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Introduction

Let k be an algebraically closed field and let us work in the category Sch/k of separated finite type
k-schemes. Let us be given a correspondence ¢ = (¢,,¢,) : C = X x X, a complex of I-adic sheaves
F € @ftf(X ,Q;), where [ is invertible in k, and a cohomological correspondence u : Re,,c/.# — %.
Assume that both X and ¢, are proper.

The correspondence ¢ gives rise to the scheme of fixed points Fix(c) ¢ C which is defined as
¢ '(diag X). Also, u gives rise to an endomorphism RI.(u) : R[(X,.%#) — RI(X,.%) of the
cohomology with compact support on X with values in .%. Representing RI.(X,.%) by a pro-
jective system of perfect complexes of Z/1”Z-modules (v > 1), we may assign to RI.(u) its trace
Tr(RI.(u)) € Q;. In this setting, the Lefschetz-Verdier trace formula [14, III, 4.7-8] expresses this
global term as a sum of “local terms” on Fix(c):

Tr(RI(u)) = >, ltg(u).
pem, (Fix(c))
Unfortunately, these local terms are not easy to compute for general correspondences. At the same
time this result fails if X or ¢, is not proper. Let us sketch possible strategies (one in each case) to
cope with these “defects”:

« One obvious way to accommodate a non-proper scheme X is to compactify and “extend” .%#
and u “by zero”. One would hope that neither the global trace nor the local terms change under
this operation.

 Suppose now that ¢, although not necessarily proper on the whole of C, admits an open subset
U c X such that ¢,|-(y) : ¢;'(U) — U is proper and .7 |y\y = o. In this case the two ob-
jects RT.(X,.#) and RT.(U, .7 |y ) are isomorphic and u still gives rise to an endomorphism
R, (u) of RT.(X,.%). “Restricting” ¢ and u to ¢;*(U) c C, one would again hope that the
local terms remain the same.

o As for the non-explicitness of the local terms, here is a situation where one has a natural guess
for how to compute them. Suppose that y is an isolated fixed point of ¢, and that c, is quasi-
finite. In this case, u gives rise to an endomorphism u,, of the stalk .F;. Its trace is called the
“naive local term of u at y”. One’s task is then to find conditions which guarantee that the fixed
points are isolated and that the naive and the true local terms coincide.

In [19], Varshavsky stated a set of conditions and proved them sufficient to carry out the strategies
just sketched, i. e. he proved that this set of conditions suffices to express the global trace associated
to RT.(u) as a finite sum of naive local terms, even for X and ¢, not necessarily proper. A bit more
explicitly (we won't give all the conditions here in the introduction), he assumes k to be the algebraic
closure of a finite field, and he also assumes that c is defined over the finite field. Thus, one has at one’s
disposal the geometric Frobenius which one may use to “twist” ¢,. Deligne conjectured that twisting
¢, by a sufficiently high power n of the Frobenius, and assuming ¢, quasi-finite and ¢, proper, will
ensure that the global term is a finite sum of naive local terms. The main result of [19] generalizes this
by allowing ¢, to be non-proper as explained above. (The condition not mentioned here explicitly is
related to this generalization.) As to the number n of necessary “twists”, the article gives a relatively
explicit upper bound on it, depending on the correspondence only. Weaker results had been obtained
before by Pink in [18] and Fujiwara in [9], and a significant part of the strategy employed in [19] is
already present in these two articles. The reader is referred to the introductions of all these articles
for some information on the role played by the Lefschetz-Verdier trace formula and the calculation
of local terms in algebraic geometry.



In the pages to come, I give a detailed account of [19]. Mathematically, there is (at least from an
expert’s point of view) nothing new here in comparison with [19]. I have reorganized the exposition
at some points, silently corrected a few (minor) mistakes (and most certainly introduced others),
and mainly given much more details.

I would like to thank Andrew Kresch and Joseph Ayoub for their assistance during the time I
have been working on my master’s thesis.

Let me end the introduction by giving an outline of the rest of the document. After some prelimi-
naries in section 1, correspondences and cohomological correspondences are introduced in section 2
(§1, §2). As seen above, under the first two bullets, we will need operations of some kind of proper
pushforward and pullback on cohomological correspondences. Apart from these (§3, §4), the sec-
ond section contains a discussion of the specialization operation on cohomological correspondences
(§5) and its application to the deformation to the normal cone construction (§6). Specialization to
the normal cone is a main ingredient in proving the vanishing of some local terms. The last para-
graph §7 of the second section proves a result of Verdier [20] which says that specialization to the
normal cone commutes with restriction to the zero section.

The third section gives the definition of a general “trace map” from which the local terms are
obtained by “integration’, and which also yields the global trace term when applied to RT.(u) (51).
It is of course important that this trace map behaves well under the operations on cohomological
correspondences discussed in the second section. It is in fact proved that it commutes with some-
thing called a “cohomological morphism”, which subsumes all these operations ($2-95). Moreover,
the Lefschetz-Verdier trace formula is seen to follow easily from the naturality of the trace map with
respect to proper pushforward. Finally, the additivity of the trace map is deduced from the additivity
of its filtered counterpart, which is in turn proved in $6.

The last section starts by introducing the key concept of a “contracting correspondence” and by
relating it to the construction of the deformation to the normal cone (§1, $2). Roughly, for corre-
spondences which are contracting in a neighborhood of their fixed points, the local terms equal the
naive local terms. In §3, it is shown that correspondences over finite fields can be made contracting
by twisting them with a sufficiently high power of the Frobenius, while §4 concludes this document
with the proof of the generalization of Deligne’s conjecture explained above.
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1 Preliminaries

In this first section we will fix our notation and recall some concepts and facts used later on. Except
for §1 and §2, the reader is advised to skip this section and come back to it if and when needed. We
will facilitate this by referring to the individual paragraphs of this section at the relevant places in
the main body of the text. (See also the list of notations at the end of the document.)

§1  Schemes

(a) Most of the time, and if not explicitly mentioned otherwise, all schemes considered in the
sequel are separated and of finite type over a fixed algebraically closed field k. Seemingly absolute
notions from scheme theory are always to be understood relative to k, e. g. morphisms of schemes
are morphisms of schemes over k, direct products of schemes are fiber products of schemes over k.
Another way to say this is that all statements about schemes and their morphisms are to be under-
stood as applying to the category of separated schemes of finite type over k, denoted Sch/k (except
that we will be sloppy and identify morphisms X — k with their source X, as usual).

Sometimes, we also work in the category of separated schemes of finite type over a fixed discrete
valuation ring R (satisfying some properties yet to be stated), accordingly denoted Sch/R. More
explicitly, this is the case in 1.4, 2.95-§7 and at a few places in section 3. However, we will always
make clear when we change the category.

(b)  The scheme defined by k (i.e. the terminal object in Sch/k) is again denoted k. For any
scheme X (separated and of finite type over k) we denote by X4 the associated reduced scheme and
by mx : X — k its structure morphism. Similar conventions apply to Sch/R. The diagonal morphism
X < X x X is denoted Ayx. For a morphism of schemes f : X — Y we denote both morphisms
of sheaves 0y — f,0x and f*Oy — Oy by f!. Moreover, if . is a sheaf of y-modules then we
denote by f®.7 the inverse image of 7 by f,i.e. f*.7 = f*F @, O.

If Z c Yisaclosed subscheme then .#, c 0y denotes the ideal sheaf defining Z. For a morphism
of schemes f : X — Y we denote the inverse image ideal sheaf of .#, by f*.7, - 0. It is defined
as the ideal sheaf generated by the image of f*.7, < f* 0y — O, where the second morphism is
f*. The scheme-theoretic inverse image of Z along f is denoted f'(Z),i.e. f(Z) = X xy Z. The
relationship between f~'(Z) and f*.%, - O is given by Iy = f* I - O.

§2 Derived category

()  We fix a prime [ invertible in k, and a commutative ring with identity A which is finite and
annihilated by some power of /. The generalization of our main results to the case where A is a finite
extension of either Z; or @, is immediate. (In fact, most of the proofs in this document go through
word for word in this context.)

(d)  To any scheme X we may associate the derived category of sheaves of A-modules for the
étale topology on X, denoted D (X, A), and its full “subcategories of bounded above complexes”
D7 (X, A) as well as of “complexes of finite tor-dimension with constructible cohomology”, denoted
’)DIC’U[(X,A) (or simply @ftf(X)). Recall that the objects of ’)D’C’tf(X) are exactly those complexes
F €D (X, A) which satisfy any of the two following equivalent conditions ([6, Rapport, 4.6]):

1. % is isomorphic (in ©7 (X, A)) to a bounded complex of sheaves which are both flat and
constructible.



2. .7 has finite tor-dimension and the cohomology sheaves H'(.7) are constructible.

In particular, if X = k then @ftf (X, A) is equivalent to the category of bounded complexes of sheaves
of projective finite type A-modules with morphisms taken modulo homotopy, denoted Ki,,.¢(A) in
[6, Rapport, 4.3]. From the second description above it is easy to see that @ftf(X ) is a triangulated
subcategory of ® (X, A).

Since we have imposed the right “finiteness conditions” (the schemes are of finite type over a
field), the categories @ftf(X ) are stable under the six operations

f*, fo. ' fi» ® RHom

(see [7, 1.1.2-3]). Here, of course, we abuse notation by writing the same symbol for the functor as
for its derived counterpart. The transitivity isomorphisms for these functors (e.g. (¢f)* = f*g¢*)
will usually not be denoted specifically. Recall also the “cocycle condition” for the transitivity iso-
morphisms (see e. g. [2, XVII, 5.1.8 (i); XVIII, 3.1.13]).

(e) For a scheme X we denote by Ay € @ftf(X ) (or just A) the constant sheaf associated to A,
by Ky = % (A;) the dualizing complex of X, and by Dx = RHom(—, K ) (or simply D) the Verdier
dual of X. Recall that there is a natural isomorphism of endofunctors of @ftf(X ), D* — 1 (see [6,

Th. finitude, 4.3]). Instead of 7y, we also write RT (X, —), instead of H' omry, we write Hi(X, -),
ieZ. If j: U~ X isan immersion and .% ¢ @ftf(X) we often denote j*.# by Z|y.

(f)  For amorphism of schemes f : X — Y, there are well-known adjointness relations
ot fiAf

of the functors between the categories erf(X ) and @ftf(Y). We denote the units and counits of
these adjunctions ambiguously adj. Moreover,

(-)® .7 4 RHom(Z, -)

for any .7 € @ftf (X) and we denote by ev the adjunction morphism (counit) .# @ RHom(.%#,¥¢) —
¢ derived from the morphism on the level of complexes

Z @Hom(%,9) — ¥
x® fr— f(x)
(see [14, II1, 2.2]).
Recall also that f; = f, in the case f is proper ([2, XVII, 5.1.8]), fI = f* in the case f is étale ([2,

XVIIIL, 3.1.8 (iii)]) and f "is the functor “sections with support on X” if f is a closed immersion ([2,
XVIIL, 3.1.8 (ii)]).

§3 Some morphisms

(g) Letf:X — Y beamorphism of schemes, &7, % € @ftf(X), and #,9 ¢ @ftf(Y).
If A, NV are two étale A-sheaves on Y, and if V is étale over X, there is a canonical A-bilinear
map

lim .7 (U) x lim A (U) — lim(.(U) x A (U)) —> lim (.2 (U) ®, A (U)),



where the limit is taken over those U étale over Y through which the morphism V' — X — Y factors.
This map induces a morphism of sheaves

[fl @y f* N — (M) N),

which is in fact an isomorphism. Since f* is exact and takes flat objects to flat objects, it induces in
an obvious way an isomorphism of functors between the derived categories,

te: PTG S f(FoY). (1.1)

We denote by ¢, the morphism obtained by adjunction:

-1

fot ©f B L (ot 0 f.B) o ff ot 0 £ B) D [ A0 B). (1)

(h) There is a canonical morphism, called the projection formula,

proj [t 8.7 % o (fot 0.F) Lo fu(f fut 0 F) D f( P (1)

It is an isomorphism e. g. if f = my is the structure morphism of a scheme X (see the proof of [2,
XVII, 5.2.11]). Moreover, if f is proper, it coincides with the following isomorphism,

proj: fid @ F > fi(A @ f*F) (1.4)

([2, XVIL, 5.2.9]), also called the projection formula.
The composition

ff7era) X if 7oy 7oy
defines by adjunction a morphism
tr fFZRfY — f(F oY), (1.5)
and the composition
fRHom(7,9) 0 7 - f(RHom(F,9) @ 7) < 9
defines, also by adjunction, a morphism
ind : f' RHom(.%,%) = RHom(f*.Z, '¥9), (1.6)

which is an isomorphism by [2, XVIII, 3.1.12.2], called the induction isomorphism.

(i) Let f:X — Y beamorphism of schemes. There is a canonical isomorphism
e f*AY i AX

defined as follows. Denote by f? the inverse image functor of presheaves, by A%, the constant
presheaf on the scheme W associated to A, and by a the sheafification functor. Then the inverse
of eis .

Ax=all =afPAb S affanl = f* Ay,



induced by the canonical morphism of presheaves A} — aA?. The morphism corresponding to ¢
by adjointness will be denoted ¢’ : Ay — f, Ax.

If ¢: Y — Zis asecond morphism of schemes then ¢ induces the following commutative dia-
gram:

Ax <——(gf)* Ay (17)

Moreover, if . is an étale sheaf on X then the following square commutes

foll ~<—=— f. (M ® Ay) (1.8)

f*% ® AY H,' f*% ®f*AX
€
It follows by adjointness that if 4" is an étale sheaf on Y then

frN ~—2— (N ®Ay)

FN @Ay ~— f* N ®f* Ay

is also commutative. Since the functor of sheaves f* is exact and preserves flat objects, the same
diagram commutes in the derived context as well. One then deduces again by adjointness that the
diagram corresponding to (1.8) in the derived context is also commutative.

(j)  If f is a proper morphism, we define the integration map

f H(X, Ky) — H(Y, Ky) (1.9)
7

as the composition
I~ dj
HO(X, Ky) = H(Y, fif Ky) —> H°(Y,Ky).

If f = 7y is the structure morphism of a scheme X, we also denote fnx simply by /.

(k)  Let

X <5 X’ (1.10)

|l

/
Y ~< Y
be a commutative diagram of morphisms of schemes. We shall now list the base change morphisms
we will need in the following sections. Each one will be denoted bc followed by the equation number
referring to the equation where it is defined.



Without any assumptions on the morphisms there are base change morphisms

ﬁ/gll _ g!f" (1.11)
g f— fig", (1.12)

the first defined in [2, XVIII, 3.1.13.2], the second defined in [2, XVII, 4.1.5].
If the square (1.10) is cartesian, then there are two isomorphisms

gh— flg", (113)
fig" =, g fe (1.14)
([2, XVIII, 3.1.14.1 and 3.1.12.3]). From these we obtain by adjunction two other morphisms
e (115)
figh — g f! (1.16)

([2, XVIII, 3.1.14.2] for the first one). If f is proper then (1.16) is the usual transitivity isomorphism
and (1.13) coincides with (1.12). If g is smooth and the square cartesian then both (1.12) and (1.15) are
isomorphisms. If g is étale then (1.15) is the usual transitivity morphism, (1.14) is the inverse of (1.12),
and (1.13) is the inverse of (1.11).

Note that all these base change morphisms behave well with respect to composition of morphisms
in the sense of [2, XII, 4.4] (see e. g. [2, XVII, 5.2.4-5; XVIIL3.1.14]).

(I)  For two schemes X,, i = 1, 2, we denote the projections X, x X, - X; by p;. For %, € @’C’tf( )
we set ¥ R.Z, := p;.F, ® p;.F,. We will need the following constructions from [14, III].
The composmon

pf”!X‘Ak ®P: 5\2 M>pz7TX Ak®p2=/ —%pz(AX ® 7. ) —_)pz

defines an isomorphism
KX,Ejz—z_)PIQ_gZz (1-17)
by [14, III, 1.7.4]. This also gives rise to an identification (cf. [14, IIL, 3.1.1])

DZ &8 .ZF, — RHom(p; Z,, p5 %), (1.18)
defined by adjunction as follows:

t _
pr 7 e(DFrF,) — (p/ 7 0p/DF)@p, 7 z%pf(ﬂ‘l@Dﬂl)@pi%—;

(1.17)

(Z,9DF,) R8T, —> Ky 8T, —> pL.7,.

Iff: X - Yand #,9 ¢ @ftf(Y) there is a canonical morphism at the level of complexes
f*Hom (%#,¥) -» Hom'(f*.7, f*%) which can be derived to yield

f*RHom(.#,¥) — RHom(f*.7, [*¥). (1.19)
Also, it 7;,%9, € @btf(X ), then the composition

Z,® .F,® RHom(.%,,9,) ® RHom(.Z,,9,) —>
Z, @ RHom(%#,,%,) ® %, ® RHom(.%#,,9,) ——

ev® ev

4049,



gives rise, by adjunction, to a morphism
RHom(.%,,%,) ® RHom(.%,,9,) — RHom(.%,® %#,,9,®9,). (1.20)

Now, let .%#;,%; € Qdf( ;). Composing the two morphisms above yields

RHom(.%,,%,) ® RHom(.%,,9,) —p; RHom(.%,,%,) ® p; RHom(.%,,%,)

(119) ® (1.19)
e

RHom(p; Z,, pi¥,) ® RHom(p; Z,, p>3¥,)

L2, RHom(p! 7, © pi. 7, 19, ® pi,)

—RHom(.%, ®.%,,9,89,). (1.21)

By [14, I1, 2.3], this is an isomorphism.

§4 Nearby cycle functor

We will here recall the construction of the “nearby cycle functor” (cf. [8, XIII]).

(m)  For some of the following statements see e. g. [4] and [17]. Let R be a discrete valuation ring

over k with residue field also k, and let R" be the henselization of R. R" is again a discrete valuation
ring, with residue field k. Denote by K the fraction field of R” and let K 5 K be a separable

algebraic closure of K. Then the integral closure R’ of R" in K*¢P is still a one-dimensional henselian
valuation ring, still has residue field k, and its fraction field is K**F. We denote by the same symbols

R, R" and R" the corresponding schemes (they are not necessarily objects of Sch/k), by 7 (resp. ",

h) the generic point of R (resp. R", R") and by s = k the closed point of all these rings.
If X is any scheme over k we denote its base change along 7 by Xy = X x R, and we abbreviate

(Xg), by X,, when there is no risk of confusion. Similar conventions hold in the case of R" or RV

instead of R, of morphisms and sheaves instead of schemes, and of s, #" and W instead of .

(n)  Continuing the notation of (m), let X be a scheme over R. Then the functor of nearby cycles,
b s
\P Ectf(Xﬂ) - Qctf(Xs)’
is explicitly given as follows. Let .7, € @f,f(fcn).
1. Suppose first that R is henselian. Let i : X, — XE and j : X’ﬁ - Xf be the canonical mor-

phisms. Then
Vi (Fy) =i T

2. In the general case, we have
Ye(F,) = ¥, (F),

the right hand side being defined as in 1.

10



(o)  Still continuing the above notation, suppose we are given a morphism f : X — ¥ of schemes
over R. Then the following diagram is commutative

Yy
|
Yy
and we may define the following base change morphisms (the arrows on the back face are denoted
by the same symbols as on the front face):

5 (112)

Wy = f e S gt Y G et s it = e (12

z Zow . x ( 13) =  (L16) . = * ( 13) Ly z z

T A 0 05 MR S CP
z % () . = (11 -

\P?fq* =i j.a fq* > 1 ]« P a” —>l th ]*a ’fs*l jea :fs*\lj)"(’ (1.24)

% (115)

\I’Xf’;:i*j*a*f’; ‘) i fh *Tl fh ]+ f;l ]* _fSI\I/?_ (1'25)

The latter two may also be described as follows:

(1.22)

~ ad] ~ ~* ~
\P?fn* — fufs an* - fs* qu fq* —> fs* X
(1.23) =
Wifs <% e fy S B faft S ey
If f is smooth then (1.22) is an isomorphism and if f is étale then (1.25) is its inverse; if f is proper
then (1.23) is an isomorphism and (1.24) is its inverse (cf. (k)).

It follows from the compatibility with respect to composition of scheme morphisms of the various
base change morphisms appearing in the definition above (see (k)) that also (1.22) until (1.25) behave
well with respect to composition. More precisely, suppose we are given an additional morphism
¢:Y — Z of schemes over R. Then the following diagram is commutative:

(1.22)

Ze ox 1.22) P -~ P
fs &Y, ’ fs \I’an = YxJn &y
(gf)s\yz X(gf)q

Similar diagrams commute in the other cases.

§5 Filtered derived categories

Our main reference for this paragraph is [15, Chapter V].

11



(p)  Fix an abelian category A. We denote by €(A) the category of complexes in A. A (finite)
filtration on an object L of €(A) is a decreasing sequence of objects in €(A),

> FLoF™Lo.. ieZ,

such that F'L = o for i > o and F'L = L for i < o. A morphism f : L - M in €(A) is said to
preserve the filtrations (F'L), (F'M) on L and M, respectively, if f(F'L) ¢ F'M for all i € Z; in
this case we denote the induced morphism F'L — F'M by F' f. We define €f(A) to be the category
whose objects are objects L of €(A) equipped with a (finite) filtration (always denoted (F’L)), and
whose morphisms are morphisms in €(A) preserving the filtrations. This is an additive category.

Given —oo < a < b < oo there are full subcategories ¢fl*PI(A) of €f(A) consisting of those
objects L such that F'L = L for i < aand F'L = o for i > b (notice the asymmetry). There are
truncation functors 71?] : ¢f(A) - €f(A) which are defined on objects by 71*1(L) = F*L/F'*'L
with the induced filtration F'7l%*](L) = F'L/F"*'L in the interval [a, b] (and in an obvious way on
morphisms). We abbreviate [-oo, b] (resp. [a, co]) by < b (resp. > a).

We denote by w the forgetful functor €§(A) - €(A) and for each i € Z by gr' the composition
of functors wzl"1 : €f(A) - €(A) which maps L to F'L/F*'L.

(qQ)  We say that a morphism f in €f(A) is a quasi-isomorphism if F f (or, equivalently (cf. [15,
V, 1.2]), gr' f) is a quasi-isomorphism in €(A) for all i € Z. There is a way to define a triangu-
lated homotopy category £f(A) to which this notion of quasi-isomorphism extends (the details are
not important for our purposes; cf. [15, V, p. 271]). We denote by Df(A) the triangulated category
obtained by the usual localization process with respect to these quasi-isomorphisms. Similarly, by
starting from ¢fl**1(A) one obtains categories D11 (A) and these are canonically full subcate-
gories of Of(A) ([15, V, 1.2.7.1]).

By D’f(A) we denote the full subcategory of Df(A) consisting of those objects L such that
H" gr'L = o for all but finitely many i and n. If we denote by €”f(A) the full subcategory of ¢f(A)
consisting of those objects L such that L" = o for all but finitely many # then, as usual, D%f(A)
is naturally equivalent to the category arising from €*§(A) by localizing with respect to the quasi-
isomorphisms. Similar definitions and remarks apply to D*f(A) and D7 f(A).

The functors from (p) induce additive functors 71?1, w and gr’ between derived categories.
Moreover, for every i € Z, there is a distinguished triangle of functors 7%/ — 1 — 75/~
natural transformations of functors which, evaluated at any object of ©f(A), yield a distinguished
triangle.

-t ie.

(r)  Fixin addition two abelian categories B and C.
We say that a triangulated functor G : Df(A) - Df(B) (resp. G : Df(A)° — Df(B)) is filtered
if
G(Df**1(A)) c OF“I(B)  (resp. G(DF"?)(A)°) « D7) (B))

for all a < b. A filtered lift of a triangulated functor G : ©(A) — D (B) (resp. G : ©(A)° - D(B))
is a pair (G, @) where G is a filtered triangulated functor as above and ¢ is an isomorphism of
functors ¢¢ : WG > Go.

Similar definitions can be formulated for bifunctors: We say that a triangulated bifunctor G :

Df(A) x Df(B) - Df(C) (resp. G : Df(A)° x Df(B) - Df(C)) is filtered if
G~ (Qf[a,b] (A) « @f[c,d] (B)) c @f[a+c,b+d] (C)
(resp. G (Df"1(4)° x DN (B)) < D+ (C)).
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A filtered lift of a triangulated bifunctor G : ©(A) x ©(B) - D(C) (resp. G : D(A)° x D(B) —
D(C)) is a pair (G, ) where G is a filtered bifunctor as above and ¢ is an isomorphism of bi-
functors ¢ : WG — G(w x w).

Finally, by a filtered lift of a morphism H : G, - G, between triangulated functors (resp. bifunc-
tors) we mean a morphism H : G, — G, between filtered lifts of G, and G, such that the following

diagram commutes:

wG, _oH wG, respectively wG, S S— wG,
%]\L l%l QOG,\L \L%z
G —— G,w G, (wx w)mGz(wxw)

(s)  Assume that A has enough injectives. Then, by [15, V, 1.4.5] the bifunctor RHom : ©(A)° x
D*(A) - D(Ab) (where Ab denotes the category of abelian groups) possesses a filtered lift RHom :
Df(A)° x DfF(A) - Df(Ab). Moreover, there is a natural isomorphism of bifunctors

Hom — H° w7>°RHom,

where the left hand side denotes the bifunctor of filtered morphisms ([15, V, 1.4.6]).

Specializing to the case of interest, let f : X — Y be a morphism of schemes and set A to be the
category of sheaves of A-modules for the étale topology on X. According to [15, V, 2], the (bi)functors
f., f*, RHom and ® on D°(X, A) etc. possess natural filtered lifts to D*f( X) := Df(A) etc.:

fur D(X) = DR(Y),
fr7(Y) > D75(X),
RHom : Df(X)° x D"(X) ~ DJ(X),
&: D7(X) x DI(X) - DI(X).

Moreover, they enjoy the same adjointness relations as the original functors.
The global sections functor (X, ) : D*(X) — D" (Ab) possesses a filtered lift

F(X,-) s D*}(X) — D*f(Ab)
according to [15, V, 2.2.7]. There is a canonical isomorphism
(X, Rifom) —» Rifom
of filtered bifunctors ™ (X)°x D" (X) - D*(Ab) ([15, V, 2.2.10]). In particular, there is a canonical

isomorphism of bifunctors
H°(X, wr*°RHom) = Hom.
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2 Cohomological correspondences and operations on them

§1 Correspondences

To define our main object of study, cohomological correspondences, we first need the notion of a
correspondence.

Definition 2.1 1. Let X,, X, be two schemes. A correspondence (from X, to X,) is a morphism
c:C— X, xX,." Itis called a self-correspondence if X, = X,.

2. Given two correspondences ¢ = (¢,,¢,): C > X, x X,, b= (b,,b,) : B—> Y, x Y,, a morphism
fromctobisatriple [f] = (f,, f% f,) of morphisms of schemes making the following diagram

commutative:
c c,
X, C X, (2.1)
o
Y b, B b, Y,

A morphism of self-correspondences in addition satisfies f, = f,.
This defines a category in an obvious way, the category Cor(k) of correspondences over k. It has
a terminal object, namely the trivial correspondence k — k x k, denoted c. Given a correspondence
¢: C - X, x X,, the structure morphism ¢ — ¢ is denoted [7],. Similarly one defines the category
Cor(R) of correspondences over a discrete valuation ring R.
The subcategories of self-correspondences are denoted sCor(k), sCor(R), respectively.

Notation 2.2 Whenever we mention a correspondence ¢ : C — X, x X, in the sequel and if not
explicitly stated otherwise, we will tacitly assume the following notational convention: p; : X, x
X, — X; denotes the projection onto the i factor, ¢; = p; o c. Similarly, if [ f] is a morphism of
correspondences we will assume [ f] = (f;, %, f,) except if mentioned otherwise.

