) which implies that the pair (c,U) (replacing (c ,U)) satis�es the hypotheses of
part 3. It thus su�ces to show that neither the le� nor the right hand side of the equality (4.6)
change under the replacement (c ,U ,F , u)↦ (c,U ,F , u).
For the le� hand side we have

Tr(RΓcU(u)) = Tr(RΓc(u∣U ,X) ○ adj−1)
= Tr(RΓc(u) ○ adj−1) by 2.10

= Tr(RΓc(u)).
On the right hand side of (4.6), the set of y over which the sum runs clearly does not change.
And for each such y we have the following equality (x = c2(y)):

Tr(uy) = Tr(u∣Wc(x)∣x ∣y)
= Tr(u∣Wc(x)∣U ,X ∣x ,x ∣y) by 2.15 since c−11 (U) = C
= Tr(u∣U ,X ∣Wc(x)∣x ,x ∣y) by 2.12

= Tr(u∣C ∣U ,X ∣Wc(x)∣x ,x ∣y) by 2.16 and 2.12

= Tr(u∣Wc(x)∣U ,X ∣x ,x ∣y) by 2.12

= Tr(u∣Wc(x)∣x ∣y) by 2.15 since c−11 (U) = C
= Tr(u∣Wc(x)∣x ∣Wc(x)∩c−12 (x)red ∣y) by 2.14

= Tr(u∣Wc(x)∣x ∣y) by 2.12

= Tr(u y).
4. �is is clear from the proof of part 2. ◻
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Notation

Term Page of de�nition

adj 5

ahc 31

bc 7

bc∗⋅ , bc
!
⋅ , bc∗⋅ , bc!⋅ 48, 49

bc∗, bc! , bc∗ , bc! 22

⊠ 8

c1 , c2 13

⋅̃⋅ 34

⋅
⊛ 4

ck 13

C⋅ 35

Cor 13

cor 58

cor′ 48

⋅
(n) 91

[⋅]∗ 18

[⋅]! 15

D 48

d⋅ 49

∆⋅ 4

D 4

Db
ctf 4

Db
ctf f 77

Df 11

D⋅ 5

ε 6

ε′ 7

η, ηh , ηh 9

ev 5

F 91

f⋅ 48

Fix 34

Fq 91

gr⋅ 11

h0
⋅ 64

Hom⋅ 15

Hi 5

I⋅ 4

ind 6

∫⋅ 7

ι 48

ι⋅ 49

[i ⋅,⋅], [ j⋅], [ j⋅,⋅] 13, 14

K ,Ksep 9

k 4

K⋅ 5

L⋅ 70

Term Page of de�nition

l 4

Λ 4

Λ⋅ 5

lt⋅ 46

[⋅] 13

Mor 48

N⋅ 29

⋅
♮ 13

Ob 48

ω 11

P 50

p1 , p2 8, 13

PCor 50

π⋅ 4

π̃⋅ 49

⋅
′ 34

∏⋅ 64

proj 6

Ψ⋅ 9

Q 50

R,Rh ,Rh 4, 9

r⋅ 49

R⋅ 70

ram 92

⋅R 9

RΓc 5, 17, 95

RΓc
⋅ 94

RCor 50

⋅red 4

res⋅ 46

∣∣⋅ 84

⋅∣⋅ , ⋅∣⋅,⋅ 5, 13, 14, 18

S 49

s 9

=s ,⊂s 83

Sch/⋅ 4

sCor 13

SCor 24

⋅
♯ 4

sp⋅ 22, 24, 25

t⋅ 48

=t ,⊂t 83

τ[⋅,⋅] 11

t⋅∗ , t⋅∗ , t⋅! 6

Tr 47

tr⋅ 46

W⋅ 84
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