Since correspondences are built out of schemes and morphisms of schemes we may transfer sev-
eral notions from scheme theory to the theory of correspondences as follows.

Definition 2.3 Let & be a property of morphisms of schemes.

1. A morphism (f,, f4, f,) between correspondences is said to possess the property 2 if each
component f;, 4, f, does.

2. A correspondence c is said to possess the property & if the structure morphism [7], does.

Example 2.4 1. Letc: C — X, x X, be a correspondence and j: W < C an open (resp. closed)
subscheme. We may restrict ¢ to W, denoted c|y, and thus obtain an open (resp. closed)
immersion [jw] = (j, 1x,, Tx,) : clw = c.

2. Similarly, let ¢ : C — X, x X, be a correspondence and j; : U; = X; open subschemes, i =1, 2.
Then we may restrict ¢ to

| ¢7'(U,) n ;' (U,) — U, x U,.

'Recall (1.(a)) that this means that C, X,, X, are separated schemes of finite type over k, X, x X, is actually X, x; X, and
¢ is a morphism over k.
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Again, there is an open immersion [jV"%:] = (i,],j,) : ¢[""Y* < ¢, where i : ¢;*(U,) n
¢;'(U,) = C.

IfX, =X, = Xand U, = U, = U we will simply write ¢|V and [ jV] instead of ¢|”"Y and [jY"V],
respectively.

3. Finally, letc: C — X, x X, bea correspondence, let Z; c X; be closed subschemes, and assume
that ¢ restricts to a correspondence

Z

c vl : Cgl(zz)red - Z1 x Zz-

vZ s ¢, denoted [i%7%2]. Again, if X, = X, and
Z, = Z, = Z we will simply write ¢|* and [i?].

Note the ambiguity if Z; = U; c X; are open as well as closed subschemes. Then, in general,
UUs as defined in 2. Context will always make clear

which one is meant.

Note also that the condition for ¢ restricting to c|? is equivalent to ¢,(c;*(Z)) c Z (set-
theoretically). In a later section we will say that Z is “c-invariant” if this condition is satisfied
and it will play an important role in the course of the argument (cf. 4.51).

We will be interested in the second part of the above definition only when % is the property of
being proper. In fact, this case will be quite important in the sequel so we end this paragraph with
a simple but useful observation regarding it. Notice that Definition 2.3 tells us in particular what a
compactification of a correspondence is and what it means for a morphism of correspondences to
extend another one.

Lemma 2.5 1. Every correspondence admits a compactification. In fact, more is true: Let ¢ =
(crc,) : C = X, x X, be a correspondence and j, : X, = X, and Jai Xy = X, any two
given compactifications. Then there exists a compactification j* : C < C and a correspondence
¢: C— X, x X, such that the pair (¢, (j,, j%, j,)) is a compactification of c.

2. Given a morphism of correspondences [f] : ¢ — b there exist compactifications ¢ of c and bofb
and a morphism of correspondences [f]:¢ — b extending [ f].

PROOF 1. Choose any compactification j/ : C < C’ and let C be the closure of the image of the
embedding o
= (j,’jl o Cvjz o Cz) C— C, x Xl x Xz'

The composition C - C’'x X, x X, — X, x X, with the projection defines cand [j] = (j,, j, j,)
is a morphism since the following diagram clearly commutes for i = 1, 2:

X;

\”2) / {
ji

X;

C'x X, xX,
Torxjixja
— , = =
c—C XX1XX2H

Finally, j* and hence [ j] are compactifications.
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2. Assumethatc: C - X, x X, and b: D - Y, x Y, are the two correspondences. First choose a
compactification [j] : b — basin part 1, where b:D—-Y,xY,isa proper correspondence.
Next, for i = 1,2, let k; : X; = X; be a compactification such that f; extends to a morphism
f,;: X; — Y,. Finally, choose a compactification k" : C < C such that the morphism (f!,¢) :

f (X, x X,). With

C — D xy.y, (X, x X,) extends to a morphism (fh,E) :C > Dxy 3
similar diagrams as in part 1, one checks easily that (k,, k!, k,) : ¢ — € is a morphism of

correspondences (hence clearly a compactification), that [f] = (f,, ?h,?z) is a morphism of

correspondences, and that it extends f. o

§2 Cohomological correspondences

Now, we may introduce our main object of study.

Definition 2.6 Let ¢ = (¢,,¢,) : C > X, x X, be a correspondence and let .%; ¢ @’C’tf(X,»), i=12
(see 1.(d)). A cohomological correspondence (from F, to .7, lifting c) is a morphism

u:cy,cl F > F,”

The set of cohomological correspondences from .%, to .7, lifting ¢ will be denoted Hom, (.%,, %, ).

§3 Pushforward
In the notation of 2.1, assume one of the following conditions is satisfied:
(F1) The left square of (2.1) is cartesian.
(F2) The morphisms f, and f% are both proper.
(F3) The morphisms ¢, and b, are both proper.
In each of these cases we will define a base change morphism of functors
by fi — _f!ucl*' (2.2)

In the cases (F1) and (F2) this is simply (1.13) and (1.12), respectively. In the case (F3) it is defined as
the composition

adj > adj
bl*,fl' - bl*,fl!cl*cl* = b:.fllcl!cl* - b:.bll,flhcl* = b:bmf!hcl* I ﬁquL (2-3)
Or, alternatively, it arises by adjointness from the base change morphism
be (1.11)
enft —— fiby
via the identifications ¢,, = ¢,y and b,, = b,;.

Definition 2.7 In the notation of 2.1, suppose (F1) (resp. (F2), (F3)) is satisfied. We define the proper
pushforward map (of type (F1) (resp. (F2), (F3))) associated to [ f],

[f] : Hom (F,, #,) — Hom, (f1 7, fu17,),

*>This definition is slightly different from the one in [14, III, 3.2]; they coincide if ¢ is proper.
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as follows. Given u € Hom_(.%,, .%,), let [ f];(u) be the composition

[F) ) bl (Fu) S by ficr 7 = frenet 7, 25 1,7,

[f1:(u) is called the proper pushforward of u along [ f] (of type ...).

Lemma 2.8 Proper pushforwards are compatible with composition in the following sense. Let [f] :
a— band[g]:b— cbetwo morphisms of correspondences such that in both cases (Fj) is satisfied.
Then (Fj) is satisfied in the case [¢][f] : @ — c also and the following diagram commutes for any .F;:

(L)L

Homc((glfl)syp (ngz)lyz)

Homc (gllfl!gzv gz!lejz)

Homﬂ(yl’ 2)

[f]zJ/

Homb(fﬂyplecg‘\z)

(g

ProoF It is clear that (Fj) is satisfied in the case [¢][ f]. Now, fix u € Hom,(.%,,.%,) and consider
the following diagram (where all unlabeled isomorphisms are the obvious ones):

Czlcr(glfl)!aga g Cz!(ghfu)!al*yl $' (glfl)lallal*jl % (ngz)!gzz

* * = * & faru
€16y gll.fl!yl @ Czlg!hflh a, yl - gz!leaz!al y1 - gzlfz!yz
(2.2)
Cz!g!hbf_fl!jl T> Cllg!h-flhal*jl

& faru

b, b7 f1.F, T gzlbz!f!ha;yl — & fuaal F L1,

The top row is ([g][f])iu, the bottom row g, ([ f],u), hence commutativity of the outer rectangle

would imply the lemma.
All inner squares except (1) are obviously commutative. To prove the lemma, we thus have to

show the commutativity of (¢), i. e. of the following diagram:

e (g'f*)a; (2.4)

Cl*(glj-l)l

13

¢ gt o) &b} fu o) gifial

But this follows from the fact that the base change morphism (2.2) is compatible with composition

(1.(k)). o

We will now apply the pushforward construction in the case of the structure morphism. Recall
that RT.(X, —) denotes the functor 7y, for any scheme X (see 1.(e)).
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Definition 2.9 Let ¢ : C - X, x X, be a correspondence and assume that ¢, is proper. Then (F3) is
satisfied for the structure morphism [ 7], and we may define, for any u € Hom,(.%#,,.%, ), the proper
pushforward of u along [7],:

RI(u) = [m]a () : RI(X,, F)) — RI(X,, 7).

Remark 2.10 In the notation of 2.9, let (¢ : C — X,xX,, [j]) bea compactification of c. Then Mg €=
s is proper hence so is ¢,. This implies that [ j] satisfies (F3) and u := [f],(u) € Homz(j, .7, j.7,)
is defined. We may then ask what the relationship is between RT(u) and RI.(u). Of course, it is
the nicest possible, namely the following diagram commutes:

RI,
RIL(X,, 7,) — " RI(X,,.7

T

ch(yvjl!i’él) RT, (%) ch(Xz’]zljz)

(Here the vertical arrows are induced by the isomorphisms (nX jin = 75, jir-) Indeed, this is a
special case of 2.8.

Notice also that for the commutativity of the diagram above we did not use the fact that [j] is a
compactification. It would have sufficed to assume that [ j] is an open immersion into a correspon-
dence ¢ with ¢, proper.

§4 Pullback
In the notation of 2.1 assume one of the following conditions is satisfied:
(B1) The canonical map C — B xy X, induces an isomorphism on the reduced subschemes.

(B2) f"and f, are both étale.

In both cases there is a base change morphism

Cz!fh* - fz* bz!- (2.5)

Namely, in the case (B2) this is simply (1.11), while in the case (B1) it is defined as follows. In the
commutative diagram

£ : ’
p,J/ lfl
B— (Y

2

i is a closed immersion onto by assumption. This implies that the adjunction map adj : 1 - i,i* is
an isomorphism hence we may define (2.5) by

i (113)
7_'fh —>P2’l i Pl fpz’ f—>f2 2!



Definition 2.11 In the notation of 2.1 assume (B1) (resp. (B2)) is satisfied. We define the pullback
map associated to [ f] (of type (B1), (B2) resp.),

[f]* :Homb(jl)gzz) - Homc(fl*jl’fz*yz)’

as follows. Given u € Homy (%, .%,), let [ f]*(u) be the composition

L1 (u) t el (7)) = caf"br7, S5 b7, 25 fr.7,.

[f1* (u) is called the pullback of u along [ f] (of type ... ).

Remark 2.12 As in the case of the pushforward construction, the pullback of cohomological corre-
spondences is compatible with composition in the following sense. Let [f]:a - band [g] : b — ¢
be two morphisms of correspondences such that in both cases (Bj) is satisfied. Then (Bj) is satisfied
in the case [¢][f] : @ — c also and the following diagram commutes for any .%;:

([gllf D7 " "
Hom, (%, .7,) ¢ Hom, ((g.£,)* %, (8.1.)"-F>)

| ]

Homb(gfgzv g;jz) (1" Homa(ffgl*jv ;g;jz)

The proof of this statement is similar to the one of 2.8.

We will now apply this construction to some particular situations described in 2.4.

Example 2.13 1. Asin2.4,letc: C - X, x X, be a correspondence and W c C an open subset.
Then the pullback map (of type (B2))

[JW]* :Homc(yl’yz) - Homc|w(y1’yz)

defines, for any u € Hom,(.%#,,.%,), [jw]* (1), the restriction of u to W. We also denote it by
l/l|W.

2. Similarly, if ¢ : C — X, x X, is a correspondence and j; : U; c X; are open subschemes, then
the pullback map (of type (B2))

[jU“UZ]* :Homc(yl’yz) - Homc\UlvUZ(yJU,’yz

v.)

defines, for any u € Hom(.%,, .%,), [jV"V>]* (u), the restriction of u to U,, U,. We also denote
itby u|"%:. If X, = X, = X and U, = U, = U we will simply write u|".

3. Finally, let ¢ : C — X, x X, be a correspondence, let Z; c X; be closed subschemes and assume
that c|?»%: exists. Then the closed immersion [i%+#:] clearly satisfies condition (B1) and we

may define the pullback map
[iZ.,Zl]* :Homc(yl’yz) - Homc\ZvZZ(yJZ,’yz

)

Ifu e Hom (.Z,, 7,), [i#%:]* (u) is called the restriction of u to Z,, Z, and it is also denoted
ul?v% 1t X, = X, and Z, = Z, = Z we will simply write u|%.

Again, there is an ambiguity if U; = Z; c X; are open as well closed subschemes but we will
always make clear which one is meant.
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We end this paragraph with a few simple results on composing different types of restriction and
pushforward maps.

Lemma 2.14 Let ¢ : C — X x X be a correspondence, let .F ¢ @’C’tf(X), and let V.c W c C be open

subsets. Also, let Z c X be a closed subscheme and assume that c|yy|? exists. Then c|y|? also exists and
for every u € Hom (%, F), the following equality holds:

“|V|Z = ”|W|Z|Vmc;'(z)m,- (2.6)

Notice that the statement is meaningful because the left hand side of (2.6) is a cohomological cor-
respondence from .%|, to itself lifting c|,/|* while the right hand side is one from .%|, to itself
lifting c|W|Z|le-:( 7)..> and these two correspondences are the same (both are ¢ restricted to V n
CZI(Z)red = Zx Z)

PrOOF We have to prove that the following rectangle commutes:

[iZ]*
» F clv Hom,| |z (Zlz, Z1z)

l e

Hom,, (7 7, 7) HHomc\wv(le,a‘lz)14>H0mc\wwz
Ve (Z)red

Hom, (% )[J—]*>Hom (7, %)

‘gZ|Z)<gZ|Z)

vt ¢

By 2.12, [jy |* factors through [ jy |* as indicated by the dotted arrow. Hence we may assume W = C
and that c|? exists. For notational convenience only we will also assume that ¢;*(Z) c C is already
reduced. We fix our notation as in the following “cartesian square of correspondences™:

We deduce the following diagram:

— _u* adj

. = )

fufi ejij et el

N =h=hx ~

= exfij el -
fz!l d* ez']!tl ]ﬂ* ; leu*cl*
(1.13) | = ez!ih *jEjh*Cl* (1.13)

(1»13)\L
i*d,d; _ e it —— it
> e adj )
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The parallelogram in the middle commutes by the definition of (1.13), the lower pentagon on the
left commutes by the compatibility of (1.13) with respect to composition, the commutativity of the
upper pentagon on the left follows immediately from the “cocycle condition” (1.(d)), while the two
trapezoids on the right clearly commute. Hence the whole diagram is commutative. But applying
this diagram to .% and following the two outer paths followed by i*u yields exactly the left (resp.
right) hand side of (2.6). o

Lemma 2.15 Let ¢ : C - X, x X, be a correspondence, let F; € @ftf(X,»), and let Z; ¢ X; be closed
subschemes contained in open subsets U; c X;. Assume that c|?»%> exists. Then c|V»V>|%+%> exists as

well and for every u € Hom,(.%,, .%,), the following equality holds:

22, — |UnU,|2:.2,
U e wne (2, = ’ (27)
both sides considered as elements of Hom,7, 2, oot (Flz > Flz)-
a (UDNG (22D red ! ?
PROOF c|?+%: exists iff ¢,(c;*(Z,)) is set-theoretically contained in Z, while c|+U>|?%: exists iff

c,(c;"(Z,) nei*(U,)) is set-theoretically contained in Z,. Hence the first claim is clear.

Essentially the same proof as in the previous lemma shows that the left hand side of (2.7) is equal
to ul . (y,y|“#, while the right hand side is equal to ul.(y,)|"Y:|#>% by 2.12. Setting u’ = ul .y
we thus have to prove

Z,,Z /

’1>1:u

u U,,U,

ZZs, (2.8)

Set C' = ¢;'(U,), ¢’ = c|cr, d = ¢'|VV>, e = d|?%: and assume for notational convenience again that

¢, '(Z,) is reduced. Finally, denote the canonical inclusions by [j] : d = ¢/, [i] : e = d. Then the
claim is equivalent to the commutativity of the following diagram (where we abstain from writing

F):

ks be (2.5) . .
i - izdudyj;

€eé 1 S ezliu*dl*jf

Y
s be (25) . . be (25) ., .
= et et —— ild, el = i il
ez!el*(jlil)* ;E 62!(]"11‘“)*6{* (jzl‘,_)*C;_!C;*

be (2.5)

Indeed, the dotted path followed by i} j5u’ is equal to the right hand side of (2.8) while the bottom
row followed by (j,i,)*u’ is equal to the left hand side. Now, the left square of the diagram is com-
mutative by the “cocycle condition”, the upper right square is commutative by the naturality of (2.5),
and the lower right square commutes because all base change morphisms involved are instances of
(1.13) (see 1.(k)). O

Lemma 2.16 Let [j] : ¢ — ¢ be an open immersion and assume that c, and ¢, are both proper, and jt
dominant. Then [j]*[]] is the identity map.
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Proor Consider the following diagram:

% ok adj=1 .
€16 J1 Ju €16y
adj=1
-h Z—x— . adj = * = I adj gk bk X
Cat)" €1 Ju Cu ]t €y Jun€ =G G Cl!]lcl > Cy1] ]1C1 adj=1
be (1.11) bc (1.11)\L bc (1.11)\L bc (1.11)\L
Y
k= =k . i * Sk R oh ok P Sk *
J2€21Cy Ju adj > ]2€51€Cy J11€11 6y ~ > ]2€216 ClI]ICI adj >]2C21]!Cl ~ > ]2 ]216216

Applying the whole diagram to .%, and following the dotted path by j; j,,u yields [j]*[j],u (any
u € Hom,(.%,,.%,)). Hence it suffices to prove the commutativity of the diagram.

The three squares in the lower half commute by the naturality of (1.11), and the commutativity of
the trapezoid on the right is easily deduced from the definition of (1.11). For the upper trapezoid we
use the description of the transitivity isomorphism j, ¢, = ¢, ]F given in [2, XVII, 5.1.5]. Since our
hypotheses imply that the square j, ¢, = ¢, j! is cartesian, it reduces to the dotted path in the following
diagram:

adj ox adj ok
¢ el = Tl

x

adj adj ]

adj adj % bk be (1.12) % oo— b %
Cl* > Cl*cl*cl* > C C1>e]tl ]FC < G ]1C1*]EC1

adj \L adj adj adj adj

* ok » * ok » * % 2% o * = cek— b %
(WA adj > €1 J1J16ix G TCIJIJIICI ]h ]Fcl TCIJIJIIJI CM]?C1

jh*zjjllTjh*zrjllcl*cl* adj >']u c ]1'61*Ju ]! bC(:llz) Ju*zj]ﬂ]le*_]kﬂcl*

This diagram clearly decomposes the upper trapezoid in the previous diagram, and its commutativity
follows from the naturality of the morphisms involved. o

§5 Specialization

Let R be a discrete valuation ring as in 1.(m). Recall that we constructed in 1.(n), for each scheme X
over R, the nearby cycle functor ¥y : @ftf (X,) — @?,f(Xs)- We will use this functor to construct
another functor called “specialization functor”, similar to the one introduced in [20]. We continue
the notation of 1.§4.

Definition 2.17 1. Let X beascheme over k. A pair (X, ¢ x) isalift of X if X isan object of Sch/R
and ¢ = ¢y : X - Xj is a morphism in Sch/R inducing an isomorphism Py X - X,. We
will sometimes say that X lifts X and let ¢ x remain implicit.

2. Let f : X — Y be a morphism of schemes over k. A triple (f,X,¥V)isa lift of f if X is a lift
of X, Yisalift of Y and f : X — Y is a morphism in Sch/R such that ¢y f = frox, i.e. the
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following diagram commutes:

Xp<2— % (2.9)

J

Py ~
Yp~—

We will also simply say that f: X - ¥ lifts f.
3. Given alift (X, ¢) of X, we define the specialization functor (with respect to X, X and ¢),
SPx,%,p gfrf(X) — erf(j(s)’
by spx 1., (F) = ¥x (97, ). We will usually write spy instead of spy x ,,-
Example 2.18 Let X be a scheme over k. Then clearly (Xg, 1y, ) is a lift of X in the above sense. We

call it the trivial lift of X. Notice that if f : X — Y is a morphism of schemes then there is a unique
lift of f to the trivial lifts X and Yz, namely fg : Xg — Yz. fz is also called the trivial lift.

Suppose we are given a lift f : X — ¥ of a morphism f : X — Y of schemes over k. From the
commutativity of (2.9) we deduce the commutativity of

k (9x) ~
X : Xy — X,
f fﬂl \Lf‘r/
Y Y, Y,
ky T (ew), d

and we may thus define several base change morphisms (setting cy = (¢x), © kx and ¢y = (¢y), ©

ky):

~ ~ (1.22) = x

bc* : fspy = fi ¥ycy R ‘I’;(fﬂ*c§ — Yk [T =spif,
~ ~ . (1.23) ~ . (113) .

be : faspg = fa¥xex — ¥y nex — Wiy fi = spy fis

(1.12) ~ (1.24) = ~
be, :spyf, = \F?C;f* > ¥y 11*632 ? fs*\y)'(cj( = fe+SPx>
1 (115) oo, (125) =

! | * gl ! * Pl
bc :spr' =Vicxf —> ¥ Wy — f;\Pf,cy = f;spf,,

and, as in 1.(0), the latter two can also be described as follows:

adj ~ =, bc* = . adj ~
be, spy fu — fo [Py fe = fausPrf " fo — foSPi

! poadj oz oz 1 obe padj
be' sspgf — fifuspif — fispgfif — fispy.

Remark 2.19 1. It follows from what was said in 1.(0) that if f is smooth then bc” is an isomor-
phism and if f is étale then bc' is its inverse. Similarly, if f is proper then be, is an isomorphism
and bg, is its inverse.
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2. It also follows from 1.(0) that the base change morphisms just defined are compatible with
composition in the following sense. Suppose we are given an additional lift § : Y - Z of a
morphism g : Y - Z of schemes over k. Then the following diagram commutes:

*

* * b * * *
frspygt ———>spgf*g

frgtsps

13
1

(&f)ispz ——=—spx(gf)"
Similar diagrams commute in the case of the other base change morphisms.

3. There is also a noteworthy compatibility between the different base change morphisms intro-
duced above. Suppose we are given a commutative diagram

y—fy and lifts —

i i1

X—F X—Ww
g g

and assume that both ¢ and g’ are proper. Then the following diagram commutes:

Zrs bc* %
fspy g —— spy f" &

bc!T: :i(l.lz)

f*8aspy P&l f*
(1.12)\L: :Tbc!
0 f spy = &aspxf”

Indeed, by 1, this is equivalent to the commutativity of

~ be*
! %
spsg. — = Py f " &«

bc*l: :lmz)

fsl*gs*spf/ Spr;f*
(1.12)\L: :\Lbc*
g fispy — > Zspf*

and using the alternative description of bc, this becomes a diagram with only one type of base
change morphism, namely bc*. It is then a straightforward exercise in decomposing diagrams
to reduce the commutativity of it to the commutativity of pentagons as in 2.

A similar diagram commutes if f and f’ are étale, with bc' and be, replacing bc* and be;,
respectively.
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Now, we can use these constructions to define the specialization of a cohomological correspon-
dence. Notice first that if X, X, are schemes over k and if we are given lifts (X;, ¢;), i = 1, 2, then
there is a canonical lift X, xp X, of X, x X,. This follows from the commutativity of the diagram

X X

n x neran can

1
(Xixz X,),

¢1qxn¢zq \L(VJIXRVJZ);’,

qu Xq qu T;n- (XIR XR XzR)q
and the fact that the left vertical arrow is an isomorphism by assumption.
Suppose we are given a correspondence ¢ : C - X, x X, over k and lifts (C, ¢¢), (X;, ¢;) of C,
X, respectively. We can now say what it means to lift ¢ to a correspondence ¢ : C — X, x X, over
R. By definition (considering ¢ simply as a morphism in Sch/k), the diagram

CR E
Cp—= (X1 X Xz)R —— Xip Xg Xyor
$c [2%9:1%%

C = Xl xR Xz

c

should be commutative. But this is equivalent to (¢¢, ¢,, ¢, ) being a morphism of correspondences
over R. Thus we could have defined a lift of a correspondence ¢ over k to be a correspondence ¢ over
R together with a morphism of correspondences ¢ - cp over R which is an isomorphism over the
generic fiber.

Definition 2.20 Letc: C — X, x X, bea correspondence over k, ¢ : C — X, x X, a correspondence
lifting c. For any .%; € @ftf(Xi ), we define the specialization map

Spe¢ ¢ Homc(ynyz) - Homéx(sp)'(]ynspf(zyz)

as follows. Denote, as usual, by ¢ the fiber of ¢ over s. Given u € Hom,(.%,, #,) let sp;(u) be the
composition

" be spy U
= o g °¢ . = * g ! * g 2 7
Csz!C51Sp)'(|</1 > Cou1SPeCy > SPg, €6 7 Sp}?l‘/z'

sp;(u) is called the specialization of u (with respect to ¢).

Specialization thus provides a means to connect a correspondence c¢ to the correspondence ¢
via the specialization map on cohomological correspondences lifting c. It is therefore quite natural
to view a lift ¢ as a morphism from ¢ to ¢,. Under this view, the trivial lift c; clearly corresponds
to the identity morphism. What one gets is then the structure of a digraph, i. e. a category without
composition. We denote the digraph one gets in this way starting from self-correspondences alone
by SCor. We will take up this view in the next section.

Lemma 2.21 Let X be a scheme over k, and let X = Xy be the trivial lift. Denote, as in 1.(0), by
j: X,,]_h = Xgrandi: X = X; > Xz the canonical morphisms. Then, for every F € ’)thf(X), the
map

= dj ~
F — i”yR—h 29, i*j*j*yR—h — spF (2.10)

is an isomorphism.
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The proof of this lemma will be given in paragraph §7. Here, we can however prove its compatibility
with respect to the base change morphisms introduced above.

Lemma 2.22 Let f : X — Y be a morphism of schemes and let f : Xy — Yy be the trivial lift of f.
Then all the following four squares commute:

fe o) SPYRf fi Lol SPYRf!

e e
L +SPx, h L1, 1SPx,
f*gstRf* f!(z‘*mgspxkfI
N |
I s F f'spy,

Proor The proof is essentially the same in each of the four cases and we will do only one. Denoting
the morphisms X - X and Yo7 — Y by b (so that bi = 1), the first diagram may be expanded as

follows:
adj

(bi) fo —=— b f ——= " j b o — (b)) f.
(112)

(112) i"jj* fam 0" (112)
adj -

(112) i* far, b* i T == i) (b))

adj -

(112) i far, JeJTb" (112)0x
(112)

folb)" —— i7" — = 070 = £d7). (b))

The left half of this diagram commutes by the compatibility of (1.12) with respect to composition, as
does the right upper square. The triangle commutes by the definition of (1.12) (cf. [2, XII, 4]) and
the remaining two trapezoids and the lower right square clearly commute hence so does the whole
diagram. o

Notation 2.23 Let X be a scheme over k and X a lift of X over R. Also,let 7: X - kand #: X - R
be the structure morphisms. Then the composition
(210)7" |

10) be, be'
LT Ak —> SPRTTLTT Ak — TSP Ak — ns*ﬂsspRAk — ns*nsAk

induces a map H°(X, Ky) - H°(X,, Ky ) which we denote by sp.
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Lemma 2.24 Let X be a scheme over k and let X = Xy be the trivial lift. Then the map
spx - H(X, Kx) — H°(X,, Ky ) = H° (X, Kx)

is the identity.

Proor Consider the following diagram:

! (2.10) \
TN —————>=Sppm, m Ay

\Lbc,r
(2.10)

!
M7 Ay —————> TPy, T Ay

I (2.10) \
T Ny ———— m,wspri\

Both squares commute by 2.22 thus the claim. o

We end this paragraph with a result on lifting compactifications of correspondences. First we
need a lemma.

Lemma 2.25 Let X be a scheme over k and (X, ¢) alift of X over R. Then there exists a scheme Y over
R such that

1. Yisalift of X over R,
2. Y is proper over X, and

3. for every compactification X of X, Y embeds as an open subscheme into a scheme Y (X) proper
over R and lifting X such that the following diagram commutes:

Y—— Y(X) (2.11)

<~ i <—

p A a—

PrOOF We first reduce to the case where X is proper over Xy. For this, let j : X < X" be a com-
pactification over R and set X’ the scheme-theoretic closure of the image of the open immersion

(o) : X —> X" xp Xp.

Over 7, we get a factorization

where the first map is a dominant open immersion and the second proper. But since X is a lift of X
the composition is an isomorphism thus proper, hence the first map is proper thus surjective. Then
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it must be an isomorphism and consequently so is the second map. This shows that X’ is a lift of X
as well. In addition it is proper over Xy by construction.

Suppose we can prove the lemma for X', i.e. we can prove the existence of Y’ satisfying 1-3 (with

X’ and Y’ replacing X and Y, respectively). We claim that the fiber product Y = Y’ x3 X then
satlsﬁes 1-3 (for X). Indeed, X - X’ is an isomorphism as we have shown above, which implies
that its base change Y,? - f’,; is an isomorphism as well. Since Y is a lift of X this implies 1. 2 holds
since Y — X is a base change of the proper Y’ — X, and finally for 3, the same scheme Y’(X) which
works in the case of X’ and Y’ works here too.

Thus we may assume that X is proper over Xy. Let Z be the scheme-theoretic closure of X'ﬂ in
X and denote by f : Z — Xy the induced proper morphism. Applying the next lemma below with
S =Xgand U = X, c Xy, yields blow-ups Z’, $" and an isomorphism Z" — S’ as in the lemma. Set
Y = §'. By the choice of the center of the blow-up Y is a lift of X, i.e. 1 is satisfied. Moreover, the
composition

Y —>7 —2z-—X

of proper maps proves 2. For 3, let X — X be a compactification, and denote by V ¢ X the center
of the blow-up Y - X Xg- Let V be the scheme-theoretic closure of V in Xy and set Y (X) to be the
blow-up of Xy along V. Clearly, Y(X) is proper over R. Moreover, the center V does not meet X

hence Y(X) is a lift of X. Finally, ¥ embeds as an open subscheme into Y (X), which proves 3.

Lemma 2.26 Let f : Z — S be a proper morphism of schemes, and let U c S be a dense open subset
such that f7(U) c Z is dense and f(U) — U an isomorphism. Then there exist blow-ups Z' — Z
and S — S with center away from f7(U) and U, respectively, and an isomorphism Z' — S’ rendering
the following diagram commutative:

Z’$S’

)

zZ—>S

Proor This is proved (with additional hypotheses which are automatically satisfied in our noethe-
rian setting) in [5, Theorem 2.11]. o

In the following corollary, all correspondences are assumed to be self-correspondences although,
as is clear from the proof, it holds also in the more general context.

Corollary 2.27 Let ¢ be a correspondence and let ¢ be a correspondence lifting c. Then there exists a
correspondence d over R such that

1. dlifts c,
2. d is proper over &, and

3. for every compactification € of ¢, d embeds with an open immersion into a correspondence d ()
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proper over R and lifting ¢ such that the following diagram commutes:

(c) (2.12)

1?
L

PrOOF Let us fix the following notation: ¢ : C - X x X, ¢ : C — X x X. (In this proof we abstain
from writing R as the index to the fiber product.) First choose a lift Y of X proper over X as in
Lemma 2.25. Then the scheme C x4, 3 (Y x Y) is a lift of C hence we may choose another lift D
proper over C x IxX (Y xY) again as in Lemma 2.25. We claim that the correspondence

d:Daéx}?XX(f/Xf/)e x Y

~h

satisfies the conclusion of the corollary. Indeed, 1 and 2 follow immediately from the definition of d.
For 3,let ¢ : C - X x X be any compactification of c. Choose Y(X) and D(C) as in Lemma 2.25.
Then consider the following diagram:

—— Cxgug (T x V) ——= ¥ x 7 —— 7(X) x ¥(X)

bl
G

ER%XR XXR

The trapezoid on the left as well as the triangle on the right commute by Lemma 2.25: they are in-
stances of (2.11). The bottom square in the middle is a base change of a commutative diagram and
thus commutative, the middle square commutes because ¢ lifts ¢, while the top square clearly com-
mutes. Hence the whole diagram is commutative and we deduce an open immersion

D s D(C) x,.3, (V(X) x 1(X)).

Clearly, the target of this morphism is proper over R and lifts C. We deduce from the commutativity
of the diagram above that the correspondence

d(©): D(C) x, .z, (Y(X) x (X)) » ¥(X) x ¥(X)

satisfies the conclusion of part 3 of the corollary. o
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§6 Deformation to the normal cone

Let Z be a closed subscheme of a scheme X. Recall that the deformation to the normal cone associated
to the pair (X, Z) usually refers to the construction of a scheme X and a commutative diagram

ZX[FDIC%XZ

pr, l

I]:Dl
such that over A* = P*\ {co} the embedding is the canonical embedding Z x A* < X x A" while over
oo it can be identified with the zero-section embedding of Z into the normal cone to Z in X (cf. [10,
chapter 5]). We will now explain this construction more precisely when P* is replaced by a discrete
valuation ring R as in the previous paragraph, A' by the generic fiber 7 and oo by the closed fiber s.
This will allow us to apply the specialization formalism introduced above.

Throughout this paragraph we fix a discrete valuation ring R as in the previous paragraph. Denote
by t any uniformizer of R, and consider, for n > o, the R-submodules Rt™" c R[1/t] = K of the
fraction field of R. Pulling back the associated quasi-coherent sheaves of &x-modules along the
projection map pp : Xz — R we get quasi-coherent sheaves of O, -modules

Oy ™" = pERE™ = piRET ©,: 0, O, © paROTE @y, Ox, = pERITE] =t Oy, [1/1].

Let ¥, c Oy, be the ideal sheaf corresponding to Z. We may define the following sheaf of Oy -
algebras:
ﬁXR ]Zk/t Zﬁx t ®ﬁxR ]an, (2.13)

n=o

where .77 = O, and whereits algebra structure comes from the natural embedding Oy, [ .77, /t] —
Ox,[1/t]. Notice that all the summands in (2.13) are quasi-coherent therefore so is 0 Xy [fZR /t].
Locally, e.g. when X = Spec(A) and Z corresponds to an ideal I c A, Oy, [.#7,/t] corresponds to
the A ®; R-algebra

Y (I®;R)" @ Rt "= Y I"®, Rt ™" c A®; R[1/t]. (2.14)

nzo nzo

An alternative description of Oy, [, /t] can be given as follows. Denote by u the canonical open
immersion X, < Xg. Then we have an isomorphism of Oy, -algebras Ox, [1/t] = u,0x , and
Ox,[#7,/t]is the O -subalgebra generated by ut(.7;, ) -1/t c u,Ox,.

Thus we may associate to any X, Z and t as above, a scheme X, = Spec(Ox,[.#;, /t]) to-
gether with an affine morphism ¢ = ¢y , : X, - Xy corresponding to the inclusion ¢ : Oy,
Ox (I, [t] (cf. [11, $1]). Some of the properties of this construction, analogous to the deformation
to the normal cone described above, are given in the following lemma.

Lemma 2.28 Let X, Z, and t be as above. Then:
1. The isomorphism class of X, does not depend on the choice of t.
2. The pair (X, ¢) is a lift of X.
3. The fiber of X, over s is isomorphic to the normal cone N, (X) to Z in X.

4. There is a canonical closed embedding i : Zy — X, lifting i : Z — X which, over s, identifies Z
with the zero section of N;(X).
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5. The two objects (X)eq and (X ( ,ed)Z are canonically identified as schemes over Xp.
PrROOF 1. This is obvious.

2. First of all, X, is separated and of finite type over R. Indeed, Xy has these properties and X,
is affine thus separated over Xp. Moreover, X, being of finite type over X is equivalent to
Ox,[F7,/t] being a finite-type Oy -algebra ([11, 1.3.7]). But this is true since O, [.#7, /t] is
generated by O t™' ®oy, I
Next, we need to show that the left vertical arrow in the following cartesian square is an iso-
morphism:

(XZ)r/ - X'Z
J ]
Xﬂ — Xz
¢, corresponds to the morphism

91

Ox, ®ay, :Ox, — Ox,[I2,[t]®g, .0, (2.15)

(cf. [11, 1.4.6]) and it thus suffices to show that (2.15) is an isomorphism ([11, 1.2.8]). For this we
may assume X = Spec(A), Z corresponding to an ideal I c A. Using (2.14) we see that (2.15)
can be identified with the canonical inclusion

A®; R[1/t] — Y I" ®; R[1/t] = A® R[1/t].

n=o
3. The quasi-coherent O, -algebra corresponding to the scheme (X7), over Xy is
Ox [ I2,]t] ®oy, V.0x.,

where 7 : X; < Xj is the canonical closed embedding. Since N (X) = Spec(®,,5,.75 [ 77*)
it thus suffices to give an isomorphism

@n>ofz/ n+1 - ﬁXR [jZR/t] ®6’XR ﬁ*ﬁxx

of Oy, -algebras. Locally, i. e. when X = Spec(A), Z corresponding to an ideal I c A, the right
hand side is

ano I" ® Rt™"
Ynso I" ® Rt=(n=1)

(Z I" ®; Rt‘”) ®g R/tR =

nzo
and we may define the map by ([a,])us0 7 Spsoldn ® t7"], where a,, € I". This is clearly
well-defined. The inverse map is given by ¥.,5.[a, ® r,t™"] = ([7,4,]) ns0 Where a, € I",
. € R and where 7, denotes the image of r,, under the projection R — R/tR = k. This is
also easily seen to be well-defined. Finally, these isomorphisms extend to the non-affine case
which is easy to see because the intersection of two open affines is again an open affine.

4. The canonical surjective projection p : Oy, [# [t] = Ox,[/F7, = O, induces a closed
immersion Zp < X ([11, 1.4.10]) which, over s, corresponds to the morphism

n n+1 = peI1 5
@07 [ I — ﬁxR[sz/t]@’ﬁx V.Ox, — Ox, |52, ®gy, V «Ox .
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Locally, when X = Spec(A), Z corresponding to an ideal I c A, this is the morphism

Zn>0 I" R Rt™"
= —
ZnZO I" ®k Rti(nil)

@nzolﬂ/1ﬂ+1 -

Al

which maps ([a,]) s, t0 [a,], thus the identification of Z with the zero section. The claim
about the so defined i lifting i amounts to saying that the composition

Ox < Ox [ 2, /1] 2, Ox ]z,

R
corresponds to the inclusion of Zy into Xy, which is obvious.

5. Again, we will give the identification only locally. Thus assume X = Spec(A), Z corresponding
to the ideal I. Consider the following map:

Y I"® Rt —> Z(ﬁ" +1/0)/\/o®; Rt™"
nzo nzo

a,@r,t " —[a,]@r,t".

This is clearly a well-defined surjective A ®; R-algebra morphism. To determine its kernel
suppose Yi1,[a, | ® r;t™" = 0 in A ®; R[1/t], where a, € I"i, r; € R\(t), no two n;’s equal.
Then the r;t™"’s are k-linearly independent in R[1/¢] which implies that [a, ] = o for all i.
Let k; > o such that aﬁz = o and set k, = (max;_, _,,{k;} — 1) m +1. For every k,-tuple
(ipseesip,) €410y m}¥% we then have H;fgl ay, =0 in A which implies that

m
(Z a,, ® r,»t_"’)k" =0
i=1

in A, i.e. the kernel of our map is contained in the nilradical of A. Conversely, the image of
the map is a reduced ring ([12, 4.6.1]), hence the nilradical of A is contained in the kernel. This
yields the isomorphism we were looking for. o

Notation 2.29 To investigate the functorial properties of the above construction we introduce the
ad-hoc category ahc whose objects are pairs of schemes (X, Z) over k, Z c X a closed subscheme,
and whose morphisms f : (X, Z) - (X', Z') are morphisms of schemes f : X - X’ such that Z is
a closed subscheme of f™(Z"); composition of morphisms and identity morphisms are canonical.
Such a morphism f is called special if in fact f*(Z") = Z.

Lemma 2.30 Let [ :(X,Z) — (X', Z") be a morphism in ahc.

1. There is a unique lift f : X, — X' of f such that the following diagram commutes:

f
X, —> X, (2.16)

.y

XZ I Xlzr
f
Moreover, the association (X, Z) + X, f + f, defines a covariant functor from ahc to Sch/R.
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2. The image f,(N (X)) is contained set-theoretically in the zero-section Z' ¢ N, (X') if and only
if there exists k, € N such that f*(.75¢) - Ox c F5*"

3. filz:Z — 7" isequal to f|,.

4. If f is special then the map (f,§) : X, - X', xxi, Xg is a closed immersion. It is an open

immersion if f is in addition flat.

PROOF 1. Togivealiftof f, f : X, - X', is equivalent to give a morphism of f; & X, -algebras
RO [Tz [t] = Ox, [z, /1] ([11,15.6]), i e. to make the lower half of the following diagram

commutative:

fiOx [/ — 6 [by1]

RO [ Iz [t] o= Ox, [ I7, /1]

]

Ox,

0% —

(Here, the upper horizontal arrow corresponds to f,.) On the other hand, commutativity of
(2.16) means that the upper half of this diagram commutes thus if there is at least one lift as
specified in the lemma then it is clearly unique.

It remains to check that the generators of fz @y, [fz,; [t]asan f7 O x -algebra are mapped
into O, [.#7,/t] under f}. For this notice that the morphism f; Ox > fruOx; > u, Ox,
can be written as uf o f}, where u : X, — Xp, hence the image of the generators is contained
in

ubo fR(fi Tz) 1/t c ub(Fz,) 1/t € Ox [ Iz, [t],

by our assumption that Z is a closed subscheme of ™ (Z”) hence that Zj isa closed subscheme
of f7(Z")r = fx' (Zg)-

That the association defines a functor follows immediately from the uniqueness statement
proved.

2. Firstassume there is such a k, € N. To prove f.(N;(X)) c Z’ set-theoretically we may assume
X' = Spec(A”), Z' corresponding to an ideal I’ ¢ A’, X = Spec(A), Z corresponding to an
ideal I c A. In this case, f} is simply f! ® 1: A" ® R[1/t] = A ®; R[1/t] hence, using the
isomorphisms constructed in 2.28.3, f# can be described as follows:

Do "[T5 ([an]Dnso ([f*'(an)Dnso € Do ["/T"

| T

A'®,R[I'®1/t —n —n A®R[I®1/t]
Tt o Yo[a, @ 17 = T [fH(a) @17 e it

Thus by assumption, for every n >1and a, € I m

F[anlm) e = fi([an 1pmon) = [ (an) ] pmeon = 0,
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which implies that, for each prime ideal p € N,(X), @5, " /1" ¢ (fH)™(p),i.e. f.(p) € Z'
(cf. 2.28.4).

Conversely, assume f,(N,(X)) c Z' set-theoretically. f!(f *ﬂZk,") c ﬂZk °™ being a local
property on both X and X', and X being quasi-compact, it suffices to find such a k, locally,
i.e. when X = Spec(A), Z corresponding to an ideal I c A, X" = Spec(A’), Z' corresponding
to an ideal I’ ¢ A’. We may then use the description of f! worked out above: ([a,]),s0 ~
([£*(an)]) nso- By assumption, f#(@,,I"/I"**') is contained in every prime ideal of N, (X)
hence also in the radical \/®,5,1"/I"*'. Choose generators r,,...,1,, of I’ and choose k; €
N, such that f”([r,»]pz)k' =0,i=1,...,m. Set k, = (max;_, _ ,{k;} —1)-m+1 For every
ko-tuple (iy,...,ix ) € {1,...,m}*, we then have

ke, ko
H rile) = f"(H 1) = f“([H ren) = [T T i) e
: =1 ]:1

Iko+1

i.e. f! maps a set of generators of I’ ko into wh1ch proves the claim.

3. This statement is local on both X and X’. It thus follows from the explicit description of f;
given in the proof of part 2 when X and X’ are both affine.

4. The map in the statement of the lemma corresponds to the morphism of O -algebras
Fre e RO I5 1] — Ox [ T2/t (217)

where f is the restriction of fy asin 1. It suffices to prove this morphism surjective (resp. flat if
f is flat—since a flat closed immersion is automatically an open immersion). For this we may
assume X = Spec(A), Z corresponding to an ideal I c A, X’ = Spec(A’), Z' corresponding to
an ideal I’ ¢ A’. In this case, as above, f} is simply f! ® 1: A" ®; R[1/t] - A ® R[1/t], and
(2.17) is the A ® R-morphism

(ffe1)®¢h: (A @ R[I'®1/t]) ®ug,r A® R —> A®; R[I®1/t], (2.18)

where ¢! : A ®, R > A ®; R[I ® 1/t] is the canonical inclusion. This morphism factors
canonically as follows:

(A" @ R[I'®1/t]) ®4g,r A®k R (2'1—”>A®k R[I®1/t],

|

(A @4 A) &, R[(I' ® 4 A) ® 1/1]

11

If f is special then the ideal generated by f#(I”) in A equals I, hence the second morphism in
the factorization is surjective. If f is flat, then we have I' ® ,» A = I. o

Corollary2.31 Let f: (X, Z) - (X', Z") be a special morphism in ahc. Then:

1 fiN(2') = Z c Ny (X).

2. If f is a closed immersion (resp. proper, smooth) then so is f.
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PROOF 1. Consider the commutative diagram

2! Ny(X' )= X',

T ! T fT \
o (2 NoX) Ry X 0, X
9
where all horizontal arrows are closed immersions, the last one in the bottom row being so by

the last lemma. We deduce from it a closed immersion f ! (Z,) into Z, X X’ 71 Xxr Xp =
s z! R R
2,)(}:;{ XR_— 2.

On the other hand, the maps f;|, : Z — Z'and Z < Nz(X) defineamap Z — f71(2") whose
composition with the closed immersion f*(Z") = N(X) is a closed immersion; thus it is a
closed immersion itself. We have proved Z = 7 (Z").

2. Decompose f as X, > X', xx, Xp = X’z If f is a closed immersion (resp. proper, smooth)
then so is the second map. Taking into account part 4 of the last lemma, the claim follows. 5

Definition 2.32 Let ¢ : C - X x X be a correspondence and Z c X a closed subscheme. By 2.30.1,
c lifts to a correspondence ¢ : Co-i(zxz) = Xz xg Xz over R. We call it the deformation of ¢ (with
respect to Z and R).

To state our main result in this particular situation which follows easily from what we just proved,
let us introduce some notation.

Notation 2.33 Let ¢ : C — X x X be a correspondence. We define the scheme of fixed points of ¢ to be
the fiber product of A = Ay and ¢,
Fix(c) := X xx.x C.

The closed immersion Fix(c) = C will be denoted A’ and the restriction of ¢ to Fix(c) will be
denoted ¢’ : Fix(¢) - X.

Corollary 2.34 Letc: C - XxX bea correspondence and let Z c X be a closed subscheme. Then there
is a unique closed immersion Fix(c) ., = Fix(éz) making the following diagram commutative:

FiX (0o ) (219)

TR

C’Cﬂ w7y <— Fix(é,) ——— X
(o) = Fix{er) = X,

PrOOF Notice first that the lift A’ in (2.19) really exists since
AN (N (Zx2))=c" (A (Zx2))=c"(2).

Moreover, A’ is, by 2.31.2, a closed immersion. By the functoriality proved in 2.30.1, we have

Aoc’=Aoc'=colA =C 0N,
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hence the universal property of fiber products yields a unique morphism Fix(c)-.() = Fix(éz)
making (2.19) commutative. Since its composition with the closed immersion (A)’ is a closed im-

mersion, it has to be one itself. o
§7 Restriction to the summit

In this paragraph we will prove a property of the specialization functor analogous to (SPs) in [20],
called “restriction au sommet” there: Let X, Z, R be as in the previous paragraph, i.e. X a scheme,
Z c X aclosed subscheme and R a discrete valuation ring over k with residue field k. We have
defined in 2.28.4 a canonical embedding i : Z < X, lifting i : Z = X, to which thus corresponds a
base change morphism bc” : f;“spxz — sp, i* (cf. 2.95).

Proposition 2.35 For every 7 € @ftf (X) the morphism

Pt (210)"
(sps, )z = spz,(F|z) —— 7z (220)

is an isomorphism.

Remark 2.36 Notice that for this statement to make sense at all we have to show (2.10) an isomor-
phism. This will be done below and we will pay attention not to use any circular argument, i. e. such
that the proof of 2.21 given below is independent of 2.35.

Set U := X\Z and denote by j the inclusion U — X. Moreover let Cx ,(.% ) denote the cone of the
morphism (2.20). Note the following useful fact.

Lemma 2.37 Fix X and Z as above. Let F, - F, - %, =" be a distinguished triangle in @ftf(X).
1. IfCx z(F;) = Cx,z(F;) = o, some i, j € {1,2,3}, i # j, then Cx 7 (F;) = o for all i € {1,2,3}.

2. Let & € Z be a point and assume Cx,z(cg‘\z)g =o. Ime_‘(CX,Z(ﬂ}))E vanishes then so does
H"(Cx 2 (F)5

PrOOF 1. Byrotating the triangle we may assume {i, j} = {2,3}. Applying part 2 for all m € Z
and all points £ € Z, the claim follows.

2. From the distinguished triangle given we deduce a commutative diagram in @ftf (Z) (the dot-
ted arrows exist by the axioms for a triangulated category):

(spx, )z 2= 7|, Cx2(7,) —= (spx, 7|2 11]
\

(spx, 7))z —22 > 7, Cx.z(F,) — (sp, 7|2 [1]
\

(spz, 7o)z —22L o 7|, Cx.2(F,) —= (spz, 72 [1]
Y

(spx, 7|2 [1] 222 7|, [1] — > Cx 2 (F)[1] — (spx, Z)lz[2]
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Notice that all rows, and all columns except possibly the third are distinguished triangles.
Hence applying a suitable cohomology functor followed by the stalk functor (-)g yields the
following two commutative diagrams with exact columns:

H™" 7 ((spx, #5)|2)g —— H" 7 (F2)e H"((spx, #2)lz)s — H"(Flz)¢
H"((spx, #1)|2)g —— H"(Fil2)¢ H"((spx, 73)|z)e——— H"(F;l2)¢
H"((spx, 72)|z)f — H"(£l2)7 H™ ((spg, 7)|2)g —— H" (Fl2)z
H"((spx, 73)|2)g——— H" (F2)g H™ ((spx, 72| 2) g H" " (Fl2)g

Using the four lemma (or an easy diagram chase) shows that the second row of the first diagram

is surjective and the third row in the second diagram is injective. This implies the claim. g

We thus have to prove Cyx ,(F) = o € @ftf(Z) for any X,Z, and .%. We start with a result
concerning the behavior of the specialization functor under base change.

Lemma 2.38 Let f : X — X' be a morphism of schemes, let Z' c X' be a closed subscheme and denote
by f, : Z — Z' the restriction of f to Z = f(Z").

1. Let F ¢ erf(X) and assume f is proper. Then we have

Cx .z ((F) 2 f21Cx z(F).

2. Let 7' ¢ @ftf(X') and assume f is smooth. Then we have

Cxz(f*F') 2 f;Cxr 2 (F').

(Cf. the properties (SP2), (SP3) (and (SPo)) respectively, in [20].)

PROOF 1. Denote the inclusions Z < X and Z" — X’ by i and i', respectively. Let i and i’ be the
corresponding lifts defined in 2.28.4 and let f : X; — X',/ and f; : Zg — Zj, be the lifts of f
and f, respectively, as in 2.30.1. By 2.31.2, f and f; are also proper.

Now consider the following diagram:

S bc* 1% (2.10)7" .

Ig Sp;{/z’fl - SpZ;l ﬁ i :
b, T; (1.12)l§ ;\L(Lu)

% f s % (2.10)7" %

i fasPx, Pz Szl ————— fyi

(1.12)\L; bc!TQ

e . (2.10)7" -
fais SPx, —>bc* fZ!SPzR’ — fyi
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(Here we have identified (f,), with f;.) By 2.19.3, the left half of this diagram commutes,
as does the right lower square by 2.22, while the right upper square is clearly commutative.
Applying the whole diagram to .% « @ftf(X ) and taking the cone of the top and bottom row
yields the claim.

2. The smooth case is proved in exactly the same way. o

The proof of 2.35 is by reducing to the special case X = Spec(k[T]) = A', Z = Spec(k[T]/(T")),
some r € N, and .% = A . We will deduce this from the fact that X is “contractible to Z”.

Definition 2.39 Let X be a scheme and Z a closed subscheme of X. X is said to be contractible to Z
if there exists a morphism H : X x A’ — X (called a contraction) such that

1. H|Xx{1} = ﬂX;

2. the image of X x {o} and Z x A" under H is scheme-theoretically contained in Z;

3. Hl|y ,«ar is the projection Z,.q x A' = Z 4.

Example 2.40 Let X = Spec(k[T]) and Z = Spec(k[T]/(T")) as above. Clearly, the map H : X x
A' - X defined by T — T-S, where the second factor in the source, A, is identified with Spec(k[S]),
is a contraction of X to Z.

Lemma 2.41 Cyx 7(.%) = o if X is contractible to Z and F = Ay.

PrROOF Let H : X x A! — X be a contraction of X to Z. For each a € k, denote the inclusion
XzXx{a} > XxA'byi, andset H, = Hoi, : X - X. Then H, = 1y and H, factors through
jiZ =X

Fix some a € k. Notice that the morphism H, : (X,Z) - (X,Z) may be considered as a
morphism of the category ahc introduced in 2.29 hence by 2.30.1, there is a lift H,:X, - X,. Since
over the s-fiber HuS|Zred = H,lz,, =1z, (cf. 2.30.3), (H,|2)* is also the identity. The base-change
morphism bc” corresponding to H,, thus induces a map

9a 5P, (Ax)lz = (Hasl2)" (s, (Ax)lz) — (Hisspy, (Ax)) |z

bc* " =

—SPgx, (HaAx)|z = SPx, (Ax)lz-
@, is the identity morphism and ¢, factors through (2.20): sp %, (Ax)|z = Az. Indeed, the decom-
position of H, in ahc,

H,:(X,Z) 2% (2,2) 2> (X, 2),

induces a decomposition H, : X, — Zp 5 x 7. Since the base change morphisms are compatible
with composition (cf. 2.19.2), the following diagram commutes:

(Hgsspj(z (Ax)) |z 2 SPx, (Ax)lz

Tbc*

bc*
hos SPx, (Ax) |Z) |Z - hosSpZR(AZ)|Z

SPx, (Ax)lz b SPZR(AZ)
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Now the top horizontal arrow is ¢, and the bottom horizontal arrow is (2.10) o (2.20) hence we have
the claimed factorization of ¢,.

Suppose we can prove that ¢, is the identity morphism. Then we see from its factorization just
proved that (2.20) is injective. But A being finite, surjectivity is then immediate. Hence it suffices to
prove that ¢, is independent of a. To this end, consider the morphism

* L bc*
¢ :mz(spx, (Ax)lz) = (Hs SP)?Z(AX)) |z —
(b(:)(')7l ~ % *
SPXXA i (Axxar)|zxar — (7Ts SPx, (AX)) |zxar & ﬂZ(Spf{Z(AXNZ)’

where 7 : (X x A',Z x A') — (X, Z) is the canonical projection and 7, : Z x A’ — Z its re-
striction, and where the base change morphism corresponding to 7 is an isomorphism because 7 is
smooth (2.19.1). As the notation suggests, the fiber of ¢ over a € k is ¢,. Indeed, the top row in the
following diagram is the fiber of ¢ over a, the bottom row is ¢,:

*y—1
(be i k% Th

bk Tk Sk Th TR be* Sk T * Th ok
Jamzjisp(A) —== jaid Hisp(A) ——= jaifsp(A) ——> jaii wisp(A) —5—= jamyjisp(A)

.

O g be* Tx Tw (be) Tk Tk %
Js lasHs SP(A) — s lassp(A) T2 s tasTts SP(A)

| |

Jesp(A) ———— jiH}sp(A) Jisp(A) === jisp(A)

(Here we have written i and j, for the inclusions Z x A' = X x A' and Z x {a} = Z x A, re-
spectively.) The trapezoid commutes by the compatibility of the base change morphism bc* with
composition (2.19.2) and the triangle commutes because the base change morphism corresponding
to Tyxa: decomposes as

11
11

bc*

Sp(A) = 5 sp(A) 255 Tisp(A) 25 sp(A),

again by the compatibility of the base change morphism with composition. All the inner squares
clearly commute hence so does the whole diagram.
Now the claim follows from the next lemma. o

Lemma 2.42 Let X and Y be two schemes and assume that X is connected. Fix <f, 2 € @ftf(Y)

and ¢ € Hom(Ax® .o/, Ax® H). For every section j : k — X there is an induced morphism ¢; €
Hom(.7/, %) over k x Y = Y. The claim is that ¢ ; is independent of j.

PROOF Let’s fix our notation as follows: p: X xY - X, q: XxY > Y,i: Y2 kxY <> XxY.
Moreover, we denote (in this proof only) the bifunctor RHom(—, —) by [-, —].
¢ is the image of ¢ under the composition
Hom(A® o/, AR B) —— Hom(i* (AR <), i* (AR B)) — Hom(/, %),

which is clearly induced by the composition

T[XXY*[A(Q{,AE%] a—dj> ﬂXxy*i*i*[Aﬂ,Ag%] —
My [i(ARA), i (ARB)] — ny. [, B] (2.21)
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by applying H° o RT. Now consider the following diagram where (2.21) appears as the leftmost col-
umn:

ﬂxxy*[Agﬂ,A,@] = ﬂxxy*(Ag[Q{,%])

ﬂX*A® nY*[JZ{’%]
adj adj @ adj®1
ﬂxxy*i*i*[Aﬂ,Ag%] 'T ﬂxxy*l’*l’*(/\[ﬂf,%]) 'ﬁ ﬂx*j*].*A®7TY*|:JZ{)v@]

Ty [i* (AR ), i (ARB)] Ty (A®[, B]) ® A®my, [, B]
~ @ = =
[, B] [, B] y. [, B]

Here the two upper horizontal arrows on the left are induced by (1.21) and the canonical isomorphism
RHom(A, A) 2 A. Clearly, the left upper square is commutative. The two upper horizontal arrows
on the right are induced by the isomorphism in [6, Th. finitude, 1.11] which we will make explicit
below. All the unlabeled vertical arrows are the canonical ones.

We will show below the commutativity of (), 2) and (). From this it will follow that the map
¢ ~ ¢ is induced by the composition

RT(X, A) % RI(K, A) = A

which is clearly independent of j since X is connected. Hence the commutativity of the diagram
implies the claim of the lemma.

(1) We decompose (1) as follows (where we abstain from writing 7y, ):

(1.20)

I"[AR A AR B] <— i"([p*Ap A ®[q" o .q* B]) i*(AR[of,B])
2|t @ t |2
[i*(AR),i* (AR B)] @ P APTAl® it [qF A gt B <——— i*p*A® i g [, B)
|t ® =
(1.20)
[*p*A®i*q" o ,i" p A®i* q* B)] ~—— [i*p* Ai* p* Al ®[i*q" o ,i* q* B] i*p* A @[, 5B
[A® /A ® %] [AA] @[ B] — = o N[ B]
(1.20) ev® 1
[, 8] [, 5B]

Here the two top horizontal arrows on the right are induced by the canonical isomorphism A =
RHom(A, A) followed by (1.19) ® (1.19) as in the definition of (1.21). Clearly then, (@) is commutative.
The commutativity of (@) is proved in [14, p. 85], the commutativity of (b) follows from the naturality
of (1.20) while (¢) is obviously commutative. Finally, the commutativity of (¢) may be checked on
each tensor factor separately, which is easy.
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(2 Let us abbreviate RHom(.«7, %) by Z. Then (2) may be expanded as follows:

proj be (1.12) T
Ty qu (P ARG R) < 1yi(qup AOR) = my (M A®R) =<———— mx A®my 2

adjl adjl ladj \Ladj

ﬂy*q*i*i*(P*A‘@q*%) '%a ﬂ}’*(q*i*i*P*A@)‘%) T ﬂY*(ﬂ;ﬂX*j*j*A‘g‘%) -pl‘éo] ﬂx*j*j*A‘g)ﬂY*%

(We have implicitly made use of the isomorphism 7y, v, = 7y, q,.) Therightinner square commutes
by the naturality of proj (i. e. (1.3)). To define « consider the following diagram (.% := p* A):

9.(F 0 q* %) pre Y

adj adj

4141 (F @ q*R) <—— q.i. (" F @i q* %) {T 9. (i,i*F ® ¢*R) <;T Guii* T @R

The trapezoid on the right commutes by the naturality of proj while the left triangle commutes by
the definition of proj. Therefore we may define « to be the composition of the horizontal arrows in
the bottom row. Since proj is compatible with composition, a simpler description of « is possible,
namely as the morphism induced by the following composition:

Qi FOR > " FRI*"G R~ i"(F Q" R) = q.ii" (F 04" R) (2.22)
(using the fact that gi = 1y).
To define 8 we proceed similarly. Consider the following diagram:

be (1.12)
Q*p* ﬂ;nX*

) \L adj \L )
adj adj

‘J*i*i*‘p* < ~ q*i*ﬂ;]’* Q*p*j*j* Ebc(l.lz) ﬂ;ﬂX*j*]’*

-
be (1.12)

Again, the trapezoid on the right commutes by the naturality of (1.12) while the triangle on the left
commutes by the definition of (1.12). And again, since (1.12) is compatible with composition, 5 (de-
fined as the bottom row) can also be described as the morphism induced by the following composi-
tion: . N .

My Ty juj —> nyj  — i p* — q.i,i"p". (2.23)

(3 Finally, we expand (3) as follows:

a B proj
Tyauini™ (P A® G R) <——— 1y, (qu 11" P A®R) <—— myu(Mymxu juj " A®R) <——— Mxsjuj A® My R

x| Ex ;\L = =
k% k% = k% = * ok pro] ok
My (TP A® I " ) = 1y, (" P ARR) <~ My (1} A@R) <———— [*A®my. R
proj
ny.(A®Z) Ty (A ®R) < MO Ty T
T Ty R Ty B
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It will be noted that the leftmost column coincides with the rightmost column of (2) so that (2) and (3)
really “fit together”. By the alternative descriptions of « and 8 given in (2.22) and (2.23), respectively,
it is clear that the two top squares on the left and in the middle commute, while the commutativity of
the big rectangle below is obvious. The top and middle square on the right commute by the naturality
of proj thus it remains to prove the commutativity of the bottom right square. This is decomposed
as follows:

d N d
Ty (Ty A R) <a—: Ty (MyA@ iy, B) <—— iy, 5 (A @y ) <A@y R

* *
ﬂY*% adj an—nYnY*% - nY*nYﬂY*% adj an-«%

The two outer squares commute by the naturality of the vertical isomorphisms, while the commu-
tativity of the middle square has been remarked in 1.(i). Of course, the composition of the lower
horizontal arrows is the identity. o

We now start with the reduction steps in the proof of 2.35.
Step 1 We may assume F |, = o.

Proor Notice first that in the case X = Z the base change morphism bc” is just the identity mor-
phism fromspy toitself. By 2.21, the morphism (2.20) is thus an isomorphism in this case. Applying
2.38.1 to the closed embedding i yields

Cx,z(iyi*"F) 21,1Cy ,(i*F) = 0.

In view of the distinguished triangle j,j*.% - % — i)i*.% -7 the claim follows from 2.37.1. o
Step 2 We may assume that Z is defined by an invertible sheaf and .7 |, = o.
ProOF Let f : X' — X be the blow-up of X along Z. Since fy = flx/\f(z) : X'\f'(Z) = Uis
an isomorphism and since .7 |, = o (by step 1), we have (denoting by i’ (resp. j') the inclusion of
f7(Z) (resp. X'\ f7'(Z)) into X', and by f the restriction f]s-()):

hF 2 fi" [T 2 frf7 17T = o,
where the second isomorphism comes from (1.13). We deduce

L F 2 i fifF 2 jifni” [ F 2 jifufoi"F 2ij" F =,

the second isomorphism again coming from (1.13). Applying 2.38.1to f provides us with the isomor-
phism
Cxz(F) 2 Cxz(fif*F) 2 frCxr g2y (fF).

Therefore it suffices to prove Cys, () (f*-#) = o. a
Step 3 We may assume X = A", Z = A" x {0}, some n > 1, and F|, = o.

PrOOF Since the assertion of 2.35 is local on X and Z (use 2.38.2) we may assume X to be affine and
Z defined by a principal ideal (by step 2), say X = Spec(A), Z = (z), z € A. Choose an epimorphism
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k[T,,...,T,_,] > Aand extend it to an epimorphism k[T, ..., T,,] > A by T, ~ z. This defines a
closed embedding f : X = A" such that

FUAT % {0}) = 7 (Var(T,,)) = Var(T, - 4) = Var((2)) = Z.
Applying 2.38.1 to this closed embedding gives
Cararix(o}y (iF) = f21Cx 2 (F),

where f, = f|, : Z - A" x {o}. If the left hand side is o then so is Cy (%) since f is a closed
immersion. o

Step 4 2.35 is implied by the following statement: Can pn-1x 1o} (-7 ) vanishes at the generic point of
A" x {o} forall n > 1 and for all F such that F |, = o.

ProoF By the previous step, we have to prove 2.35 for X = A", Z = A" x {o} and .#|; = 0. We do
this by induction on n. In case n = 1, Z is a point, thus the claim follows from the assumption that
Cx.z (:F) vanishes generically.

For the induction step let Y c Z be the closure of the support of Cy (% ). By the assumption
that Cy (%) vanishes generically, we have Y # Z, hence the Noether normalization lemma ensures
the existence of a line 7 ¢ Z c X such that the projection g : X — X/ restricts to a finite morphism
qly- Set X' = X/t =2 A", Z" = Z/t 2 A" * x {0}, and think of X as a line bundle over X’. Then g
extends to the projective closure X of X (defined as in [11, 8.4]); i. e. we get a compactification

X/

i»&l

X5X

of q. Set Z = g '(Z'). Furthermore, let .7 € @ftf(f) be the extension of .Z by zero, i.e. .7 = e.%.

Then the triple (X', Z’,§,.7 ) satisfies the induction hypothesis, thus together with 2.38.1 we get
(@7):C5x7(F) = Cx »(q,F) =o.
Now, C;)E(?) has support on Y := Y U (Z\Z). Indeed, for any x € Z\Y c Z we have
Cxz(F)x2 (e;C57(F))x 2 Cxz(e" e P )z = Cx z(F)z = o, (2.24)

where the second isomorphism exists by 2.38.2 (as before, e, = e[, : Z < Z). Moreover, qly is still
finite. Indeed, it is quasi-finite over Y by construction, and proper. But Z\Z lies in X\X which is
mapped isomorphically to X’ hence g is quasi-finite on Z\ Z as well. This clearly implies Cxz (F) =
o hence also Cy (%) = o by the same isomorphisms as in (2.24). o

Step 5 We may further reduce to the following statement: Assume that X is normal, Z is defined by a
locally principal sheaf of ideals and F = j,. A, some constant (finite) sheaf 7€ on U. Then Cx ,(.F)
vanishes at each generic point of Z.

ProoF In fact, we will prove that this statement implies the same statement with no conditions on
F (except Z|; = o). Clearly this suffices by step 4.

Thus let X be normal, Z a locally principal closed subscheme, and .%|, = 0. We may clearly
assume X to be connected (2.38.2) and thus irreducible (since X is normal). Also we may assume Z
to be irreducible. Using 2.37.1, a standard homological algebra argument reduces us to the case where
F is a complex concentrated in degree d € Z, i.e. where .7 is a sheaf. Since .% is constructible and
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X irreducible, there exists a non-empty open subset V' ¢ U such that .#|; is locally constant.
The lemma below (2.43.2) implies that replacing X by an open neighborhood in X of the generic
point of Z, we may assume .# = ¥, some locally constant constructible sheaf 4 on U. (Apply the
lemma to an open affine neighborhood Spec(A) in X of the generic point of Z such that Z nSpec(A)
corresponds to (z),and V = V' n Spec(A). The sought-after open subset is then Spec(A,).)

We now claim that the cohomology sheaf H” (Cx ,(.%)) vanishes generically for all m € Z and
all .F of the form above. This is obviously true if m < d. Suppose it is true for all r < m, some m € Z.
Let f : U" — U be a finite étale map such that f*¥ is constant (we may assume U’ connected), and
let U' - X" — X be a compactification of jf with X" — X finite. Notice that U’ is normal hence
irreducible hence so is X"". Moreover U’ factors uniquely through X/ ; — X" and then also through
the normalization X" — X!/ ; as in the following commutative diagram:

X’ = ng b & X

: !
U Hf U
Denote the composition of the arrows in the top row by f” : X’ — X. This is a finite map. Also, j’ isan
open immersion which implies that the square f’j" = jf is cartesian. Hence f"*.% = f"*ji¥ = ji f*¢
by the base change isomorphism (1.13). Notice also that Z’ := f'~'(Z) c X’ is again defined by a
locally principal sheaf of ideals hence by our assumption Cy: z (f"*.%) vanishes generically. But the
generic point of Z is hit only by generic points of Z’ and consequently Lemma 2.38.1 implies that
also Cy z(f f"* ) vanishes generically.

Set 4’ to be the cokernel of the injective morphism adj : ¢4 < f,f*94. ¢’ is again a local system
and j,%" is isomorphic to the cokernel of the injective morphism .% = j ¥ < j fif*G = flji f*9 =
Sflf"* . The associated distinguished triangle satisfies the hypotheses of 2.37.1 with & the generic
point of Z by induction hypothesis. Hence H” (Cx 7 (.%)) vanishes generically. o

Lemma 2.43 Let A be a normal noetherian domain and let z € A such that\/(z) c A is a prime ideal.
Then:

1. There exist w, t € A, and r € N such that, in A,,, (z) = (¢") and (t) c A,, is a prime ideal.

2. Given any non-empty open subset V c Spec(A,) there exists x € A\\/(z) such that Spec(A,,) c
V.

ProorF If z = o then both claims are obvious. Hence we may assume z € A\{o}. Set p = \/(2).

1. By Krull's Hauptidealsatz, p is a prime ideal of height 1. Let p,, .. ., p,, be a set of generators for
p. The normality of A implies that A, is a discrete valuation ring with uniformizer, say, t € p.
Foreachi=1,...,nthereexistr; € N, u;, v; € A\p such that p;u; = t"v;. Similarly, there exist
reN, u, v e A\p such that zu = t"v. Set w = uv [}, u; € A\p.

2. Choose w, t, r as in part 1 and let g € A such that @ # Spec(A,) c V. In particular,
Spec(A,,) c Spec(A,,;) hence, as above, there exist s > 1, u, v € A\p such that gu = £'vw" in
A,,,somen€Z. Setx = uvw € A\p. o

We are now ready to finish the proof of 2.35.

Step 6 Assume that X is normal, Z is defined by a locally principal sheaf of ideals and .F = j,J, some
constant (finite) sheaf 4 on U. Then Cx ;(.% ) vanishes at each generic point of Z. Hence 2.35 is true.
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Proor Doing induction as in the previous step and using a short exact sequence K < A}, » ¢ of
sheaves on U (some #, K is necessarily constant), one easily reduces to the case &4 = Ay.

Also as in the previous step, we may assume X and Z to be irreducible. Let & be the generic point
of Z (which we may assume to be different from the generic point of X—otherwise the claim being
trivial) and let V' c X be the set of regular points of X. V is an open subset since X is an excellent
scheme ([12, 7.8.6]), and contains & since U ¢ is normal and has dimension 1. Replacing X by V and
Z by Z n'V we may thus assume X to be smooth over k.

Similarly, Z..4 is an integral excellent scheme hence there is an open subset V c X containing &
such that both V and Z,.4 n V are smooth over k. Replace X by V.and Zby Zn V.

By the lemma below (2.44), there exist an open neighborhood V of & in X, a natural number
n > 1, and an étale morphism V — A" such that the inverse image of A"~ x {0} is equal to Z,.q N V.
Composing with the (smooth) projection A" — A' onto the last component and replacing X by V,
Z by Z n 'V, we get a smooth morphism f : X - A’ such that f*(0) = Z,.q.

Next, we may assume X = Spec(A) to be affine, A a normal integral k-algebra, such that Z cor-
responds to the principal ideal (z) generated by some z € A. Let a = f#(T), where we identify
A with Spec(k[T]). Thus we have \/@ = (a), and a is prime. The lemma above (2.43.1) im-
plies that, replacing A by a suitable localization A,,, w € A\\/(z), we may assume (z) = (a’), i.e.
f(Var(T")) = Z. We conclude that

Cx,z(gz)f = Cx,z(j!AU)E

= Cx,z(Ax)z since Cy 4 (i,Az) =0

= Cxz(f" M)z

= (f*Cavar () (Aan))z by 2.38.2

= Cas,var(rr) (Aar)o

=0 by 2.41 and 2.40. O

Lemma 2.44 Let Z be a closed subscheme of a scheme X, and x € X such that both Z and X are smooth
over k at x. Moreover, let r be the minimal number of generators for the ideal .7, , c Oy .. Then there
exist an open neighborhood V of x in X, a natural number n > r, and an étale morphism V. — A"
(over k, as usual) such that the inverse image of A"~ x {0} is equalto Zn V.

Proor This is part of the more general statement in [13, 17.12.2]. We provide it here for convenience
only. o

We can now give a proof of 2.21 as promised:

PrOOF (2.21) The proof is similar to the one just given. Denote by Cyx(.#) the cone of (2.10) : .F# —
spx(:#). As in Lemma 2.38 one proves that, for a morphism f : X - Y, fiCx (%) = Cy(/:F) if
fis proper, and f*Cy (%) = Cx(f*.%) if f is smooth. It follows, as in step 3, that the question is
local and we may reduce to the case X = A", some n. Also, we may assume that .7 is a sheaf.

We will now prove that Cx(.%) vanishes generically. For this, we may replace X by an open
subset on which .# is locally constant. Replacing X by a suitable étale cover, we may assume that .%
is constant, and then reduce to .% = Ay as in step 6. As 7y is smooth, it is sufficient to treat the case
X =k, 7 = A

Going back to the definition of (2.10) we see that our task is to prove

adj .,
(AR_h)s - (J*] AR_h)s
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an isomorphism. But since j* Ao = Aﬂ_" is a flask sheaf (recall that W is separably closed, see 1.94),

Jj« A5 can be computed on the level of complexes where it is easily seen to coincide with A7 (R?
being henselian, see again 1.§4). Thus we have to prove an isomorphism the first map in

. adj ., adj |
(]*An_h)s - (]*] ]*Aq_h)s - (]*Aq_h)S'

j. (on the level of sheaves) being fully faithful, the second map is an isomorphism, while the com-
position of the two maps is the identity. Thus the claim. o
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3 The trace map

From now on, if not otherwise mentioned, we will be working in the category sCor (k) of self-cor-
respondences.

§1 Definition

To each self-correspondence ¢ : C - X x X, to each complex of sheaves .% ¢ @ftf(X ) and to each
open subset f3 ¢ Fix(c), we will associate a trace map

tr., oz p : Hom (7, 7) — H°(B, Kp).
In the case ¢ = ¢, and f3 = Fix(c) the target of this map can be identified with A, .% can be identified
with a bounded complex of finitely generated projective A-modules and the trace map will then

be seen to coincide with the “usual trace map” Hom(.%#,.%) — A. For general correspondences,
however, the definition of the trace map is somewhat involved.

Definition 3.1 1. We define the global trace morphism (associated to ¢ and .F),
tr, 7 : RHom(c}' 7, ;:7) —> Al Kiix(o)»
as the following composition:
g gy 06 g gy 08 ey )
RHom(¢;'#, ¢, #) — ¢ RHom(p; F,p,F#) — ¢ (DF 8.F) —
AN (DI RF) —> (A (DF 8.F) =5 A Ky 25 A" Ky = A Kpinge-
2. The above morphism induces the global trace map (associated to ¢ and .% ) on cohomology,

tre g = HO(C’ tlc,y) : Hom, (j’ j) — H° (FiX(C)’ KFix(c) )’
where we used the identifications
H°(C,RHom(c/.Z, ¢,.%)) = Hom(c;.Z, c,. %) = Hom(c, ¢} Z, F).
3. If j: B = Fix(c) is an open subset as before, we denote by
tr. z p : Hom (F,.7) — H°(B, Kp)

the composition of tr, g with the restriction map

resg : H°(Fix(c),KFix(c)) - H°(Fix(c),j*j*KFix(c)) ~ H°([§,Kﬁ)

induced by adj. This map is called the trace map with respect to f3 (associated to ¢ and .7 ).

4. Finally, if 8 is in addition proper over k, we may consider the composition
o o\ TeFp o f/s
/ tr. g : Hom (7, 7) —— H°(B,Kg) — A,
B

where the second map is (1.9). If 8 is also a connected component of Fix(c) then |, LA RE
denoted It. # s and called the local term at f3.
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If there is no risk of confusion we will suppress ¢, .%, or § in the notation introduced above, thus
simply writing tr, or ltg etc.

Example 3.2 Let us compute the local term of a cohomological correspondence in a particularly sim-
ple situation, namely when ¢ = ¢, : k — k x k is the trivial correspondence. In this case, Fix(c¢) = k
and .% can be identified with a bounded complex of finitely generated projective A-modules (F;);
(cf. 1.(d)). Most of the maps in the definition of tr collapse to the identity and we end up with the
following trace map

tr : Hom(.#, %) ﬂHom(ﬂ,A)@yiA,

which is thus equal to the one defined in [3, I, 8.1] (cf. [14, IIL, p. 89]). It follows ([3, I, 8.1.2]) that if
the cohomological correspondence u : .# — .% has components u; : F; — F; then

tr(u) = Z(—l)iTr(u,») €A,

where Tr is the usual trace of an endomorphism of projective finite type modules.

Notation 3.3 1If u € Hom, (.%,.%) is a cohomological correspondence lifting the trivial correspon-
dence ¢ we will write A
Tr(u) = > (-1)"Tr(u;) € A
i

for the usual trace of an endomorphism of complexes as in the example. Thus we have proved above:
tr(u) = Tr(u).

Having defined the trace map, we now proceed to study its behavior with respect to the various
operations on cohomological correspondences discussed in the previous section, i. e. with respect to
pushforward, pullback and specialization. Suppose e. g. that ¢ : C — X x X is a correspondence and
F e @ftf(X ) a complex of sheaves. In 2.54 we defined the restriction map

[jw]" : Hom,(#, ) —> Hom,, (7, ) (3)

clw

associated to an open subset W ¢ C. On the other hand, the trace maps tr. and tr., map the left
and right hand side of (3.1) into H® (Fix(c), Kgix(cy) and H’(B, Kg) (B = W n Fix(c) = Fix(c|w)),
respectively. What is then the operation

H° (Fix(c), Kpix(e)) — H°(B, Kp)

corresponding to [y ]*? It would be nice if it was just the restriction map on cohomology, resg, i. e.
if the following diagram commuted:

Hom, (.Z,.7) ——— H°(Fix(c), Kix(c))

| o

Homc|w(35, g?) T‘ Ho(ﬁ) Kﬁ)

This turns out to be indeed true and will be proved below (3.22) Speaking informally, we might say
that “the trace map is natural with respect to restriction”

Similar questions could be asked in the case of specialization or pushforward, and here also we
hope that the trace map is “natural” with respect to these operations. But instead of answering these
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questions separately we prefer to generalize the setting until all these questions become instantiations
of one general question. Having answered this general question we will then be left with interpreting
the answer, a general “naturality property” of the trace map, in the three contexts mentioned above.
This is, roughly, the outline of the next three paragraphs.

§2 Cohomological morphisms

Our first goal is to define a category cor’ in which the proof of the naturality property is going to
take place. It will be an artificial category, designed for this specific proof only.

Let ¢ : C — X x X be a self-correspondence. It gives rise to a diagram in the category of schemes
as follows:

Fix(c) ———= X
S
2 -
C— = XxX——ZX——k

P2

This diagram generates a subcategory D(c) of Sch whose objects and morphisms will be denoted
Ob(c) and Mor(c), respectively. Given a second correspondence ¢ there is a canonical functor

D(c) — D(c) which will usually be denoted (-). We say that a commutative square g,g, = g,g;
in Mor(c) is universally cartesian if for every correspondence ¢, g, g, = g,g, is cartesian as a square
in Sch/k (e. g. the square cA’ = Ac” above is universally cartesian).

Definition 3.4 Let ¢ and ¢ be two self-correspondences. A cohomological premorphism from c to ¢
is a triple
({fZ’ tZ}ZeOb(c)’ {bcz’ bc;g}géMor(c)’ [)’

where
o f7isa functor @i’tf(Z) - @ftf(f);
o t,isamorphism f, o/ ® f, B — f,(</ ® B), natural in </ and %;
« bey is a morphism of functors g* f, — f7 g*,if g: Z, - Z,;
. bc‘lg is a morphism of functors f, g' g!le, ifg:Z, - Z,;
o (isanisomorphism fy A — Ay.
Two such cohomological premorphisms

({fzrtz}{beg,begho0), ({f2 t5) {beg',beg b, 1)

from c to ¢ will be identified if there is, for each Z € Ob(c), a natural isomorphism of functors
fz = f2

compatible with all the data in an obvious way. The category cor’ has as objects self-correspon-
dences over k, and equivalence classes of cohomological premorphisms as morphisms. Given two
cohomological premorphisms

({fotrh bbb ) e~ 8 ({fptzh {bebe) ) 1T T,
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the triple ({ f7o fz, tzot7}, {bcgobcg, bc%Obcfg}, 1o1) clearly defines a cohomological premorphism

from ¢ to ¢ compatible with the above identifications, and ({1, 1}, {1, 1}, 1) is the identity with respect
to this operation, thus defining an identity morphism.

In the sequel we will not distinguish between cohomological premorphisms and equivalence
classes thereof, and speak of cohomological premorphisms in both cases. The careful reader will
convince herself that all these statements remain meaningful and true when translated in order to
take into account the identifications.

Notation 3.5 Let F = ({fz,t2}, {bc;,bc;}, 1) be a cohomological premorphism from ¢ to ¢. For
each Z € Ob(c) and each g: Z, — Z, in Mor(c), F gives rise to the following morphisms:

bc%z .
7z :f7 Ky = fomy A — 7 fi Ay - Ay = K,
rz :f, RHom(«7, %) — RHom( f, <, f,A)

adjoint to

f, RHom (o, B) ® f,/ > f,(RHom(o, B) ® /) ~> f,B,

dz :f, D/ = RHom(f, o/, f,Kz) == Dfz.,

*
bey _

adj _ - % adj _
be,gifz, 8« —> 8.8 2,8 — 8.2.8 & — 8. Sz
_ . ad _ ., bg adj
bey g fz, — 82,88 — 88 f2.8 — f2.8>

*

~ -1 be ~
. = * 1 * nz * =
tz N7 — 1z —> G fiby — farz A — fzAz

In the sequel, we will often omit the index Z of f, and t; when this causes no confusion.

Example 3.6 In this example, we will show how we intend to apply results about the category cor’
to the situations mentioned at the end of the last paragraph, thus giving a partial justification for
introducing this category.

1. Let R be a discrete valuation ring over k whose residue field is also k, and denote by SCor the

corresponding digraph defined in 2.§5. We may define a morphism of digraphs

S : SCor —> cor’,

the specialization functor. S is the identity on objects, and given a lift ¢ of ¢ over R, the coho-
mological premorphism S(¢) = ({fz, t2}, {bcy, bcfg}, 1) from c to ¢ := & is defined as follows.
For each Z € Ob(c), ¢ defines a lift (Z, ¢) over R such that Z; = Z, and for each g € Mor(c),
it defines a lift ¢ over R such that g = g. We may thus set f, = sp;, bc, and bcfg the mor-

phisms bc* and b, respectively, defined in 2.5, while ¢, : sp;.«7 ® sp; B — sp; (o ® B) is
the morphism

b A @0 B P (jb A @b B)
t
5 %, (b @ b* B)

.

b (o © B)
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(in the notation of 1.(0) and where b : 2,77 - Zﬂ & Z, — Z). Finally, for 1 we take the

isomorphism (2.10) " : spp Ay — Ay. Alternatively, and sometimes more usefully, it may be
described as )
i*j b Ay — i*j*Aﬂ—h€—> i* Ay — Ag (3.2)

as is shown by the commutativity of the following diagram (cf. (1.7)):

i"j 0N <—— i A < i — b*A
S\LE sl; S\LE S\LE
Fj A~ i*j A ;j A —— A

(Here ¢ : R" — k is the structure morphism so that ¢ j=0b.)

2. Let PCor = PCor(k) denote the subcategory of sCor (k) whose morphisms are proper. We
may then define a functor
P :PCor —> cor’,

the proper pushforward functor. P is the identity on objects, while given a proper morphism
[f] : ¢ = ¢ of correspondences, we define P([f]) = ({f2. tz}, {bc*,bc;}, 1) as follows. For
each Z € Ob(c), [f] defines a proper morphism of schemes [f] : Z - Z such that g[f] =
[f]z, g forevery g: Z, — Z, in Mor(c). We may thus set f, = [f] . = [f]z, ¢ the identity, ¢,
tobe t[¢],, asdefinedin (1.2), and bc; and bc‘lg are the usual base change morphisms (1.12) and
(1.11), respectively. Functoriality of P follows from the fact that the base change morphisms
and (1.2) are compatible with composition.

3. Finally, let RCor = RCor(k) denote the subcategory of sCor(k) whose morphisms are open
immersions. We will define a functor

Q : RCor° — cor’,

the restriction functor. It is the identity on objects, and given an open immersion [f]:¢ — ¢
of correspondences, the cohomological premorphism Q([f]) = ({fz,tz},{bc*,bc'},1) is
defined as follows. For each Z € Ob(¢), [ f] defines an open immersion of schemes [ ], : Z —
Z such that [f], g = g[f], forevery g : Z, - Z, in Mor(c). We may thus set f, = [f]} =
[f ]'Z, ¢ the identity, t; the canonical morphism ts of (1.1), while bc; and bc; are the usual
transitivity morphisms. Again, functoriality of Q follows from the fact that the transitivity
morphisms and (1.1) are compatible with composition.

Now we have seen how cor’ “generalizes” the contexts discussed at the end of the previous para-
graph, and the natural thing to do would be to prove functoriality of the trace map with respect to
cor’. However, the conditions imposed on the morphisms in cor’ are too weak for that. We will thus
pick out a class of morphisms (“cohomological morphisms”) for which functoriality can be proved.
Of course we then have to make sure the “functors” P, Q and S all land in this restricted class of
morphisms.

Let ({fz,t7}, {bcg, bc;,}, 1) be a cohomological premorphism from c to ¢. The following axioms
will be of interest in the sequel:
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(M1) Each f; is commutative and associative, i.e. the following two diagrams commute for every
Z € Ob(c) and every &7, Zand € € D zf(Z)

fd QB — = f(od ®B) [ASfBRfC— > A R(BOC)  (33)

[

fBefd —>f(Bod)  [(dOB)SfE —> f(/ ©BOC)

(M2) For o € Qctf(Z), Z € Ob(c), the composition

= Ly ty =
@i frd — f, @Ny — fr.9 @ fA; — (A @N;) — fro

is the identity morphism.

(M3) For every Z € Ob(c¢), bc}fz is the identity morphism, and for every g,: Z, - Z,, g,: Z, = Z,
in Mor(c), bcy o decomposes as

*

beg bei
gzgl (g?-gl) fZ glngZ g1fZ gz _>fZ gl gz —_>fZ (gzgl) .

(My) Forevery g : Z, — Z, in Mor(c) and every &7, B ¢ @ftf(Zz), the following diagram com-
mutes:

TfATfB——T (fAfB) ——F f(A/ ®B) (3.4)

bc;r ® bc; \L \Lbc;

fedefg s ——f(g A ©g B) o g (o © B)

(Ms) For every Z € Ob(c), d is an isomorphism.

(M6) For every g € Mor(c) with g and g proper, both bc, ; and bc,, are isomorphisms, and inverses
to each other.

(My) For every Z € Ob(c), bc%z is the identity morphism, and for every g,: Z, - Z,, g, : Z, = Z,

- !
in Mor(c), bc, o decomposes as

8’2 —!

beg.o : (8:8) fz, — glngz 108t 5 frgleh = o (028))"

(M8) Let g,g, = £,g; be a universally cartesian square in Mor(c). Then the following diagram

commutes:
—%— bc (1.13)  — —x
88, —8,8&f (3:5)
bc;z'2 Obc!&l \Lbc!& obc;1

18 8a O 188"
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(M) Letg: Z, - Z, bein Mor(c). Then the following diagram commutes for any </ € @’C’tf(Zl),

B e D} (2,):
G 07 f7) T T f( 0 g B) :.6)
proj (1.4>T lbqg
2l ©f B fa (s 88" B)
bc,gl Tproj (1.4)
f44 © fB—— f(g.l ©F)

2

Example 3.7 Let us check which of these axioms are satisfied by the cohomological premorphisms
considered in the previous example. More specifically, we will prove that any cohomological pre-
morphism in the image of S or P satisfies Axioms (M1-6), while any cohomological premorphism
in the image of Q satisfies Axioms (M1-5, 7-9).

(M1) In the restriction case, the two squares in (3.3) commute since they do so already on the level
of complexes. This is true for any morphism of schemes (not only for open immersions) hence
the proper case follows by adjointness. Finally, the specialization case follows, in view of the
definition of t, from the two cases just considered.

(M2) Let f: X — Y be an arbitrary morphism of schemes. It has been remarked in 1.(i) that for any
o € letf(X )and & € erf( Y), the following two squares commute:

iz A A fo fedd ® A (3.7)

f(#eAy) <;—*f*§£®f*AY fu(d @D) =——— [ A ®fA

Now, it follows from (1.7) that in the restriction case 1; = ¢! hence the commutativity of the
left diagram in (3.7) implies the axiom in this case. Similarly, 1, = ¢ in the proper case hence
the commutativity of the right square in (3.7) implies the axiom in this case.

For the specialization case we take up the notation of 3.6. In addition let g : Z,Th - 5" and

r: ZR—h — R denote the canonical morphisms. Consider then the following diagram:

Piabz < i b Ay <——— i b A

/ \ .
*AZ_

g Ay < g b A

RrRh
S\L \ bc (1.12)T be (1.12)
£

’

. 4 Sk k- € . .
AZX l*r*AR_h i*r ]*An_h b A

* * &

* res € o * ek s Lok
ﬂzsAkﬁﬂzsl AWH-HZSZ J*Ar[_h% T[ZSI ]*b Ak

i
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(M3)

(M4)

(Ms)

The commutativity of the two trapezoids follows immediately from the commutativity of (1.7),
while the commutativity of the three squares in the lower right part of the diagram is clear by
the naturality of the morphisms involved. Replacing the base change morphism (1.12) by

w.ooadi * = * cow Aoy
] T ]+9+9 r re]«q > 1+9 >

d@
and ¢’ by A =, juj*A == j, A, the commutativity of the pentagon becomes obvious. Notice
that this diagram provides us with an alternative description of 1, : A 7. > SPzAz (cf. (3.2)).
We use it in the following diagram (it appears as the leftmost column):

tix tj tys
pyol ®i%j b A ——— i*(jb* A @ j b A) —— i j, (b A ®b*A) ——> i, b (f ®A)

T®e T®e \Lﬂ@s \L:
. t

i J% =
L ® 1% A > i* (b ® jA) —— = %] (b* A @A) = P

’ ’

T®e T®e

tox
spyd @A ————> i*(j,b* A ®A)

T®e =

spy ® A B —— spy e

The bottom left square and the top right square are instances of the left, while the triangle is
an instance of the right diagram in (3.7). The other squares are clearly commutative hence so
is the whole diagram. By what we said above, the composition of the leftmost column and the
top row is t, o 1, hence the axiom holds in the specialization case as well.

The first statement is clear. For the second one, see 1.(k) in the proper and the restriction case
and 2.19.2 in the specialization case.

In the restriction case, the diagram commutes already on the level of complexes, and (this again
not being specific to open immersions) the proper case follows from this one by adjointness.
Finally, the specialization case follows from these two.

To prove that d is an isomorphism, we claim, in the proper case, that it coincides with the
local Verdier duality isomorphism

f. RHom(«, f'K) — RHom( f,.«/, K)
(see [2, XVIII, 3.1.10]). Indeed, the latter is defined as the composition
f. RHom(«, f'K) — RHom(f; «/, f,f'K) - RHom(f,¢/, K),

where the first map is just ;. Hence the claim follows from the fact that 77, coincides with the
morphism adj above, i. e. that the following diagram commutes (which is obvious):

f!flﬂl ;fgﬂ'!

adjl /
be (1.11)

1
T
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In the restriction case, both 7, and 77 are clearly isomorphisms hence so is d.

In the specialization case, let Z € Ob(c) and let (Z, @) be its corresponding lift over R. Denote
by b the composition

Z,,Ih —>Zﬂ%>Z,1—>Z,

by p the canonical map Z » = n", and consider the following diagram (Z € ©° «f(Z) arbitrary,
[, —] abbreviates RHom(— -)):

Yo [F, K, @ Yb*.F —— ¥(b*[ ,Z]®b*0“); Yo* ([, K, ®©.F)

| | I

Y[b*F,b* K, ] ® ¥b* T —= ¥([b*.F,b*K,| @ b*.F) — =~ Wh*K,

bc (1.15)\L lbc (1.15) \Lbc (1.15)

Y[b*Z, p'A]@VYb*F — Y([b* ., p' Al @ b*.F) Yp'A

ev

Here the horizontal arrows in the left part of the diagram are induced by ¢; _as in the definition
of t;. In particular the top row is precisely t,. The unlabeled vertical arrows are induced by
the canonical morphism b* RHom(.%, K,) - RHom(b*.%, b*K ) adjoint to

b* RHom(.7, K,) ® b* F 2> b* (RHom (.7, K,) ® F) %> b*K,,. (3.8)

Hence the two upper squares are commutative. Finally, the vertical arrows in the lower half
are all induced by

by > Pl Ay — ptA, (3.9)

where ¢ : #" — k. Thus the lower half and hence the whole diagram is commutative.
Now, the composition of the top row t; and the right column followed by the base change

morphism

(1.25) .. 1ok R B
‘I’p[\ [ — ZS\PA’?h _ﬂZSl ]*Aq_h_;) ﬂzsl AR_h?KZX

(notation as in 1.§4) is adjoint to d, hence we have shown that d factors as follows:
¥b* RHom(.#,K,) -~ ¥ RHom(b*.7, p' A) ~ RHom(¥b*.7, K} ).

The second map of this factorization is an isomorphism by [16, 4.2]. To prove that d is an iso-
morphism we thus have to show that the first map in the factorization is. In fact, we will prove
the stronger assertion that both (3.9) and the morphism adjoint to (3.8) are isomorphisms.

For this notice the following fact. Given any morphism f : Y — Z and the associated cartesian
square

’

Y’ L Y (3.10)

1)
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with b as above, the base change morphism (1.12) : b* f, — f/b"* is an isomorphism. Indeed,
the field extension #" > k is the direct limit of its smooth k-subalgebras (k u)u- By base change
with respect to 77, and 77, f we deduce inverse systems of schemes (Z,), and (Y,), with
morphisms denoted as in the diagram (of cartesian squares)

by b,

Y’HYMH}‘-Y

A )
Zq;,%-z#?z

ooy u
decomposing (3.10), Zﬂh and Y’ being the inverse limits, respectively. Consider the following

diagram where the unlabeled arrows are the canonical morphisms:

*

: 7% bc (1.12) . 17, 1% 1% ~ -y
ll_n;l# boo»yfy*by %—h_n)lﬂfx—booﬂyb‘u %—f*b *

be (1412)1\ Tbc (1.12)

lim booybiifs = b*f.

By the compatibility of (1.12) with respect to composition (cf. 1.(k)), this diagram commutes.
By [1, VI, 5.11], the top row is an isomorphism, while the left vertical arrow is an isomorphism
since b, is smooth. Hence so is the right vertical arrow.

Using the fact just established, the adjoint of (3.8) is shown to be an isomorphism exactly as
in the proof of [14, 1, 4.3]. For (3.9), we note that the claim is local on Z hence we may assume
that 77, factors into gh, h a closed immersion and g a smooth morphism. By the compatibility
of the base change morphism (1.15) with respect to composition and since the claim is clear in
the case of 77, = g smooth we are reduced to show that #' commutes with the pullback along
n" — k. Let U be the complement of the image of & : V < X and let f : U = X be the
associated open immersion. Furthermore, let’s fix our notation as in the following diagram of
cartesian squares:

vy

o

X —= X

d )

Ul 4 U
Here, e’ denotes the base change of #" — k with respect to 7y. Moreover, let I' be a bounded
below complex of injective sheaves on X, and let « : ¢’*I' — J be an injective resolution of
e’*I'. Fix some n € Z. Applying the functor Hom(—, I") to the canonical short exact sequence
of sheaves on X

adj adj
(¢] —>,flf*AX —J> AX —J> h*h*AX —> 0

results in another short exact sequence of sheaves,

dj dj
o— IS £ —o.
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Letting n vary and applying the exact functor #* we obtain a short exact sequence of complexes
d
o—nrbwr Y pnrr —o,

where f3 is induced by the composition

'adjhhh_h mht 2 B

Similar remarks apply to J' and the morphisms 4’ and f’. We are now going to construct a
morphism of distinguished triangles associated to such short exact sequences.

Still on the level of complexes, consider the following diagram:

"%

e h'T 2 e h*r (3.11)

| B l

h[l I*I > hl* />(—I

h/I]~ L h/x—]-

Here, the base change morphism bc is induced by the composition

1 adj p adj | adj

//*h h/'h/ //*h h/' /*h B = h/' /*

the second arrow being the proper base change isomorphism (for sheaves). It is then easy to
see that the upper half of (3.11) commutes while the lower half commutes by the naturality of
B. Denote by y (resp. §) the composition of the vertical morphisms on the left (resp. right) of
(3.11). We will define below an isomorphism e”*h* j, j*I' - h'* j, j”* J in the derived category

rendering commutative the following diagram:

"%

. di
S RIT N z AT ad) eli*h*j*]-*[ C(e”*[;r) e"*h*l'[l]

yl BJ/ = l&w[l] J/V[IJ
v

h/!] h/*] " h/x-/ />«-] C(ﬁ]) h][]
I

Here C(f) denotes the mapping cone of f and the unlabeled morphisms are the canonical
ones. Thus we obtain a morphism of distinguished triangles in the derived category. Since &
is an isomorphism we conclude that y is an isomorphism too. But modulo the identification
of the functor &' (on complexes of sheaves) and k' (its derived counterpart) when applied
to complexes of injective sheaves, y is just bc (1.15). Applying this to the case where I is an
injective resolution of g!Ak, we see that (3.9) must be an isomorphism.

As for the dotted arrow above we may choose the following composition of morphisms in
the derived category (again, modulo the identification of j, (on complexes of sheaves) and its
derived counterpart when applied to complexes of injective sheaves):

~ b 12
e"*h*j*j*l' = h’*el*j*j*f c (1.12) h’*j’*e*j*l' = h/x—]! ]l*el*l _) h’*]{e]"*].-
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It is easily seen to make the above diagram commutative. Moreover, by the fact established
above, the second arrow in the composition is an isomorphism, thus the claim.

(M6) Notice that in the proper case bc,, and bc,, are the usual transitivity morphisms [f]7 .g. —
8.[flz . and g [f]z: = [f]z, & hence the axiom is clearly satisfied.

The specialization case was treated in 2.19.1.
(M7) This is obvious in the restriction case (1.(k)).

(M8) In the restriction case, the diagram may be expanded as follows, where all unlabeled arrows
are transitivity isomorphisms:

bec (1.13) N ~ _ .
d g31g1 f! I g3!f!g1

E;Eﬂf!

adj adj adj

ok bec (1.13) _ _x

680/ 88y ——> 8,8, 818y — 8/ & 8184

~ ~ be (1.15)

ke ! gl be (113) _ 41 ] — 0 s be(L13) — 4 «

8808, 8y —= 8,88,/ 8y 8,888y — 8,/ 88,8
adj be (1.15) ~ i;

—% [l adj — —=l—x p — =l s % E—— -
&S 8= &&& 8= T L& &8 T &8 &8

adj adj

f&8n — oy e

The big square in the middle of the diagram is easily seen to commute by the compatibility of
(1.15) with respect to composition, the rest of the diagram is clearly commutative.

(Mg) In the restriction case we are given a commutative square fg = ¢ f’ with f and f’ open im-
mersions. Then the diagram (3.6) extends by adjointness as follows:

ters

SR OF [ B) — E (A © 5 B) —m g fl ([ A @ g B) ——> gfl (A 05" B)

prej ® projT ladj
— I % * pro" - % I ol ad]
(@A B)<—— 2 f A ORB a(fif" @ B) ———> g (A ®¢" B)
be (1.13)7' | 2 bc (1413)‘\L§ \ projT
proj L
f(ff g ®@f B) <~—— fif 94/ ®B aflf*d ® B
adj
fpr | = adj

[ (8t © B) ————> g A ©F
adj

() commutes by the compatibility of proj with respect to composition. The commutativity of
the bottom left and the top right inner square can be checked on the level of complexes where
it is obvious. The rest of the diagram clearly commutes.
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Definition 3.8 1. Let ¢® and ¢° be open subcorrespondences of ¢ and ¢, respectively. Denote
the canonical functors D(¢) - D(¢°) and D(¢) — D(c°) by (+)°. We say that a cohomolog-
ical premorphism ({f7, tz}, {bcy, bcfg}) from c to ¢ extends a cohomological premorphism
({fzortz0 ) {bc;o,bci,o}) from ¢° to ¢° if it comes equipped, for each Z € Ob(c) and each
o € @ftf(Z ), with an isomorphism

Xzt f2(120) S fr( ),
natural in 7, such that the following three diagrams commute (for any Z, .7, %, and g : Z, —
Z,):
Foo(120) ® fo(Blz2) = f2(H e © f2(B)lz —> (f2( ) @ f2(B))lze (3120)
2o |20 8 Bl30) —— fr((/ ® B)|z0) —— fo(/ © B)l»
2 fro () 0) —— T (fr (D) ——> T S,z (312b)

X

bC;() \L \Lbc;

f2:8°" (A | 22) ;fze(g*(ﬂﬂze) i (fZ]g*;z{)

Z—]o

be (1.15)

(fz,g!dﬂz" ~ fzs((glﬁ{) 7o) ——>= fZ;’gOI(@{

bc;

7o) (3.120)
bci{0

be (1.15) =

@ fr. g ——> 8 ((fr. D) =<8 fr (o

z:)

In other words, we require that this isomorphism identifies ., bC;o and bcigo with tz]=,

* !
beg|7 and be

¢|772» respectively.

2. A cohomological premorphism f from ¢ to ¢ is called a good cohomological morphism (of type
(C1), (C2), respectively) if the following condition holds, respectively:

(C1) f satisfies Axioms (M1-6) above and it can be extended to a cohomological premorphism
between compactifications of ¢ and ¢ which also satisfies Axioms (M1-6).

(C2) f satisfies Axioms (M1-5, 7-9).

3. A cohomological morphism is a cohomological premorphism which decomposes into finitely
many good cohomological morphisms.
Clearly, the self-correspondences together with the cohomological morphisms define a subcate-
gory of cor’, denoted cor.

Example 3.9 Our next task is to check that the functors S, Q and P factor through cor = cor’. We
have already proved in the previous example that any morphism in the image of Q is actually a good
cohomological morphism (of type (C2)).

For P,let [f]: ¢ = b be a proper morphism of self-correspondences. By 2.5.2, there exist com-
pactifications [i] : ¢ = Cand [j] : b = b and a morphism [f] : ¢ — b extending [f]. We have
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proved in the previous example that both P([f]) and P([f]) satisfy Axioms (M1-6). To prove that
P([f]) is a good cohomological morphism (of type (C1)) it thus suffices to show that P([ f]) extends
P([f]). If Z is in Ob(c) and if Z' is the corresponding element of Ob(b) then, in the notation of
3.6, there is a canonical identification of functors [f],.[i]Z = [ ]]; [f]5, coming from the natural
identification of the corresponding functors of sheaves since the restriction functors are exact and
preserve injectives. It is then clear that this isomorphism of functors satisfies the properties needed
for P([f]) to extend P([f]).

We now turn to S, the specialization functor. Let ¢ be a correspondence and let ¢ be a lift of ¢
over R, defining a morphism ¢ — ¢ in SCor. By 2.5.1, there exists a compactification ¢ < ¢ of c. Let
d and d () be correspondences over R as in 2.27, thus [ f] : d — ¢ is proper, d lifts ¢, and embeds as
an open immersion into the correspondence d(¢) which is proper over R and lifts ¢. Moreover, the

diagram (2.12) commutes. We then arrive at the situation depicted in the following diagram in cor’:

s(d) .
c————d, (3.13)

- $(d(?)) -
c——d(c

(Here, the components of [ f;] arise from the components of [ f] by the base change k — R.) As-
sume for the moment that the triangle commutes, i. e. assume that we have a factorization of S(¢) as
P([£.]) o S(d). By what we showed above, P([f;]) is a good cohomological morphism. Moreover,
the diagram already suggests a candidate, $(d (<)), for extending $(d) to a compactification. Since
we have proved in the previous example that all premorphisms in the image of S satisfy Axioms (M1-
6), this would show that S(d) is a good cohomological morphism as well, and thus imply that S(¢&)
indeed is a morphism of cor.

It thus remains to show the commutativity of the diagram and the fact that the arrow at the
bottom, $(d (<)), extends the arrow at the top, S(d). Let us check the latter first. Clearly, ¢ is an open
subcorrespondence of ¢, and d is an open subcorrespondence of d(c),. Taking up the notation of
3.6,let Z € Ob(c), and denote by j: Z > Z and j: Z — Z' the open immersions induced by ¢ = ¢
and d — d(¢), respectively. Then, the commutativity of (2.12) implies that  lifts j. Hence there is a
base change morphism

il b¢' P
SpzJ > JsSPzs»

which is an isomorphism (2.19.1). We take this as y (in the notation of 3.8). We still have to prove
that the diagrams (3.12) in the definition commute. For this note that y = bc' is the inverse of bc*
(again, by 2.19.1). Thus the diagrams (3.12b) and (3.12¢) simply express the compatibility of the base
change morphisms with respect to composition which has already been proved (2.19.2). Finally, the
diagram (3.12a) is equal to the diagram (3.4) of Axiom (M4) and is thus commutative. (In the proof of
this axiom in the previous example we didn’t use the fact that g : Z, — Z, is an element of Mor(c).)

We now turn to the commutativity of the triangle in (3.13). Let Z € Ob(c) and denote by Z and
7' its lifts defined by ¢ and d, respectively. Also, denote by f + Z' » Z the morphism defined by
[f]:d — ¢ By the choice of d, f is alift of the identity morphism 1,. Hence there is a base change
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morphism
be, ~
spz =Pz 1z« > fs«SP 7>

which is an isomorphism since f is proper (2.19.1). This provides an identification of the functors
@ftf(Z) - @f,f(zs) defined by S(¢) and P([f.]) o S(d). We have to check that this identification
is “compatible” with the other data making up these two cohomological premorphisms, i.e. that
it identifies the morphisms ¢, bc,, bci,, 1 of the two premorphisms (Z € Ob(c), g € Mor(c)).
Let us check this first with respect to t;. Here, the compatibility means that the following diagram
commutes for any <7, £ € @ftf(Z):

- t
spsllz.of @spyly, A e sps (17,97 ® 17, R) E**> sp; 1z (o ® B)

bc*l lbc*

fs*spz,%@fs*spz,% T> fs*(spZ,,Q%@spZ,%) SRS fs*spz,(szf@%)

By adjointness, this diagram translates to the following one:

z tz = fy, =
fi(sp 1z @spyly B) —— fFsp; (1. @17, B) —— fsps 1. (A ® B)

foasps Ny ® fonsps 1y, B sp; 1 (1, ®1,,B) ———> sp;, 1515, (F © B)

sp; 11,9 @spy 1,1, % o sps (11,97 @ 131, %) T sp; (7 ® B)

The right upper square commutes by the naturality of bc”, the right lower square clearly commutes,
while the left half of the diagram is again the same as (3.4) of Axiom (M4), thus is commutative for
the same reasons.

In the case of the base change morphisms which are part of the data making up the premorphisms
S(&) and P([f]) o S(d), the compatibility is easy to check. E.g. in the case of beg, g1 Z, = Z, in
Mor(c):

- bC; bec (1.12)
Gspy Ny ———=sp 8N, = spy 1,.8"

bc*l \Lbc*

gs*fzs*spZQ m— fls*gg*SPZ; b—c;> fls*spzlg*
(Here, §: Z, - Z,, §' : Z1 - Z., fi + Z! - Z;, i = 1,2.) The commutativity of this diagram
follows from the description of bc, in terms of bc” (by adjointness), and from the compatibility of
bc™ with respect to composition (2.19.2). The case of bci, is treated in the same way, using the fact
that bc, = bc; " (2.19.1).

Finally, ¢ : spp Ay — Ay is exactly the same for both cohomological premorphisms S(¢) and
P([f]) o S(d), while the identifying base-change morphism sp, 1, Ax — 1,sp is the identity. This
concludes the proof of the fact that the functor S also factors through cor — cor’.
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§3 Properties of good cohomological morphisms

Throughout this paragraph we fix a good cohomological morphism F = ({fz,t;}, {bc;,bc;}, 1)
fromc:C—->XxXtoc.

Lemma 3.10 1. F satisfies Axiom (My).

2. Foreach g: Z, — Z, in Mor(c), the morphism 7t admits a decomposition

~ | bci{ — T'Tzz —1 =
f2.Kz, — [2,8 Kz, — 8 f2.K;, — 8Kz — K7

3. For each commutative square g,8, = g,8, in Mor(c), the following two diagrams commute:

* be
Cq _ %8y

[81 8 =8 8 —— 8, 8,uf (3.142)

be (1.12)l lbc (1.12)

fg3>(-g1* — §3>(—ng % gg,*gjf
bc*g3 bc

&

| bc!a — 1 beg, R
feug ~—— 8, f8 —>g,8.f (3.14b)

be (1.11)\L \Lbc (1.11)

fglzg4! Elzfgu beyg giguf

|
beg,

PRrROOF 1. If F is of type (C2) then Axiom (My7) holds by definition. If F is of type (C1) we may
replace ¢ and ¢ by their compactifications since both statements are local. Thus we may assume
that the g; and g;, i = 1,2, are all proper. By Axiom (M3), both statements are true for bc”,
hence also for bc,.. But then Axiom (M6) implies that they are true for be, hence also for bc'.

2. This follows immediately from part 1.

3. The proof of the commutativity is similar for the two diagrams and we will give it only for the
second one.

By adjointness, (3.14b) may be expanded as follows (g := g,¢, = £.4,):

_ | bc’33 — — ~ — | ~ — — | bcll o
8. /8.8 < 8.8, /& & 2.8, f8 —> 8,8,8.f
beyg, ® bc!g\ ) | )
! = | — = ! bc.: — — !
f8.8,8 — faig! 2,8./8 —>2,8.8.f
be (1.11) @ E @ beyg,
| bc,g4 — |
be (1.12) f8u8u& ~—8uf8u8 @ adj
adj adj
?zlfgi-gﬂ beyg, fgzlgi-gﬂ adj fg4! bqg4 §4!f7§4!f
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The subdiagrams (1) and (3) commute by part 1, (2) commutes by the definition of (1.11), and
(#) commutes by the definition of bc,. The rest of the diagram commutes by the naturality of
the corresponding morphisms. o

Lemma 3.11 F satisfies Axioms (M8) and (Mo).

Proor If F is of type (C2) then these axioms are satisfied by definition. If F is of type (C1) then
we may replace ¢ and ¢ by their compactifications since the statements in both axioms are local.
Thus we may assume the g, g, g;and g,, i = 1,..., 4, to be proper. Now, Axiom (M6) implies that
bc, = be," hence turning the diagram (3.5) clockwise by ninety degrees yields exactly (3.14a) which
is commutative as we have shown.

For (3.6), we replace bc, by bc;," and use the decomposition of proj in 1.93 to get the following
diagram (via the adjointness relation g* 4g, = g,):

bc;r . . . .
fe o oF fB— f¢ o ®fg'B—— f(g'd ®g" )
adjT adjT adjT
* ! —% beg * ! * 3 * ! *
889 g fB— fgg.8dfgB— f(¢"8.8'F ® g B)
be*
ST bc;@)bc;r

§ /8.8 7% fB <8 (f8.8 4 fB) >3 (887 %) —= fg(8:8' 7 ® B)
8

11

The upper half commutes by the naturality of the horizontal morphisms, the trapezoid in the lower
half commutes by Axiom (M4), while the triangle on the left clearly commutes. Hence the whole
diagram is commutative as claimed. o

Lemma 3.12 Foreach g : Z, - Z, in Mor(c) and o/, B € @ftf(Zz), the following diagrams are
commultative:

bck t ot
fe o T fB— fgd @ fg" B —— f¢(d©B) (3152)

bc;l lbc;

§fdog [# o SUdOfB)—=¢ (7B

!
¢ _ "z, _

f¢' RHom (<, 2) g f RHom(/, ) g RHom(f«/, %)  (315b)

indl: :\Lind

fRHom(g" o/, ¢'#) — —= RHom(fg"«/, f¢'#) ———> RHom(3" [/, % f#)
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PrOOF By adjointness, (3.15a) may be expanded as follows:

*

' — tobc, . .
8 (fg @3 fB) —=3¢ f(g ®g B)

bclg fgv
proj bc!g
ASEEINED §fg o ef% fa(gd ©g* %) 8fg (o %)
be! t
projT £ bey, proj \ \Lbclg
2EfA [P fagd ® f# ——— f(88' ¥ ® %) fag' (o ® %)
o adj adj 0
A ®fB f( ®B)

t

The square in the upper half commutes by Axiom (Mo), while the rest of the diagram is clearly
commutative.

For diagram (3.15b), notice that the two following diagrams commute by the definition of the
morphisms involved (we abbreviate RHom(—, —) by [-, —]):

* bchot

& ([ Blag fo - [t Blograt) =G ([t B )

indl lind \Lev

tobc bc'oev

f[g*%,g’fmg*f@fHgf([g*%,g!f]éﬁg*%) - Sf%
3"l ¢ B OF [ — s ' . §f%

18, Blog fof

bc’
Y t
flA  Blog fot =G (fl, Bl fat) =T f([ A, Blo )

(O 5

U [BeT fof — (. [B)o fof) — g f%
indl evl
(3" fo. g fBlog fo o~ gr#

Now, following the left vertical column and the bottom row in the two diagrams gives, by adjointness,
the two maps

t

f¢' RHom(#/, %) — RHom(3" [/, T fA)

of (3.15b), respectively. On the other hand, we know that the dotted paths are equal by the commu-
tativity of (3.15a). Therefore (3.15b) must commute also. o

We need more notation.
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Notation 3.13 1. For Z € Ob(c) and &/ € @’C’tf(Z), we denote by h$ : H°(Z, o7) - H°(Z, f,o/)
the composition

Hom(A,, o) 2, Hom(f,Ay, fr) — Hom(A, f,4).

2. Given .o/, % € @ftf(X),we denoteby [,/ 2 fx o ® fxB — fxxx(/ ® ) the composition

* *
bc, ®bc,,

b fxd O fx B FoaxPr e ® fruxpi B 5 Frox(pif @ piB).

Lemma 3.14 1. Forg: Z, — Z, in Mor(c), 15 : Ay — f; A, decomposes as follows:

‘2 —%

e Iy be; "
g0y —> T fr by, — f2,8" Mg,
2. For Z € Ob(c) and o , B ¢ @ftf(Z), the composition

H°(Z,RHom(</, %)) 2,y (Z, f, RHom(«/, %)) — H°(Z, RHom(f,, ;%))
may be identified with f, : Hom(«/, %) - Hom(f, <, f,B).

Proor 1. 'This follows immediately from Axiom (M3).

2. Let { e Hom(«7, %) and denote by {' e Hom(A, RHom(¢7, %)) the morphism correspond-
ing to {. Then rzoh({") e Hom(A, RHom(f,<7, fz#)) corresponds by adjointness to the
dotted path in the following diagram:

As® fyd o Ay @ frt 2N £, RHom(o, B) ® frf

tzl tz

4 v
S8 (RHom(, B) ® )

f2(Az® )
:\L veV
fzt £ 2%

The upper square commutes by the naturality of t; while the lower square commutes by the
definition of {’ therefore the whole diagram is commutative. With Axiom (M2) we conclude
that f,(and r,oh$({") correspond by adjointness to the same morphism hence they are equal
themselves as claimed. o

Lemma 3.15 1. Forg:Z, — Z, in Mor(c) and <f € @’C’tf(Zl), the composition

h, _ be¥ _
H(Z,, 8. ) —> HO(Zy, f1,8. ) —> H(Z,,3, f2. )

may be identified with h : H°(Z,, /) -~ H° (Z,, fr. ).
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2. For o/, % ¢ @’C’tf(X), the composition
— Moz —* by *
A (fXQ{ng%) —— A fXxx(uQ{%) —>fo (,Q%IZ%)

may be identified with tx : fxo ® fx B — fx(F & B).

PRrROOF 1. Let { € Hom(A, , g..«7) and denote by (" € Hom(A,</) the morphism corre-
sponding to {. Then bcg o hy, ({) € Hom(A4, g, fz,4/) corresponds by adjointness to the
dotted path in the following diagram:

2 f2,¢

E*AZ_I Zy -~ g*fzzAzl - g*fzzg*d
bc;l bey
Y
= f2,8" Nz, ——— f2,87 8
leg ¢
;\L adj
Y
AZ_, T— fZ|AZ, ﬁ fZ‘(Q{

1 A

The left half of the diagram is commutative by 3.14.1, the upper right square by the naturality
of by, and the lower right square by the definition of {’. Hence the whole diagram commutes

which is exactly what the lemma asserts.

2. Consider the following diagram:
foefR fd ®fR
—%__y \L —%_y bej, @by, __, —% be ® by - -
Np fod N p.fB——N fpid @A fpiB——> [N PId @ fA pI S
:\L :\L t
—% __y % bc;|®bc;2 —* * %k * ook
A(p f9@p,fA) A (fpid ®fph) f(8"pid ® A p: A)
|
A (fdwfB) —— 8 f(duB) — fA (A 0 RB)

The top square of this diagram commutes by Axiom (M3), and the lower right square by Ax-
iom (M4). The bottom left square is commutative by the definition of [T, 4, while the square
above it commutes by the naturality of the vertical isomorphisms (1.1). Thus the whole diagram

is commutative. u]

Lemma 3.16 1. Denote by a and 3, respectively, the following two base change morphisms:

be (1.15) 1

—* |

a :p; Ky = p; meA —— p,mx Ay — P, Ay,
« % be (1.15) 1 % ~ I
B:pi Ky = pi mxAy ——> pymx Ay — pyAx.
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With this notation, the following diagram commutes:

— x —x —

p, fxKx P, Kx z P A% (3.16)
bc;‘ \L ltx

* =
FxxxPrKx 5 frxxPiAx Tl Py fxAx
123
2. For o € @ftf(X), the following diagram commutes:
(1.17)otxxx

FxxxPi Kx ® fxxxps @ ———— fyuxprd

bc;] ®bc;2 T \Lbclp2

b fxKx® D, fx e P fx

(1.17)o7y

PROOF 1. Consider first the following diagram:

_ fix — =% bec (1.15) —

P, fy Ay ——— PP, ey ———> P, P, A

bc (1.13)T: bc (1.13) | 2 ladj
adj

* ! x * ! *
* S ) P A -l
ﬂXﬂXIfﬂXAk > Mg Ak Ay

bcznxl lll

ﬂ%fﬂx! ”!xAk Tl'%fAk

adj

The upper left square commutes by the naturality of (1.13), the right upper square by the defi-
nition of (1.15), while the commutativity of the lower square follows easily from 3.10.2. Hence
the whole diagram is commutative which allows us to replace the (morphism adjoint to the)
composition iy o « o 7Ty in (3.16) by the dotted path in the following diagram:

_ be (1.13)7" |
* l * .
PP, S Ax L nyny!anAk
bc!nx
Y adj
* ! *
bc!p2 Obcp‘ ﬂ%fﬂ'XI ﬂXAk > n}fAk
bc:X\L by,
Y
* ! * ! *
fpapimx Ay EVpe frxmxmx A T frxA

The right square commutes by the naturality of bc;, while the left square commutes by Ax-
iom (M8) (cf. 3.11). A similar argument shows that the solid path p_,p’ fmly Ay - fryA; in
this diagram corresponds by adjointness to the composition bci,l o Bobcy, in (3.16), which
completes the proof.
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2. The diagram extends to the following one:

t

P fRx®P, [ — = p A5 @P. fof —=D.(A® fF) pofl
. — — T l "
bey, P fAx®p, fo =D, (fAx® fal) >p,f(Ax® )
bcj,,2 bclpz
* —% /3 | — bC!l 1
fPiKx®P, fdd ——= fp.Ax®P, fof " fh(Axe )
bc;2 bc;1 ~
FriKx® [P — > fpuhx e fpi el = fp(Ax® ) —— fp.ed

The upper left square commutes by part 1, while the lower left and the upper middle square
commute by the naturality of the morphisms involved. Next, the top right square commutes
by Axiom (M2), the triangle in the right bottom corner is clearly commutative, while the re-
maining trapezoid commutes by 3.12. Thus the whole diagram is commutative. o

§S4 Naturality of the trace map

With all these compatibilities proved in the last paragraph we may now proceed to the general state-
ment concerning the naturality of the trace morphism with respect to cohomological morphisms.

Proposition 3.17 Let F = ({f7,t2}, {bc;,bc;}, 1) be a cohomological morphism from ¢ : C - X x X
tocandlet F ¢ @ftf(X). Then the following diagram commutes:

fetr,
fcRHom(¢; 7, c,.F) ——— fo A Kix(o) (3.17)

% _ —
RI—IO—m(Cl fXJgZ) C'zny) tr- A*KFix(E)

The proof of this proposition will be given in three steps.
Step 1 We may assume that F is a good cohomological morphism.

ProOF We have to check that the vertical morphisms in (3.17) are compatible with composition.
To this end, let ({f3, t;}, {bc%,bclg},f) : € — ¢ be another cohomological morphism. For the left
vertical morphism the compatibility with respect to composition follows from the commutativity
of the following diagram, i. e. from the naturality of rz and from the fact that  is compatible with
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composition.

*

fEfC[ L7, Cy fccly fccy (¢ fxZ, szx ]

l / / \L(bcg‘xbc’zl)orc

[fefeel Z, fafces T ] fc_*fxy O fx F " [ fxfxy szxfx ]

bcc] xb
(Here, as before, [—, —] abbreviates RHom(—, -).) Similarly, for the right vertical morphism, the
claim follows from the naturality of bc%/ and from the fact that 7 is compatible with composition. 4

Hence, from now on we will only consider good cohomological morphisms F and may thus apply
the results of the previous paragraph.

Step 2 The proposition holds in the case ¢ = Iy, x and ¢ = 5 %

Proor This choice of ¢ and ¢ makes the global trace morphism somewhat easier to handle. Thus
the diagram (3.17) decomposes as follows:

(11 evoadj
Frox RHOm(p? 7, b7 ) <— ol £ o (DF 0.7) Do fi (A Ky (3.18)

(bC;,XbC;I)OrXXX\L HD.@,@T \Lﬁxobcm

—% 1 _
RI_IO—m(Pl fX‘gZ’szXj) (1. 18)0d fXIDy.fX evodyoadj A*K?
Notice that we have inserted dy twice in the bottom row which we are allowed to do since it is an
isomorphism by Axiom (Ms). We will now in turn prove the commutativity of the two inner squares.
We expand the left (adjoint) square as follows:

(1.17) evof xot

fPAF =" f(piKy ®pi.F) ~—— [p} T ® f(piDF @ p:.F)

evol xot

* * Py
7 fPiRx®fp;F <———— fpiF @ fpiDF & fp;.F
bci72 Tbc;‘ ®bcp, Tbc;‘ ®bc, ®bcp,

(1.17)o7ry evofof—=x

P.fF <P fKx®p, fF ~—p [T &, [DF &P, fF

(1.17)ot

The upper left square is clearly commutative. The commutativity of the upper (resp. lower) right
square follows immediately from Axiom (M1) (resp. (M4)), while the lower left square commutes by
3.16.2.

Using the definition of bc, the right (adjoint) square of (3.18) may be expanded as follows:

A (DT 8F) — > A (DF BF) —2—> fKy

D7 ® f.F f(DF ©.F) fRx
DI fF Df¥ @ f.F K+
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The upper right square is clearly commutative. The upper left square is commutative by 3.15.2, while
the commutativity of the lower half follows from the definition of d. o

Step 3 Proposition 3.17 is true (the general case).

Proor The following decomposition of (3.17) allows us to apply the previous step ([—, —] abbreviates
RHom(-, -)):

R felty beli)
f[Cl F J] ﬁf" [Py 7, P 7] feAKx fAL KFIX(C)

(bcf,XbC!cl)Ofc aobc’cl Bobct \LﬁFiX(C)ObC*A,
[ fF CfF|~———TC[p fF.p.f F] — A Ky

%
ind 1 2 Ttr be (1.14)
TRax

A Kle(c)

(3-19)
Here, a and f3 are the left and right vertical arrows of (3.18), respectively. Hence the commutativity
of the middle square follows from that of (3.18). It thus remains to prove the commutativity of the
left and right squares of (3.19).
The left square may be expanded as follows:

fRHom(c*p; 7, ¢ ph.F) <= fc' RHom(p{ 7, pL.7) (3.20)
(bcfxbci)orcl \Lr}(xxobci
RHom(¢" f p; 7, ¢ f p}.7) = — ¢ RHom(f p; 7, f p,.7)

bey, ><bc!p2 \L \Lbc;‘ xbcj,,l

RHom(Z'p, f.7,Cp,f-7) < € RHom(p, f.F,p,f7)

Here, we have used Axioms (M3) and (M7) (cf. 3.10.1), i. e. the fact that bcz factors as bc) o bc;‘

and bc!cz factors as bcipl obct. The upper square of (3.20) commutes by 3.12, while the lower square
commutes by the naturality of ind. Hence the left square of (3.19) is commutative.
The right square of (3.19) may be expanded as follows:

be (1.1
fCIA*KX _& fA,*C’!KX _ fAi%KFix(c)

bC*AObCL\L \Lbci,Obc*A/ \Lbcmr

11— —1_p —
¢ A*fKX be (1.14) Ac fKX be! A*fKFiX(C)

CC’
ﬁxl lﬁx \Lf[l:ix(c)

= —1_p —
cAKx W A ¢ Kx A, Krix(z)

The lower left square commutes by the naturality of (1.14), while the lower right square does so by
3.10.2. In the upper half the commutativity of the left square follows easily from Axiom (M8) (cf. 3.11),
while the right square obviously commutes. Thus (3.19) and consequently (3.17) are commutative. 4

We shall now interpret this general result in the context in which it is most useful to us. Fix a
cohomological morphism F : ¢ — ¢ as in the proposition, and fix also .# € @’C’tf(X ). We associate
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with these data two maps
Lp = Ly,z : Hom (F,.#) — Homz(fx7, fx.F),
Rp=Rp g H° (Fix(c), KFix(c)) — H°(Fix(¢), KFix(?))’
defined by

*
c? obey, o

b
L : Hom(c,c; F,.7)

Rp = ffFix(c) ° hlo:ix(c)'

Hom(T, <) fx- 7, fxF),

Corollary 3.8 Let F = ({fz.t7}, {bc;,bcfg}, 1) be a cohomological morphism from ¢ : C > X x X
tocandlet F ¢ @ftf(X). Then the following diagram commutes:

tr,

Hom, (%, ) ———— H°(Fix(c), Kgix(c))

Homz(fx 7, fxF) —— H° (Fix(c), KFix(?))

tre

Proor Consider the following diagram:

H°(C,RHom(c}.%, c,.F)) S H°(C, A’ Kpix(c)) (3.21)

hzl \Lhz

— fetr, —
H°(C, fc RHom(¢}.F, c}.%)) e (C, fe N Krix(c))
(be? xbe; Yore l l N YV
el —% —! — —
H°(C,RHom(c; fx-Z, c x7)) e H°(C, A, Krix(z))
The upper square commutes by the naturality of hZ, while the lower square commutes by the last
Proposition 3.17. Hence, to prove the corollary, it suffices to prove that the vertical maps of (3.21)

may be identified with Lr and R, respectively, i. e. that the two diagrams (3.22) and (3.23) below
commute:

Hom(c, ¢} #, F) ———= Hom(c}.7, c,.F) —— H°(C,RHom(c} %, c.Z))  (3.22)

/| /| |

Hom(fe,e! 7, fF)  Hom(fc!.Z,fc,F) —== H°(C,RHom(fc.7, fe.7))

bef obey l bef, ><bc!Cz \L lbcfl xbc!cl

Hom(¢, ¢, f.Z, fF) — Hom(c, fZ,¢,f.F) —= H°(C,RHom(, f.F,C,f 7))

The upper right square commutes by 3.14.2, the lower right square commutes by the naturality of the
horizontal arrows, while the commutativity of the left square follows easily from the definition of
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bCICI.
HC(C, A, Kix(c)) ——— H°(Fix(¢), Kgix(c)) (3.23)

bC*A’OhE‘\L \Lh;ix(c)

H° (6, Z;fKFix(c)) I HO(FiX(E)’fKFix(c))

TFix(c) \L l TFix(c)

HO(C. R Kis(e)) —— > HO(Fix(@), Kin9)

Here, the lower half commutes by the naturality of the horizontal arrows, while the upper half is
commutative by 3.15.1. o

§5 Applications

We come now back to the questions raised at the end of §1, and propose to answer them by inter-
preting the result 3.18 of the last paragraph in the contexts considered in §1 (and in 3.6).

The following statement expresses the naturality of the trace map with respect to proper push-
forward.

Corollary 3.9 Let [f] = (f, f', f) : ¢ = T be a morphism in PCor. Then the following identities
hold:

Lpsy = U1 Rp(1) = ff (3.24)

where f' = fUlpix() * Fix(c) — Fix(c). In particular, the following square commutes for any F €
@Qf(x) (ifc: C— X x X):

tr,

Homc(y’y) HO(FiX(C)’KFix(c))

[f]zJ/ lfff

Homz(f,.7, /iF) T H° (Fix(¢), Kpix(z))

ProoOF Inview of 3.18 and 3.9 it suffices to prove the identities (3.24). The first identity Lp([s}) = (1]
is obvious by the definition of the two maps. For the second identity, let u € Hom(Apiy(c)> Kpix(c))-
We will prove Rp(( 57y (1) = ff, u:

" bc (1.12) % flu | be (1.11) |
(@) e Ak ————— !,ﬂFix(c)Ak —_— f!,nFix(c)Ak ———— gy Mk

|

* I £I% % 1 1
Trix(e) Mk T F 7 i M T> ir Trix(e) Mk T Thix(e) Mk

The top row is Rp([s})(u), while the bottom row is [ (+(u). The middle square clearly commutes,
while the outer squares commute because the base change morphisms are compatible with compo-
sition. o

We deduce the following well-known result.
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Corollary 3.20 (Lefschetz-Verdier trace formula) Let ¢ : C — X x X be a proper correspondence,
F e @ftf(X) and u € Hom, (%, .7 ). Then we have the following equality:

T(RI () = [ () = PRI

where 5 runs over all connected components of Fix(c).

PrOOF By 3.2, the left hand side equals tr(RI.(u)). And by 3.19, this is equal to tr o [7].,(u) =
fFix(C) tr(u), hence the first equality. For the second equality, denote by jg : f — Fix(c) the canon-
ical inclusion of 8 € 7, (Fix(c)) and by resg : H°(Fix(c), Kgix(c)) = H°(, Kp) the canonical re-
striction morphism induced by g : Kgix(c) = jg..j Krix(c)- Then we have [nm(c) [j,; = [ﬂﬁ since the
composition of two adjunctions yields an adjunction. Hence the two inner squares of the following
diagram commute:

Hom, (%#,.%) ——— Hom (%, %)

@trc,_g,ﬂl ltruyg
Oresg

@g H°(B,Kg) = H°(Fix(c), Kpix(c))
@/ l ®jjﬂ l/
s Eix(e)

A A

By [2, XVII, 6.2.3], f]/s is induced by Trjﬂ : j/;ngKFix(c) — Kpix(cy from which we deduce with [2,
XVII, 6.2.3.1] that

Bbto (Bix(0) Kp) = H (Fix(e), Ty, )
= H°(Fix(c), ®gTrj, o rp)
= & H°(Fix(c), Tr;, ) o H° (Fix(c), r5)

= EB/; / resg.

i

/ tr = f tr. 7 = / eaﬁ/resﬁ trc,gzz‘[trc,ﬂ,ﬁ:zltﬁ' o
5 z

Fix(c) TEix(c) TFix(c) Jp

Hence:

Next, we turn to specializations.
Corollary 3.21 Let ¢ : ¢ — ¢, be a morphism in SCor. Then the following identities hold:
Ls(ey = spes Rs(¢) = SPrix(e)-
In particular, the following square commutes for any F € @ftf(X) (iffc:C—>XxX,é:C»XxX):

tr,

Hom, (%#,.%)

: H° (Fix(¢), Krix(c))
SPE\L lsp}:ix(f)

Homés(sp;(f,spggz) B HO(FiX(és)’KFix(ES))
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Proor The first identity is clear. For the second identity, consider the following diagram, where the
vertical morphisms are the canonical ones:

H (Fix(¢), Kpig(e)) — s O B (Rix(2,), SPrvne) Krix(e)) % HO (Fix(E,), Krin(c.))

Ho(k’ nFix(c)*KFix(c)) — H° (k q)S*Sple(c)KFIX(C)) —H° (k ¢S*KF1X(C ))

be,o(2.10) (2.10) "obd!

Here, ¢ : Fix(¢) — R denotes the structure morphism of Fix(¢), thus the bottom row is spr; (s
(cf. 2.23). Since the top row is Rg(;y and since the right square obviously commutes, we are left to
prove the commutativity of the left square.

Let u € Hom(Agpix(c)> Kpix(cy). Then h;ix(c)(u) and bc, o (2.10)(u) are the two outer paths
A = 95:SPpix() Krix(c) in the following diagram:

(2.10)0adj
Ay %’ P55 Ps SpRAk H ¢S*SPF1X( )AFIX(C) — ¢S*SPF1X( )KFIX(C)

0 / /
c,0(2.10) c,0(2.10)
nFix(c)*n;ix(c)Ak — Tri(c)+ AN Fix(c) — Trix( ey« KFix(e)

The parallelogram on the right is commutative by the naturality of the slanted arrows. Expressing bc,
in terms of bc* (by adjointness, cf. page 23) renders the proof of the commutativity of the trapezoid
on the left an easy matter. The second statement of the corollary follows from 3.18 and 3.9. O

Finally, we may also prove that the trace map is natural with respect to restriction.

Corollary3.22 Let ¢ : C - X x X be a correspondence, let W — C be an open subset, and set
B = W nFix(c). Then the following identities hold:

LQ([JW]) = [jW]*’ RQ([]W]) = res/;.

In particular, the following diagram commutes for every F € @C,f( ):

Hom, (%, # )—>H (Fix(c), Kpix(c))

Liw] \L lresﬁ

H0m5|w( s ) %—Ho(ﬁ,Kﬁ)

tr

PROOF Asin 3.19, the identities are easily checked, and the second statement then follows from 3.18
and 3.9. o

§6 Additivity

Let ¢ : C - X x X be a correspondence, .7 € @’C’tf(X), u € Hom (.%#,.%) a cohomological corre-

spondence and i : Z = X a closed subscheme such that c|? (and hence u|? = [i%]*(u)) exists (2.4.3,
2.13.3). Then [i#] : ¢|* = cisa closed immersion and satisfies condition (F2) of 2.§3. Hence we may
define the pushforward

[i?],(u|?) € Hom, (i,i*.Z, i,i*.%).
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Similarly, let U = X\Z, j: U = X the inclusion. In 2.13.2 we defined the pullback [j¥]*(u) with
respect to the open immersion [jV] : ¢|Y = ¢. Now, since ¢, (c;*(Z)) c Z set-theoretically we also
have ¢;*(U) c C\c;'(Z) = ¢;*(U) hence condition (F1) of 2.§3 is satisfied and we may define the
pushforward

[j"1:(ul”) e Hom (jij* 7. jij* 7).

Set .Z; := i,i*.% and Fy = j,j*.%. The result to be proved in this paragraph gives a simple
relationship between the traces associated to the different cohomological correspondences appearing
above:

Proposition 3.23 In the notation just introduced, the following identity holds in H° (Fix(c), Kpix(c) ):

tr(u) = ez, ([i):(ul?)) + trz, (71 (u]7)).

We will deduce this identity from the additivity of filtered trace maps. Recall the notation and defi-
nitions of 1.§5. In particular, fix abelian categories A, B, and C as there.

The next two lemmas provide a means to transfer properties of functors and natural transforma-
tions from the derived categories to their filtered counterparts.

Lemma3.24 1. Let G : D(A) — D(B) (resp. D(A)° — D(B)) be a functor and (G, ¢g) a
filtered lift of G. Then there exists, for every i € Z, a natural isomorphism of triangulated
functors y' : gr'G — Ggr' (resp. x' : gr'G — Ggr™') such that restricted to @f[i’i](A) (resp.
ofl-"=1(A)) it is canonically identified with ¢.

2. Similarly, let G : D(A) x D(B) - D(C) (resp. D(A)° x D(B) - D(C)) be a bzfunctor
and (G, ) a filtered lift of G. Then there exists, for every i € Z, a natural isomorphism ' :
gr'G - @, ,G(gr x gr’) (resp X cgr'G - GBHS :G(gr™" x gr®)) such that restricted to
D" (A) x D 1(B) (resp. DFL" 7 (A) x DL (B) ) with r+s = i it is canonically identified
with ¢g.

More explicitly, this identification is given as follows (in the case of a covariant bifunctor): Since G
is filtered it takes Df"" (A) x D1 (B) to Df"1(C). Moreover, the functors (] are naturally
isomorphic to the identity functors on @f[“’“] hence x' is naturally identified with a transformation
wG — G(w x w) and we require this transformation to be ¢.

Proor We will do only part 2 in the case of a covariant bifunctor (all four cases are obviously simi-
lar). Fix i, r,s € Z such that r + s = i. We first construct a natural isomorphism of functors

gr'G(r" x 1) — G(gr" x gr'). (3.25)

Since G is filtered, G(7=" x 75°7) is a functor with target ®f<'~'(C) hence gr'G (<" x 75°7) is the
zero functor. Composing the distinguished triangle of functors > > 1 - 7 % (on Df(B))
with the functor gr' G(7<" x 7=%) yields another distinguished triangle

gr'G(r% x 1) — g G (% x %) — g’ G (7 x 157) —,
from which we deduce a natural isomorphism gr' G (7" x 71} - gr' G(7 x 7°). A similar argu-
ment shows the existence of an isomorphism griG(T[”r] x T151) > gr'G(7%" x 7l Composing

these two isomorphisms we obtain

gr' G(2" x £l51) 55 gr G (5 x ). (3.26)
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Now, (3.25) can be written as
griG”(Tgr % TSS) (32—(’)ﬂ> griG”(T[r,r] % T[s,s]) o wG”(T[r,r] % T[s,s]) ﬁ) G(gl‘r « grS).

Notice that restricted to D" (A) x D1 (B) this morphism is canonically identified with ¢ (in
the sense made explicit before the proof).
Composing (3.25) with the canonical morphisms T — =" and T — 7=° we get a morphism of
functors:
gr'G — @, _;gr' G(t5" x 1%°) Bas), ®,,-iG(gr" x gr’). (3.27)
(Notice that there are only finitely many pairs (7, s) such that r + s = i and gr'G(7=" x 7=*) doesn’t
vanish hence the first morphism really maps into a direct sum.) Since (3.27) is a morphism of tri-
angulated bifunctors, a standard argument in homological algebra shows that to prove it an isomor-
phism it suffices to consider the case where it is evaluated at (L, M) € D" (A) x DoY) (B), some
(a,b) € Z>. But then, both sides of (3.27) vanish unless a + b = i in which case the morphism is
canonically identified with ¢ as has already been observed. o

Remark 3.25 Assume for this remark that A has enough injectives thus RHom is defined (cf. 1.(s)).
Let L € Df(A), M € Df"(A) and u € Hom(L, M). It is then easy to see from the explicit description
of x° given in the lemma that the image of « under the map

Hom(L, M) — H° wr*°RHom(L, M) —— H° gr’RHom(L, M) ~— @, Hom(gr'L, gr' M)

>0

is nothing but @;gr’u (here p is induced by the projection w7° — gr°).

Lemma 3.26 1. Let H : G, - G, be a morphism of triangulated functors (resp. contravariant
functors) and let H : G, - G, be a filtered lift of H. Then the following diagram commutes for
everyi€Z:

. v H . .~ v'H .
gr'G, L gr'G, respectively gr'G, LN gr'G,

1 )

G,gr Tgr> G,gr G,gr ? G,gr

2. Let H: G, » G, be a morphism of triangulated bifunctors (resp. bifunctors contravariant in the
first argument) and let H : G, — G, be a filtered lift of H. Then the following diagram commutes
foreveryieZ:

gr'G, gr'G, (3.28)

®r+s=iGl(grr x grs) G9r+s=iG2(grr X grs)

—_
@H(gr"xgr')
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respectively

gr'G, gr'G, (3.29)

®r+s:iGl(gr_r x grs) 3 ®r+s:iG2(gr_r X grs)
®H(gr "xgr')

3. IfH in 1 (resp. 2) is an isomorphism of functors (resp. bifunctors) then so is H.

Proor We will again do only the case of a covariant bifunctor.

1,2. Fixi,r,s € Z such that r + s = i. In (3.28), we may compose the Xi’s with the projection onto
the (r,s)™ factor and thus obtain

G, (gr" x gr') ————— G,(gr" x gr)
H(gr'xgr®)

It suffices to prove that this diagram commutes. According to the definition of x', it is to be
expanded as follows:

gr' H(7"x7=°) .~

—~

[
)
N

=
11

griljl(_r[r,r]x_r[s,x]) o

griG1 (T[r,r] % T[s,s] )

wH(7l T xqlssTy -

wGI(T[r,r] « T[s,s])

G,(gr" x gr') G,(gr" x gr’)

H(gr'xgr®)
The first two squares commute since gr' H is a natural transformation, the third square clearly
commutes, while the last square commutes by the definition of a filtered lift of a natural trans-
formation. Thus the whole diagram is commutative.

3. Since H is a morphism of triangulated bifunctors, it suffices, as before, to prove that it is an
isomorphism when restricted to Df**/(A) x DfI0*)(B) for all a, b € Z hence it suffices to
prove that gr'H is an isomorphism on Df(**/(A) x Df**1(B) for i = a + b, and this is, by
2, equivalent to @, ,_; H(gr" x gr*) being an isomorphism on the same subcategory. And this
last condition is obviously satisfied. o
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Definition 3.27 Let X be a scheme. We define @’C’tff(X ) to be the full subcategory of D§(X) con-
sisting of those objects Z such that glr’}?~ belongs to letf(X ) forall i € Z (see 1.(s) for the notation).

Our next task is to define the six operations in the filtered context.

Lemma 3.28 Let f : X — Y be a morphism of schemes. The filtered lifts of f., f*, RHom, ® (cf. 1.(s))
define (bi)functors

Fo s DigF(X) — Di(Y),
FDaF(Y) — DX,

RHo :@ftff(X)° X @ftff(X) — @fsz(x)’
®: @ftff(X) x @f,ff(X) — ngtff(X)-

]

PrOOF Let.# € D!, f(X). By 3.24 we then have for any i € Z,
gt f.(F) 2 fugr' (F) € fugr' (DLA(X)) € £ (D8 (X)) € DGy (Y)

which proves the claim for f, (since, by the same isomorphism, f,(.%) belongs to D%f(Y)). The

argument for the other functors is the same. o

Definition 3.29 1. Let X be a scheme and denote by K the complex Ky considered as an object
of @fo[o,o] (X). We define the filtered Verdier duality functor:

D = Dy = RHom(—, Kx) : glcjtff(X) - glcjtff(x)'

2. Let f: X — Y be a morphism of schemes. We define two functors:

=Dy fDx s D F(X) > Degf(Y),
JZ! = I]j)Xf*ﬂj)Y : i)ftff(y) - @fsz(X)-

Lemma 3.30 1. The functors D, f, and f* are filtered lifts of D, f, and f', respectively.

2. The natural isomorphism D> — 1 lifts to an isomorphism of filtered functors
D> - 1.

3. There is a natural isomorphism of filtered bifunctors
f.RHom(-, f*-) = RHom( f,-, -).
In particular, the adjoint relation f, + f* still holds in the filtered context.

PROOF 1. Being defined as a composition of filtered functors all three functors are clearly filtered.
Moreover,

wD = wRHom(—, Ky) =~ RHom(w—, Ky) = Daw,

hence [ is a lift of D. That f* and f, lift the functors f' and f;, respectively, follows in the same
manner starting from the description of these functors as “dual” to f* and f,, respectively
(cf. [14, I, 1.12]).
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2. The isomorphism D* — 11is defined in terms of the adjunction between ® and RHom (cf. [14,
L, p. 7-8]) thus it has a filtered lift which is, by 3.26.3, an isomorphism.

3. Let f : X — Y be our morphism of schemes and fix .%,¥ € @ftff(X), H e @’C’tff(Y). Then
there exists an isomorphism

f.RHom(f*##,.%) = RHom(. /7, f..%), (3.30)
natural in both .% and 7 (see [15, V, 2.3.5.6]). Next, there is an isomorphism
RHom(.%,D%) = RHom(¥,D.%), (3.31)

also natural in both .% and 4. Indeed, the latter is obtained as the composition of the natural
isomorphisms

RHom(.#,0%) ~ RHom(.# ®%, Ky) ~ RHom(¥,D.%),

from [15, V, 2.3.1.3].
Now, it’s simply a question of composing these isomorphisms in the correct order:

f.RHom(F, ') = f,RHom(F, Df* D7)

;f*RHom(f*lDf%ﬁ, D.%) (3.31)
~ RHom(D%,f*[ﬁ)ﬁl) (3.30)
~ RHom (D27, D f,D.%) by part 2

i) *ﬁj,DZ%) (3.31)
Df.D.Z, . #) by part 2

The last statement of the lemma is obtained by applying the functor H°(X, wt>°) to this iso-
morphism. o

Fix a correspondence ¢ : C — X x X, .Z ¢ @ftff(X) and a cohomological correspondence

u € Hom(¢, &;.%,.% ). We abbreviate .7 := w.%. In view of the isomorphisms

We T 2 eyl T, gt e ErF 2 eyl F
(the second one existing by 3.24.1), we may consider wu and gr'u as elements of Hom(c,,c}.%, %)
and Hom(c, c;gr'.%, gr'.%), respectively (any i € Z). The next proposition expresses the additivity

of filtered trace maps.

Proposition 3.31 With the identifications just explained, we have an equality
tro (wu) = Y try. 5 (gr'u) (3.32)
ieZ

in H° (Fix(c), Kix(c))-

The proof will be divided into three steps.
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Step 1 The global trace morphism associated to .F possesses a natural filtered lift tr i in the sense that
the following diagram commutes:

RHom(c}.%, ¢\.%) A Krix(c)

l lﬁ

wRHom(&+.%, 6.7 ) —— wh/ Kle(c)

wtr

Proor Indeed, the global trace morphism is made up of adjunctions between the six operations,
of canonical (iso)morphisms coming from the level of complexes and inverted such isomorphisms.
As we saw, the adjunction relations still hold in the filtered context (the units and counits lifting
their unfiltered counterpart), and the other canonical morphisms can be directly seen to preserve
the filtrations (see e.g. [15, V, 2.3.2.3, 2.3.4.3, 2.3.5.5]). Finally, 3.26.3 shows that the filtered lifts of
isomorphisms are still isomorphisms and may thus be inverted in the filtered context as well. o
Composing this filtered trace morphism with the isomorphism from 3.30.3 yields a map

trg RHom(czlc ~) — C~’>J~<Fix(c)

lifting the corresponding composition in the unfiltered context (again, in the sense of a commutative
diagram as above),

Coull o
tr'’z : RHom(c, ¢} #, F) —> ¢,, RHom(c] F, ¢, F) —> ¢, Krix(c)-
Step 2 The following diagram commutes for any i € Z:

L grltr’
gr°RHOm( J@\,J@\) é’ a)c Kle(c)

|

®; RHom(c,,c/gr' #,gr' %)

11

RHom(c, ¢/ gr' %, gr' #) ¢ Kix(o)
Uiz
ProOF We decompose the trace morphisms as follows:
L ot L gl ey
gr’RHom (¢, éf %, %) — Z

groc’ c’( PF®F) ———> wc' Krix(o)

4 w

.~ .o~ grlev
®; RHom(c, cigr' 7, gr' %) ®;c.c"(Dgr'F @ gr'.F) 4?> ¢+ Krix(o)
RHom(c, ¢/ gr' #,gr' F) Y i (Dgr' F @ gr' F ) ——— ¢ Kpix(o)
_gr, P clc" evgr,?
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The left inner square commutes by 3.26.2, the top right inner square does so by 3.26.1.
To check the commutativity of the bottom right inner square, consider the following isomor-
phism of bifunctors

¢y RHom(DoZ ® %, Ky) — RHom (%, D*«7) —> RHom(%, <7 ).

The first arrow comes from an adjunction thus has a filtered lift, the second one has a filtered lift by
3.30.2. By 3.26 then, the following diagram commutes:

o~

gr’RHom(D.Z 8.7, Ky) gr’RHom (.%,.%)

®; RHom(Dgr'.Z ® gr'.%, Ky) % ®; RHom(gr'.%, gr'.%)

The claim now follows from the fact that gr°@(gr°¢v) = gr°1is mapped to &, ¢(gr'ev) = ®; 1 under
the vertical isomorphism. o

Step 3 End of the proof of 3.31.

ProoF Denote by p the projection w7*° — gr°. Then the following diagram clearly commutes:

_ L . wrfr I
wr*°RHom(¢,,& %7, %) —— wc' Ky (333)

|

— ~ ~ gr"{_r‘ 7 ~ o~
gr’RHom(¢, 67 .7, %) — 7 5 wc’« Krix(c)

Hence the left hand side of (3.32) is equal to
tr'y (wu) = H°

- H°

- H°

X, e ()

X, 0tttz (u))

X, gt (pu)) by (3.33)

X, ®it_r;rig(griu)) by step 2 and 3.25
C S (Xt (gr'0)

1
= Ztr;rlg(griu),
1

o~ o~ o~ o~

which is equal to the right hand side of (3.32). o

To apply the proposition to 3.23, let us go back to the situation at the beginning of this paragraph.
Thus let i : Z — X be a closed subscheme, let U = X\Z, j: U - X. For any .% ¢ @ftf(X) we
abbreviate .77, := i)i*.% and Zy := j;j*.%. Also, let ¢ : C - X x X be a correspondence such that
c|? exists. Notice first the following simple fact.
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Lemma 3.32 The following diagram commutes for any u € Hom, (.7, % ):

Proor We will show only that the lower square commutes because the argument for the upper case
is very similar. Denote the inclusion ¢;(Z),eq = C by m and set d = c|%. We use the definition of
[i%],(u|?) to decompose the diagram as follows (we abstain from writing .%):

u

CpCy 1
adj adj
CZ!CI*Z‘*Z‘* m Czlm*d;—i* — l‘*dzgdl*l‘* — l‘*dz!m*Cl* m‘ i*i*Cz!Cl* ?— l’*i*
. = = 5

The subdiagrams (2) and (4) clearly commute, while () and 3) commute by the definition of the
base change morphisms. This is clear in the case of (1.13), and the case (2.5) is easily reduced to the
former. o

Lemma 3.33 1. The forgetful functor w : @ftff[o’l] (X) — @ftf(X) admits a natural section F
F satisfying gr°.% = F, and gr'.¥ = Fy.

2. The group morphism w : Hom(¢,¢:.%,.%) — Hom(c, c}.Z,.F) admits a unique section
u ~ ii and this section satisfies gr°a = [i%],(u|?) and gr'ii = [jY],(u|Y).

PROOF 1. Let us define this section on the level of complexes first. Denote by A the category
of sheaves of A-modules for the étale topology on X. Then we define a functor €’(A) —

¢t f[o’l] (A) as follows. If % is an element of € (A) then we cannot but set

F  :i<o
F'% :={ %y :i=1
o ti>1

as the filtration on .%. Since a morphism ¢ : .# — ¥ in ¢’(A) maps j1j*F into j,j*Y, we
may (and have to) set ¢ = ¢ to get the envisioned section on the level of complexes. Notice
that since both functors j, and j* are exact, if ¢ is an quasi-isomorphism then so are F°¢ = ¢
and F'¢ = j, j* ¢ hence the section descends to the derived categories as required.
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2. We have to prove w is an isomorphism. But the following diagram commutes:

Hom(é, e %, %) — = H°(wr>°RHom(é, & Z, 7))

2!

Hom(¢ F) —— H°(wRHom(¢, &7 .%,.%))
In view of the distinguished triangle 72° - T — 757" —* it thus suffices to show the vanish-
ing of 7*"'"RHom(¢,,&}.%,.% ). Since RHom(¢,,¢}.%, .7 ) belongs to @f,f F1(X), we are
reduced to showing the vanishing of

gr'RHom (¢, &) %,.%) = ®; RHom(gr' "¢, & %, gr' 7))
~ RHom(gr'é, & %, gr’.%)
= RHom(c, ¢c; Fy, Fy)
~ RHom(i* ¢, c; Fy, i* F).

Now, ,(c7'(U)) is contained in U (cf. 2.4.3) hence so is the support of ¢,,¢; % implying that
i*c,c; yu =o.

Let u — i be defined as the inverse map to w and consider, for a fixed u € Hom(c, ¢} %, %),
the following diagram:

. o~ gl ~
gr'é, i F ——gr' ¥

L

-~ = wu ~
W6 F — 0T

o

groé, &rF gro—ﬂ> gro.F
where the vertical arrows are the canonical ones. Clearly, both squares commute. Now, it
follows immediately from the definition of ' that the vertical maps in this diagram corre-
spond to the adjunction maps j,j* — Tand 1 — i,i*, respectively, under the identification
gric, ¢ F = c,cfFy and so on; i.e. we have a commutative diagram as in the previous
Lemma (3.32) but where the top and bottom horizontal arrows correspond to gr'si and gri,
respectively. In view of the previous lemma, it thus suffices to prove that the top and bottom
horizontal arrows of such a commutative diagram are unique. But we have already proved
this. Indeed, the distinguished triangle %, - % — %, —" gives rise to isomorphisms
Hom(c,,cf Fy, Fy) = Hom(c, e Fy, F) and Hom(c, ¢ F,, F,) = Hom(c, ¢} F, F,)
since RHom (¢, ¢} Zy, F,) 2 o. o

PROOE (3.23) Choose .Z and # as in the previous lemma. Then:

tr(u) = tr(wit)
=t 5 (g170) + try,. 5 (gr' i) by 3.31
= trg, ([i”],(u?)) + tr oz, ([17 11 (u])) by 3.33. 5
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4 Main results

§1 Invariance

Let ¢ : C - X x X be a correspondence and let Z c X be a closed subset. There are several ways to
make precise the notion of Z being “invariant under ¢” three of which we will present below.

Definition 4.1 Let ¢ : C — X x X be a correspondence and let Z c X be a closed subset. We say that
Z is c-invariant if ¢,(¢;"(Z)) ¢; Z.

Here the subscript ¢ is used to emphasize the fact that this inclusion should hold in the category of
topological spaces (or sets). We will, in similar situations, use s as a subscript if the relation holds
scheme-theoretically.

Remark 4.2 Let c and Z be as above but assume that Z is, in addition, given the structure of a closed
subscheme of X. Notice that the following conditions are equivalent:

1. ¢,(c;%(2)) c, Z,i.e. Zis c-invariant;

2 6N (2) e e (2);

3. C;I(Z)red Cs Cl_l(Z);

4 T2 € @

For our purposes the notion of invariance introduced above is too strong and we will want to
have at our disposal two (weaker) notions of a more local character.
Definition 4.3 Let c and Z be as in the previous definition.

1. Z is said to be locally c-invariant if each x € Z possesses an open neighborhood U c X such
that Z n U is ¢|-invariant.

2. Z is said to be c-invariant in a neighborhood of fixed points if there is an open neighborhood
W c C of Fix(¢) such that Z is c|y -invariant.

(| and c|y, were defined in 2.4.)

Remark 4.4 Spelling out the first condition in the definition we see that Z is locally c-invariant if
and only if every x € Z possesses an open neighborhood U satistying

(e[ ()3 (ZnU)) e zn U, iff
(e, (ZnU))nUc, ZnU, iff
c,(6;(ZnU)) c, Zu (X\U).

Notice also that every c-invariant subset is automatically locally c-invariant and c-invariant in a
neighborhood of fixed points.

Example 4.5 Let ¢ : C - X x X be a correspondence and let x € X be a closed point such that
¢;'(x) is finite. Then {x} is locally c-invariant. Indeed, the space c;*(x) is automatically discrete.
Let y € ¢;*(x) be any (necessarily closed) point and z = ¢, () € X. ¢, induces an inclusion of residue
fields k(z) — k(y) which shows that k(z) is contained in a finite extension of k hence that z is a
closed point. This implies that U = X\(c¢,(c;"(x))\x) is an open neighborhood of x in X. Clearly,
{x} is ¢|Y-invariant.
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Lemma 4.6 Let c: C - X x X be a correspondence and let Z c X be a closed subset. There is a largest
open subset W c C such that Z is c|y-invariant. Explicitly, W = C\c;'(Z)\c7'(Z), where denotes
the Zariski-closure in C.

Proor This is easy. o
Notation 4.7 We will denote this open subset by W_(Z).

Notation 4.8 Let ¢ : C - X x X be a correspondence, u € Hom,(.#,.% ) where .7 € @ftf(X) and
let Z c X be a closed subset. In the case that Z is c-invariant we have defined in 2.13.3 the restriction
ul? = [i?]*u e Hom,z (F|,, F|,). For general Z,let W = W,(Z) c C. We then set c||? := (c|y)|*
and ull? = (uy) .

Example 4.9 1. Let ¢ : C - X x X be a correspondence and assume that c, is quasi-finite. For
each closed point x € X, we have the following commutative diagram

c

C XxX

J

(" ()\e (%)) ————= X x X

C|w (x)
ij\ iy Xiy

(&) 06 (30))req — = {x} x {x}

with Fix(c|[*) = (¢;'(x) N ¢;'(x)),.q a finite scheme.
Now, let .F € @ftf(X), u € Hom (%, %), and y € Fix(c||*). Then the restriction of u||* to
{y} = {x} x {x} defines a map

'l 7 — 7,

ly+ Fx
and we claim that this map can be identified with the restriction of the stalk map

Uyt (Czlcfgé\)x = 69cl(z)=x(cl*<gz)z g gzx

to (¢ F), = Z,. The latter map will be denoted u,

To see the identification, set e = c|yy, (,) hence ezl(x) = ¢;'(x) N ¢;*(x). Notice that the
inclusion @1 (x)nei (x) (67 F); = Bzecri(x) (¢ F ), is induced by the morphism

adj
Q:ee 2eyujijtel —>c2.c1,

while one easily sees that u|y, () = 4@ &. This means that (u|y, (), factors through u, and
we have a canonical identification of (u|yy, (y)), with u:

Uy

o' F) (—> eazec“(x)(c ). Ty
(7 )x
o F g\)ycﬂ Gazec;’(x)nc”(x)(c J)z x

(ulw, (x))x
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Hence we may from now on assume x to be c-invariant.

Set d = c[[* = [i*]*c. The argument is similar as above: The map ®,c4-1(x)(d;F), —
@ eci(x) (€7 -F ), is induced by a morphism ¢’ : d,,d; — ¢, ¢ such that u||* = u¢’; hence
there is an identification of (ul[*), with u,, i.e. we may assume X = {x}.

Exactly the same argument as before (replacing j by the inclusion y < C and ulyy, (x by ul,)

gives an identification of (u/,), with u, hence we may assume C = {y}. But in this case the
claim is obvious.

2. As aslight generalization, suppose ¢, is quasi-finite only on some open neighborhood C’ c C
of Fix(c||*). There is a natural way to define u, for y € Fix(c[|*) analogously as above, namely
by u, := (u|cr),. We also have an identification

ule|[* = ”|c'|wc|c, (x)|x

=u

Wc‘c,(x)|x by 2.12

= ulw, ([ Iw, ()ncrne (1), DY 214

= uHx since Wc(x) n C;I(x)red = Wc(x) nC'n C;I(x)red-
The above argument thus shows again that u,, can be identified with u|[*],.
Moreover, if C"" ¢ C” is another open neighborhood of Fix(c|*) then (u|c~), is canonically
identified with (u|c/),. Hence it makes sense to set u,, := (u|c+), for any open neighborhood
C’ of Fix(c||*) on which c, is quasi-finite, provided that such a neighborhood exists.

Our loose way of speaking about “identifying” certain morphisms should cause no worries since
the only thing were interested in is their trace:

Definition 4.10 In the notation of the previous example, u, : %, — ., may be assigned a trace
Tr(u,) (asin 3.3), called the naive local term of u at y.

Remark 4.11 Our argument above shows that It, () = Tr(u,), i.e. “the naive local term equals
the real local term”. Indeed,

It, (ul|*) = res, (tr(ul[")) since 77, = 1
- ([, ull) by 3.22
=tr(u,) by what we just showed
=Tr(u,) by 3.2.

In the generalization discussed in the previous example, i. e. ¢, quasi-finite on an open neighbor-
hood C’ c C of Fix(cl*), we thus get the identity It, (u[[*) = 1t, (u[c/||*) = Tr(u,).

Let us now give alternative characterizations of local invariance and invariance in a neighbor-
hood of fixed points which will be useful later on.

Lemma 4.12 Let ¢ : C - X x X be a correspondence and let Z c X be a closed subset. Set B =
' (2\e'(2).

1. Z is locally c-invariant if and only if for every irreducible component S of B,

a(8)ne(S)=2.
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2. Z is c-invariant in a neighborhood of fixed points if and only if B N Fix(c) = @.
3. If Z is locally c-invariant, then it is also c-invariant in a neighborhood of fixed points.
PROOF 1. For an open subset U c X, the last condition in 4.4 holds if and only if
B=c (2)\e;'(Z2) ¢ ¢ (X\U) v, (X\U),

which in turn holds if and only if for every irreducible component S of B, ¢,(S) c; X\U or
¢,(S) ¢, X\U. Thus Z is locally c-invariant if and only if for every x € Z and every S as

above, x ¢ ¢,(S) or x ¢ ¢,(S), i.e.ifand only if Z n ¢,(S) N ¢,(S) = @. But since ¢,(S) ¢, Z,
Zn CI(S) n C,_(S) =t CI(S) n C,_(S).

2. This is clear by 4.6.

3. Assume Z locally c-invariant and let x € E_. By part 2, we have to show x ¢ Fix(c). Let S be an
irreducible component of B such that x € S. Then, by part 1,

Cl(‘x) Ecl(g) Ct Cl(S) Ct X\C,_(S) Ct X\Cz(g) Ct X\Cz(x)

hence x ¢ Fix(c¢).

O

We end this paragraph with a result concerning the behavior of local invariance with respect to
compactification.

Lemma 4.13 Let ¢ : C — X x X be a correspondence and U c X an open subset such that ¢;*(U) is
dense in C, c¢,| .- (yy is proper, and X\U is locally c-invariant.

1. Every compactification ¢ : C — X x X of ¢ satisfies ¢, (U) = ¢;*(U).
2. There exists a compactification ¢ : C — X x X of ¢ such that X\U is locally c-invariant.

PROOF 1. Notice that ¢;"(U) is a dense open subset of ¢, " (U). Moreover, ¢, |- (v) = 6| (vy i
proper and ¢,
tive.

z1(v) s separated hence the inclusion ¢;*(U) < ¢,"(U) is proper thus surjec-

2. Set Z := X\U. We claim there exists a compactification X of X such that for each irreducible
component S of ¢;*(Z)\c;*(Z), the closures of ¢,(S) and ¢,(S) in X do not intersect.

LetS,,..., S, be the irreducible components of ¢;* (Z)\c;*(Z). We deduce an n-tuple of pairs
(C.,i» C,,;) where C; ; is the scheme-theoretic closure of ¢;(S;) in X. Each pair satisfies

C1,i n Cz,i =9 (4-1)

by 4.12.1. We will prove now more generally that given such data, i. e. a scheme X and an n-
tuple of pairs of closed subschemes (C, ;, C, ;) satisfying (4.1), there exists a compactification
X of X such that the closures of the C; ; in X still satisfy (4.1).

We prove this by induction on 7. If n = 0, we may choose X to be any compactification of X.
So let n > 1and, using the induction hypothesis, choose a compactification X of X such that
the closures of the first n — 1 pairs satisfy (4.1). Possibly, we have T,n, n Tm’ *+Q (m, being
the closure operation in X'). In this case, we let X be the blow-up of X with center

/:fcl,

’+ fc .

n
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This is still a compactification of X. The closures of C, , and C, ,, in X do not intersect as they

—) —
are contained in the strict transforms of C, ,, and C, ,, , respectively, which do not intersect.
By the lemma below (applied n — 1 times), the closures of the first n — 1 pairs still satisty (4.1),
which concludes the induction step and hence the proof of the more general claim above.

Now, choose a compactification X as in the claim above and extend it to a compactification
¢:C— X x X (25.1). Bypart1,¢; ' (U) = ¢;*(U), and this implies

S (X\U\¢,'(X\U) =5, (X\U) ng,"(U)
=5 (X\U)n¢ (V)
= ¢ (X\U)\e,; (X\U)
=, (2)\e;(2).

By our choice of X, for every irreducible component S of ¢," (X\U)\¢, ' (X\U), the closures
of ¢,(S) = ¢,(S) and ¢, (S) = ¢,(S) in X do not intersect. 4.12.1 now tells us that X\ U is locally
c-invariant. o

Lemma 4.14 Let X be a scheme, let Y, Z be two closed disjoint subschemes, and let ¢ c Oy be a
sheaf of ideals. Let X be the blow-up of X with center ¢ and let Y and Z be the strict transforms of Y
and Z, respectively. Then Y N Z = @ in X.

PROOF Set .7 = @,5, 7" so that X = Proj(.#). The subscheme Y c X is defined by the sheaf of
ideals associated to the graded .’ -module

f%/Y:: ker(eanZO /n _)®n20(jY+/n)/jY) :®n20(/n me)
(see [11, 3.6.2 (i)]). But for each n > o,
I'ndy+ F'nd,= 7"

by assumption, i.e. Ky + Hy =L = O%. o
§2 Contracting correspondences

Definition 4.15 Let ¢ : C — X x X be a correspondence and let Z c X be a closed subscheme.

1. ¢ stabilizes Z if ¢,(¢;*(Z)) c, Z. (Here the left hand side denotes the scheme theoretic image
of C1|c;‘(Z)-)

2. cis contracting near Z if c stabilizes Z and if there exists k, € N such that

(cH(I2) - Oc) c (c3(Iyp) - O) ™.

3. ¢ is contracting near Z in a neighborhood of fixed points, if there exists an open neighborhood
W c C of Fix(¢) such that c|yy is contracting near Z.

Remark 4.16 Let c and Z be as in the definition. Then the following conditions are equivalent:

1 ¢,(65'(2)) ¢, Z, i e. ¢ stabilizes Z;
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2. 6,'(Z2) ¢ ¢,7(2);
3. N (Zx2Z)= M (2);
4. Crﬂz‘ﬁc CC;fz'ﬁc.

In particular, comparing condition 2 here with condition 3 of 4.2, we see immediately that if ¢ sta-
bilizes Z then Z is automatically c-invariant. Hence if ¢ is contracting near Z in a neighborhood of
fixed points then Z is c-invariant in a neighborhood of fixed points.

Proor The equivalence of 2 and 4 is obvious (cf. 1.(b)). If 2 holds then ¢,(¢;*(Z2)) c; ¢,(¢;*(2)) <,
Z and, conversely, if ¢ stabilizes Z then .- (z) factors through Z inducing a morphism ¢,*(Z) —
C xx Z = ¢;*(Z), thus the closed immersion c;'(Z) < C factors through ¢;*(Z). Finally, the
equivalence of 2 and 3 follows from the fact that ¢ (Z x Z) = ¢;"(Z) x¢ ¢;'(2Z).

Lemma 4.17 Let ¢ : C - X x X be a correspondence and Z c X a closed subscheme. c is contracting
near Z if and only if c stabilizes Z and the image of (¢z),s * Ne-(zx2)(C) = Nz(X) is contained
set-theoretically in the zero section Z ¢ Nz(X).

Proor Consider the following composition of morphisms in ahc (2.29):
¢: (Cc(Zx2)) = (XxX,ZxZ) 25 (X, 7).

By functoriality (2.30.1), (¢z), = p, 0 ¢z = P, © ¢ = ¢,. By 2.30.2, the image of ¢, is contained in the
zero section if and only if there exists a k, € N such that the following inclusion holds:

(c1(I2) - Oc)* = i (If) - Oc € TG, =I5, = (61(7) - 00)

In the penultimate equality we used that ¢ stabilizes Z in any case (and 4.16). o
The reason for introducing the notion of contraction is the following result.

Theorem 4.18 Let ¢ : C — X x X be a correspondence contracting near a closed subscheme Z c X
in a neighborhood of fixed points, let F € @ftf(X) and let u € Hom (%, .F) be a cohomological
correspondence. Moreover, let 3 be an open connected subset of Fix(c) such that ¢'(f) n Z + @. Then:

1. Bc; cN(2), i.e Bisan open connected subset of Fix(c||*).
2. trg(u) = trg(ul|*). In particular, if B is proper then ltg(u) = ltg (u|?).

PROOF 1. Let us first prove that the second statement in 1 follows from the first. For this notice
that since Z is c-invariant in a neighborhood of fixed points (4.16), Fix(¢) ¢, W.(Z) hence
¢" = (¢clw,(z))'- This implies ¢"*(Z) c; (c|w,(z))>'(Z)req and finally

w.(2))2 (Z)red Xzx2 Z

= (clw,.(2))2 (Z2)rea *xxx Z

= (c wc(z))gl(z)red Xc CH(Z)
= 7(2).

FiX(C|W£(z)|Z) = (c

Thus it suffices to prove the first statement.
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Let W c C be an open neighborhood of Fix(c¢) such that ¢y, is contracting near Z. Then, as
before, Fix(c) = Fix(c|y ) and ¢’ = (¢|w)’ so we may replace ¢ by c|y, assuming from now
on that ¢ is contracting near Z. Also, replacing C by the open subset C\(Fix(¢)\f) does not
affect ¢’[g hence we may assume that Fix(c) = .

Since ¢ is contracting near Z the previous lemma tells us that the image of the morphism
(€2)1s t Newi(z2x2)(C) = Nz(X) is contained set-theoretically in the zero section Z ¢ N (X).
Moreover, by 2.34, there is a commutative triangle

ez
l 7
FIX(Ez) — XZ
(&2)
which shows, by passing to the fiber over s, that
Im[¢’,] ¢, Im[(2);] <, Im[(é7),] <, Z.
Now, we may use 2.30.2 to deduce the existence of k, € N such that (¢"*(.%,) - ﬁ’/j)ko c
(" (I7) - Op)F™, e, fclff,(z) = f!ffr(lz). We conclude with the following Lemma 4.19
that f!ff,(z) =ohence B =; ' (2).

. It suffices to prove the first statement. We will proceed in several steps.

Step 1 As in part 1, we may choose an open neighborhood W c C of Fix(c) such that c|yy is
contracting near Z, and again we have Fix(c) = Fix(c|y ). Suppose we can prove trg(u|y ) =
trg((uly)|?). Then we also have

tl‘/;(u) :trﬁ(u|W) by3_22
- trﬁ(”|W|Z) by hypothesis
= trﬁ(” WL-(Z)|Z|Wrwc;‘(Z),ed) by 2.14
= tr/i(”HZ) by 3.22.

Thus we may from now on assume that c is contracting near Z.

Step 2 Let W be the open set C\(Fix(c)\B) and suppose that we can prove tr , (uly) =
try),, 2 (u|w|?). Then we also have

trg(u) = trey,, (ulw) by 3.22
- trclw\z(”|W|Z) by hypothesis
= trf|Z|Wnc;1(z)md(u|Z|Wﬂcl_’(Z)red) by 2.14
= trg(ul”) by 3.22 and part 1.

Thus we may from now on assume f3 = Fix(c).

Step 3 Set U = X\Z. We may apply 3.23 to get the identity

tr(u) = ez, ([, (ul?)) + vz, ([ 11 (u]7)).

90



By 3.19, the first summand on the right is equal tof(iz), tr 2 (u|?). Butsince Fix(c) =, Fix(c|*)
by part 1, the map f(iz), : HO(Fix(c), Kpix(e)) = H(Fix(c|?), Kgiy(oJz)) is the identity map.
Hence the first summand is equal to tr 2 (u|*). It suffices thus to show the vanishing of the
second summand.

Step 4 By the previous step it suffices to show tr.(u) = o if F#|; = o. Now, by 3.21, the
following identity holds:

SPrix(e,) (tre(4)) = tr(e,), (spe, () (4.2)

Asin part 1 (by 4.17), the image of (¢z),, is contained set-theoretically in Z ¢ Nz(X). On the
other hand, spy (F)|z 2 7|, = o by 2.35, hence (¢z){ispx, (#) = o as well. Looking at the
definition of sp E; (2.20), we see that this implies sp; (u) = o hence the right hand side of the
above identity (4.2) vanishes.

Step 5 For the proof of the theorem it will suffice to show that the map

SPrix(z,) + HY(Fix(¢), Krix(c)) = H(Fix((¢2)s), Krix((z,).)) (4.3)

in (4.2) is an isomorphism. By 2.24, this is true for sp gy () .),» and it is easy to see that the
same must hold for (4.3) provided that

Fix(gZ)red = (Fix(c)red)R (; (FiX(C)R)red) (4-4)

as schemes over Fix(c)y (the two maps in question are related to each other by counits of
adjunctions, p,p' — 1, associated to closed immersions onto, p, i.e. by isomorphisms). In
order to prove (4.4), consider the following canonical isomorphism over Fix(c)p:

(Fix(c)red)R = (FiX(C)red)Fix(c)red
(Fix(c)red)c’*l(z)red bY part1
= (FiX(C)C,_|(Z))red bY 2~28~5-

We deduce from 2.34 that (Fix(¢)g)req is @ closed subscheme of Fix(¢z),cq> the embedding
being a morphism over Fix(c)p. Passing to the generic fiber of the cartesian square

Fix(é,) —— X,

ok

Cc“(ZxZ) : >XZ XR XZ
z

we see that Fix(¢), is isomorphic to Fix(c), hence the generic fibers of the two schemes
(Fix(¢)r)req and Fix(€y ) eq are the same. It remains to prove (4.4) over the special fiber s.

Step 6 There is a chain of closed subsets
Fix(c) = (Fix(c)r)s & Fix(¢z)s = Fix((é2)s) ¢ New(zx2)(C),

and by the last step it suffices to prove that the first inclusion is in fact a (set-theoretical) equal-
ity.

Since the image of Fix((¢),) under (¢;),, is set-theoretically contained in Z, the same is
true of (¢z),s. On the other hand, 2.31.1 tells us that (¢7);/(Z) = ¢;*(Z) ¢ Neazxz)(C).
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Therefore we have the inclusion
Fix((éz)s) € ¢'(2).

But by 2.30.3, (¢2);|e1(2) is equal to c|? (at least as maps between topological spaces) from
which we conclude that Fix((¢,),) <, Fix(c|?) ¢, Fix(c). o

Lemma 4.19 Let X be a connected noetherian scheme, let k, € N and let .F be a sheaf of ideals satis-
fring: 1. F # Oy; 2. Fro = F*t1 Then Fko = o.

PROOF Set ¥ = .7, We have the equality
{xeX |9, =0} ={xeX|Ox,/9 +0}

since, if 4, # Ox , then we also have .7, # O , and .#,%¥, = ¢, hence Nakayama’s lemma (which
may be applied because X is noetherian) implies ¢, = o. Now the first space above is open, the
second is closed and non-empty by assumption hence ¢, = o everywhere. o

§3 Correspondences over finite fields

We now specialize to the case where k = [ is an algebraic closure of a finite field F. If X is a scheme
over F we say that it is defined over F, if there exists a scheme X over F, such that X = X x, F.
Similarly, a morphism of schemes over F, ? : X - Y, is said to be defined over F, if there exists a

morphism of schemes over F,, f : X — Y, such that f=f xg, F. We first recall the definition of
several Frobenius morphisms.

Let X be a scheme over F,- The absolute Frobenius of X over Fg Fryx : X - X, is defined to
be the identity on the topological space X and locally, for Spec(A) c X an open affine, by the ring
morphism a ~ a4, a € A, on the sheaves. Let X = X x, [ be the extension of scalars. The geometric

Frobenius of X over Fgo Fryg ¢ X — X, is the morphism Fry g, Tr. The arithmetic Frobenius of X

over [, on the other hand is Fry , = Tx X, Fry : X - X. The relationship between these various
Frobenius morphisms is
Frx ,oFry, = Fry o Fry, = Fry. (4.5)

Notice also that Frg is an automorphism of F hence Fry , is an automorphism of X.
Definition 4.20 Let ¢ : C — X, x X, be a correspondence defined over F, and let n € N. The

correspondence
(M = (cl("),cz) = (Fry g0¢,6):C— X, x X,

is called the n'™ twist of ¢ by the Frobenius.

Remark 4.21 Itis clear that the association X ~— Fry defines a natural endomorphism of the identity
functor on the Sch/F,. This simply means that for a morphism f : X — Y of schemes over F, we
have Fry o f = f o Frx. From this it follows that

Fry, of = (Fry x Tg) o (f x Tg)
(Fry o f) x T
(foFry) x T

= foFry,,
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i.e. the association X — Fry, defines a natural endomorphism of the functor — x F. In particular,
we see that the n'™ twist of a correspondence ¢ : C — X, x X, defined over F, can also be described
as ¢ = (¢, 0 Fre g, c.)-

Definition 4.22 Let f : X — Y be a morphism of schemes and let Z be a closed subscheme of Y.
Then Ff (2., = \/Ff(z) hence there exists n € N such that ff”_,(z)m‘ c Jfa(z) (since X is

noetherian). The smallest such # is called the ramification of f at Z and is denoted ram( f, Z).

Lemma 4.23 Let f : X — Y be a quasi-finite morphism of schemes. Then, for every closed point y € Y,
() is affine, corresponding to a finite F-algebra A, and we have the inequality

ram(f, y) < dimg A.

Moreover, the set {ram(f, y) | y € Y closed} is bounded above.

Definition 4.24 For f quasi-finite as in the lemma we set

ram(f) := max{ram(f, y) | y € Y closed}

and call this number the ramification degree of f.

PRrOOF (4.23) Fix a closed point y € Y. It is clear that f™(y) is the spectrum of a finite k(y) = [-
algebra, say A. For the inequality set d := dimg A. We then have to prove .# fd_|(y) . € Ff-(y)- This

is a local statement on both source and target and we may assume that X = Spec(B), Y = Spec(C),
y corresponding to a maximal ideal m ¢ C. Then A = B/mB is of F = C/m-dimension d. We get a
decreasing sequence of [F-vector spaces

B/mB > /mB/mB > (V/mB/mB)* > ---,

which, by Nakayama’s lemma, decreases strictly as long as the spaces are non-trivial. Hence the space

(v/mB/mB)? vanishes, which is equivalent to \/@d c mB.

For the last statement, it suffices to prove that the k(y)-dimension of any fiber X, over a closed
point y € Y is uniformly bounded. Since this is obviously true if f is an open immersion we may
assume f finite (by Zariski’s main theorem). Also, since X is quasi-compact, we may assume X =
Spec(B), Y = Spec(A) are both affine. Now, B being a finite A-module, there is a surjective A-
morphism A” - B, some n € N. Tensoring with k(p) over A (p ¢ A a prime ideal) shows that n
bounds the dimensions of the fibers uniformly. o

Lemma 4.25 Let ¢ : C — X x X be a correspondence defined over [, let Z < X be a closed subscheme
and n € N such that " > ram(c,, Z) and Z is ¢ -invariant. Then c") is contracting near Z.

Proor Set d = ram(c,, Z). We will prove more generally that for any coherent sheaf of &-ideals
J satistying

(@) ¢"*(S,)- 6c c/ 7 and
ORVEANS
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the following two inclusions hold:
L Cl(n)*(fz) Occ J;
5 (Cl(n)*(jz) . ﬁc)d c /d-%—l.
(To obtain the lemma, apply this statement to _# = ¢; (#,) - O¢.)
To prove the more general claim we may assume C = Spec(B), _# corresponding to an ideal
J c© B, X = Spec(A), and Z corresponding to an ideal I c A. Then we have
(1) B=Frfh o cl(D)- B
=Fritfo Fra“u“ ocl(I)-B by (4.5)
=Fr"tocl()? B
= (Frg"focl(I)-B)T.

By (a), we thus have (Frg"} o cf(I) - B)? c \/J which implies Fr."f o c}(I) - B < \/J. We conclude:

D) B = (R o (1) - B)T

=

d+1
c\/}+ since g" > d +1
cJ by (b).
The second inclusion is also easily obtained:
d(d+1
(cl(n)n(l)~B)dC\/7 () as above
c Jin by (b). o

Corollary 4.26 Let c: C — X x X be a correspondence defined over [,

1. Let Z c X be a closed subscheme defined over [y which is locally c-invariant. Then, for each
n e Nwith g" > ram(c,, Z), ¢") is contracting near Z in a neighborhood of fixed points.

2. If ¢, is quasi-finite then, for each n € N with ¢" > ram(c,), ¢(") is contracting near every closed
point of X in a neighborhood of fixed points.

PROOF 1. First notice that Z is locally ¢(")-invariant. Indeed, let x € Z. By assumption there
exists an open neighborhood U c X of x such that Z n U is ¢|-invariant. Replacing ¢ by ¢|V
we may thus assume that Z is c-invariant. Shrinking X further we may assume X = Spec(A®,
F) for some [ -algebra A, Z corresponding to I ®, [ for some ideal I ¢ A. We will now

prove that Z is ¢(")-invariant, i. e. ¢;(Z)eq Cs (cl(”))‘l(Z) (cf. 4.2). For this we may assume
C = Spec(B ®F, F) for some [, -algebra B, and ¢ = b ®, Tr. Since Z is c-invariant we have
bi(I)-B®F c \/bi(I)-B®F hencealso b!(1)? -B&F c \/bi(I) - B®F. This proves local
¢("_invariance of Z.

By 4.12.3, Z is also ¢(")-invariant in a neighborhood of fixed points hence, by 4.12.2, the open
subset W := W,y (Z) c C contains Fix(c(")) and Z is ¢(")|,y-invariant. Clearly, ¢("|,, =
(¢c|w)™ and ram(c,|yy, Z) < ram(c,, Z) hence 4.25 (applied to the correspondence c|yy) im-
plies the claim.
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2. As ¢, is quasi-finite every closed point of X is locally ¢(")-invariant by 4.5. Now, the claim may
be deduced from 4.25 exactly as in part 1. o

§4 A generalization of Deligne’s conjecture

Recall that in the construction of RT.(u) for a correspondence ¢ and a cohomological correspon-
dence u we required that ¢, be proper (cf. 2.9). We now want to generalize this slightly in order to
formulate the main result.

Definition 4.27 Letc: C - X, x X, bea correspondence, .%#; € erf(Xi)’ i=1,2,andletj: U, - X,
be an open subscheme such that ¢ [.-(y,y : ¢;"(U,) — U, is proper and 7, |x,\y, = 0. Given a
cohomological correspondence u € Hom,(.%,,.%,) we define a morphism

chU](u) :ch(Xl’jl) - ch(Xz’jz)

as follows.
The map adj : R[.(U,,.% |y, ) - RI(X,,.#,) induced by the adjunction j,j* — Ty is an iso-
morphism by assumption. Hence we may set RI Y (1) to be the composition

o adi - RI (u|"r*2) -
RrC(Xl"/l) ? RFC(UI"/1|U|) - ch(Xz’ Jz)

(cf. 2.13.2).

In the situation of the definition, suppose there exists U, ¢ V, ¢ X open such that ¢,|-1(y,) :

¢;'(V,) - V, is still proper. We might wonder whether we then have RI[.Y* (1) = RI." (). It turns
out that this is indeed the case.

Lemma 4.28 Letc: C - X, xX, bea correspondence with c, proper, let F; ¢ @ftf(Xi) andletU, c X,
be an open subset such that F|x \y, = o. Then RI." (1) = RT(u) for every u € Hom (.%,, .%,).

.U, X,

ProoF Set [j] = [j7+*]. It will suffice to prove that the following diagram commutes:

RI (U, ji %))
:l RI([]%u)

RrC(Xl’jllj:.jl) M RFC(X;_’ yz)

adjl; /
RT(u)

RFC(XI’ yl)

By 2.10, the upper half commutes. For the lower half we have to compare [j], o [j]*(u) and u. The
former equals the composition of the dotted arrows in the following diagram (d = [j]*¢):

(2.

13)

3) 7% ex (113 * s ok
> CZ!J?dl i yl = CALWANA jl

] \Ladj

Y
djb* i F, >, F >

|
(1.11) 2:71 u 2

%+ % o
CZICI ]1!]1 Jl

N
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The first thing to note is that the morphism (1.11) appearing in the diagram is induced by the adjunc-
tion morphism adj : j#j1* — 1. Next, this as well as the other morphism denoted adj are equal to
the trace morphism defined in [2, XVII, 6.2.3]. Hence, by [2, XVI], 6.2.3, (Var 2)], the square above
commutes.

Furthermore, since j' and j, are open immersions, the morphism (2.3) is easily seen to be the
inverse of (1.13). We conclude that [j], o [j]*(u) = u o adj. Applying RT, on both sides, the claimed
commutativity follows immediately. o

Returning to the situation before the lemma, we have

RIY (1) = RL(u|Y%) 0 adjy Ly

= R ((u]"%) V%) o adj; Ly oadjy Ly by 2.12
= RI‘CUl(u V"Xl) o adj‘_,ll_)X]

= RI(u|"*) o adjy Ly by 4.28
=RI." (u).

This equality (together with the fact that if (¢

(c

Notation 4.29 Let ¢ : C - X, x X, be a correspondence, .%; € @ftf(Xi), and u € Hom.(.%,, %#,).

We set RT, (1) to be RT." (1) for any open U, c X, such that c,
Z,|x,\u, = 0, provided such a U, exists.

e1(uy))r and (¢|e(pry), are both proper then so is

1 (u,uur) 1) justifies the following notational convention.

c(uyy ¢ 6 '(Uy) = U, is proper and

We are now ready to formulate and prove our main theorem.

Theorem 4.30 Let c: C — X x X be a correspondence defined over [

1. Assume that c, is quasi-finite. Then for every n € N with q" > ram(c, ), the space Fix(c(") is
finite and discrete.

2. Let U c X be an open subset defined over [ such that c,| .-y is proper, ¢,|c(uxv) is quasi-
finite, and Z := X\U is locally c-invariant. Endow Z with any closed subscheme structure. Then
there exists a d € N with the following property:

For every F ¢ @btf(X) with Z|x\u = o, every n € N with q" > d and every cohomological

C
correspondence u € Hom ) (&, .F ), we have an equality

Tr(RT (u)) = > Tr(uy). (4.6)
yeFix(c(M)ne=1(UxU)

3. In the notation of 2, assume that X and C are both proper. Then
d := max{ram(c, | (yxuv)), ram(c,, Z) }

satisfies the conclusion of 2.

4. In the notation of 2, let ¢ : C - X x X be a compactification of ¢

(v such that Z = X\U is
locally c-invariant (cf. 4.13). Endow Z with any closed subscheme structure. Then

d = max{ram(E, e e ) ram(,, )}

satisfies the conclusion of 2.
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PROOF 1. Let 8 be a connected component of Fix(c(")). We shall prove that 8 is a point. Our
general assumptions on schemes ensure the existence of a closed point x € (c(")(B). By
4.26.2, ¢ is contracting near x in a neighborhood of fixed points. By 4.18.1, § is an open
connected subscheme of (¢(™)"™*(x) c ¢;*(x) which is a finite scheme hence f is a point.

3. Thus assume X and C (hence also ¢) proper. Let .F € @ftf(X), n € N such that " > d and
u € Hom o (F, .7 ). We will deduce equality (4.6) from the Lefschetz-Verdier trace formula
(3.20). The latter yields an equality

Tr(RT.(u)) = > Itg(u).
Ber, (Fix(c())
By 4.28, the left hand side equals the left hand side of (4.6). For the right hand side let f €
7, (Fix(c("™)). There are two cases to consider.

Case1 First assume c(B) ¢ U x U, let x € f such that c(x) ¢ U x U. By 4.26.1, ¢ is
contracting near Z in a neighborhood of fixed points. Also, (c(™)"(x) = ¢’(x) € Z hence
(M) (B)nZ + @and (™ satisfies the hypotheses of 4.18. Hence f8 is a connected component
of Fix(c("||#) and ltg(u) = Itg(ul|*). But Z|, = 0 hence ul|” = o which implies ltg (1) = o.
Case2 On the other hand, assume ¢(f8) ¢ U x U. Denote by d the correspondence c|.-(yxu)-
Then d, = ¢, |- (yxv) is quasi-finite and g" > d > ram(d, ) hence, by part 1, the set Fix(d(")
is finite. Since d") = (™| - sy, we have B ¢ Fix(c() n ¢™(U x U) = Fix(d™) from
which it follows that 8 = y is a closed point and that the sum on the right hand side of (4.6) is
finite. We are done if we can prove It (u) = Tr(u,).

Set x = ¢,(y) = d,(y) € X. By 4.26.2, d™" is contracting near x in a neighborhood of fixed
points (that x is closed may be proved as in 4.5), hence 4.18.2 tells us that It, (u
It, (u| - (ux[[*). We conclude:

rl(UxU)) =

It, (u) =It, (4] (uxuy) by 3.22
= 1ty(“'c"(UxU)Hx)
=Tr(u,) by 4.11.

2. If we replace ¢ and u by its restrictions c|.-:(yy and u|.- (), respectively, then the hypotheses
of 2 are still satisfied. Moreover, if we can prove the existence of such a d € N with respect
to ¢|1(y) and Uy then the same d also works for ¢ and u since (4.6) remains the same.
Indeed, for the left hand side we have:

TH(REY () = Tr(RT (1) 0 2d™)
= Tr(RT((ul¢;(0y)|7*) o adj ™) by 2.12
= Tr(RFcU(u|cf‘(U)))'

For each y on the right hand side the equality

Tr(uy) = Tr((ulc(uxvy)y) by definition, cf. 4.9.2
= Tr((ule; (v)lemr (uxvy)y) by 2.12
= Tr((ulem(vy)y) by definition, cf. 4.9.2,

shows that the sum remains the same as well. Hence we may assume without loss of generality
that ¢;*(U) = C. We will deduce part 2 from 3.
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4.13 ensures the existence of a compactification ¢ : C — X x X of ¢ such that X\U is locally c-
invariant. Denote by [ j] the inclusion of ¢|U"X into €. Since c|”* is proper, [ j] satisfies (F3) of
2.§3 hence we may set # = [j],(u|”"*) € Homz(j,,.7, j,-F ), where we used the identification
F = j  Flu 2 j,-F since Fy\y = 0. By 413.1,¢, (U) = ¢;*(U) c Chencealsoc ' (UxU) =
¢ (U x U) which implies that the pair (¢, U) (replacing (¢, U)) satisfies the hypotheses of
part 3. It thus suffices to show that neither the left nor the right hand side of the equality (4.6)
change under the replacement (¢, U, .#,u) ~ (¢, U, Z, u).

For the left hand side we have
Te(RT.Y () = Te(RT. (") 0 adi ™)
=Tr(RT.(u) oadj™) by 2.10
=Tr(RI.(%)).

On the right hand side of (4.6), the set of y over which the sum runs clearly does not change.
And for each such y we have the following equality (x = ¢,(y)):

Tr(uy) = Tr(u *1,)
:Tr(u |UX|x’x|y) by 2.15 since ¢;'(U) = C
= Tr(u|"* *1,) by 2.12
= Tr(u|c|"* 1) by 2.16 and 2.12
:Tr(u|w(x)|UX|x’x|y) by 2.12
= Tr(ulw, (x)| ly) by 2.15 since ¢, '(U) = C
=Tr(u T (¥)aly) by 2.14
= Tr(ﬁ|w wl* |y) by 2.12
- Te(i).
4. This is clear from the proof of part 2. o
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Notation

Term

adj
ahc
bc

bc*, be!, be,., ber.
bc*, b, be,, be

€1, Gy

Page of definition

31

48, 49

NN A

Term

ZFE P>~

Q&

R,R",RF

=5, Cs
Sch/-
sCor

SCor

Lx,t,
Tr
tr.

s L
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Page of definition

4
4
5
46
13
48
29
13
48
11
50
8,13
50
4
49
34
64
6
9
50
49
49
70
92
9
5,17, 95
94
50
4
46
84
5, 13, 14, 18
49
9
83
4
13
24
4
22,24, 25
48
83
11
6
47
46
84
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